
19
Chapter 1: Overview

This guide describes how to use the scripting features of LiveMotion 2.0. The Adobe LiveMotion
Player Scripting Guide supplements the Adobe LiveMotion User Guide, enabling you to enhance
the compositions you create through the user interface.

Script authoring
LiveMotion 2.0 is a script authoring tool. It makes use of a JavaScript editor, interpreter, and
debugger that enable you to create, preview, troubleshoot, and export the scripted contents of
your composition(.liv file).

Through the Script Editor you can write scripts to the composition and movie clip timelines. In

addition, you can write scripts that respond to events that are not time based, such as pressing a
key or loading a movie clip. The Script Editor user interface facilitates access to, and provides
guidance in using, the JavaScript core syntax and document object model (DOM) extensions. It
lists all the current movie clips, labels, and states defined in your composition, provides you with
the ability to set breakpoints, and assists you in locating all the scripts that are currently written.

LiveMotion 2.0 also includes a debugger that not only locates and identifies errors but provides

you with a number of significant debugging features including the ability to view variable values,
set script breakpoints, and step through lines of a script as it gets executed. While debugging, you
can use the trace() function to print to the Script Console window information you want to
check such as certain string values or the current point of execution. Removing trace() state-
ments is not necessary as Script Console writes are ignored on export. When you are satisfied
with the way a composition you have authored is working, you can export it to the SWF file

format for viewing in the standalone SWF player or in the SWF Player plug-in installed in your
Netscape or Microsoft Internet Explorer browser. Exporting the.liv file causes the JavaScript it
contains to be converted to ActionScript.

CHAPTER 120
Overview
LiveMotion objects
As you recall from the LiveMotion 2.0 User Guide, objects are the basic element of a composition,
and they have a hierarchical organization. Movie clips, the focus of this guide, are also objects.

And they can be manipulated manually in all the ways you have already learned about in the User
Guide plus new ways, as this guide unveils. Before embarking on movie clips, this section briefly
reviews a few of the ways you can work with any object—movie clip or not.

To create animation, you can apply changes to objects over time. You can navigate the object
hierarchy to the object’s timeline, set property stopwatches such as the object position, and then
create animation keyframes to move the object from one position to another during playback.

You can change the object’s size or opacity. And for those LiveMotion 1.0 users making the
transition to LiveMotion 2.0, you might be interested to know that you can still set LiveMotion
1.0 object behaviors.

To create user interactivity, you can add states to an object. All objects have a normal state by
default. Each new state (such as over, down, out) has its own independent timeline to which you
can apply object changes that occur during that state. Unlike animation which occurs over

specific frames in an object’s lifetime, changing states is the result of the user doing something
like pressing a button or moving the mouse during playback.

What is a movie clip?
You also can manipulate objects through the JavaScript scripting language. This opens up all
sorts of new possibilities for handling objects. However, you can only write scripts to a certain
type of object, namely, the movie clip.

In this guide, the JavaScript scripting language is often called Player scripting. Player scripting
includes most JavaScript core functionality. Like JavaScript, Player scripting has its own set of exten-
sions for manipulating movie clips. There are also a few other differences, which are specifically noted

in “Scripting guidelines” on page 24.

A movie clip starts out as a “regular” (unscriptable) object. You must convert the object into a
movie clip. A movie clip has its own timeline so that it can play independently of the main
composition timeline and independently of any parent timeline (in the case of nested movie
clips). When you add states to an object, LiveMotion automatically converts the object into a

movie clip for you. Movie clips are equivalent to the time-independent objects and time-
independent groups in LiveMotion 1.0.

21ADOBE LIVEMOTION 2.0
Scripting Guide
How does writing Player scripts extend functionality?
By writing Player scripts, you can perform many functions on a movie clip that are equivalent to
those you can perform manually (without using scripting). You can, for example, set a movie

clip’s vertical and horizontal position properties. This capability is equivalent to setting the
position stopwatch and creating animation keyframes. By setting properties through Player
scripts, you can perform a number of functions such as changing an object’s opacity, rotation,
and scale—to name a few. You might ask why would you want to start writing Player scripts if
you can perform the same functions without them? And the answer is, allowing movie clips to
set properties of itself and properties of other movie clips is just the beginning of what you can

do with Player scripting.

Through Player scripting, you can set conditions to control when events occur, use logic to
compare values and make decisions based on those values, easily repeat long processes using a
variety of looping mechanisms, respond to user events such as mouse and keyboard changes, and
encapsulate actions into functions that can be called by any number of movie clips anywhere in
a composition. Not only can you write scripts that interact with the user, you can write scripts

that interact with servers. Though Player scripting, you can get data from a server and post data
to the server. The information obtained from a server can be used to dynamically update your
composition. You will find it difficult, if not, impossible, to perform most these tasks through
the use of keyframes (and basic LiveMotion 1.0 behaviors). These programmatic controls,
available through the JavaScript language, extend what you can create with keyframes and enable
you to fine tune your composition.

Document Object Model and JavaScript Core
Player scripting has its own document object model (DOM) extensions, consisting of a set of
object methods and properties that you can use to manipulate your LiveMotion movie clips.

Player scripting also makes available the JavaScript core functions, which are a set of scripting
utilities.

For details on these interfaces, see

• “Movie Clips” on page 55

• “Reference” on page 109

CHAPTER 122
Overview
Player scripting techniques
LiveMotion provides a number of techniques that you can use for writing Player scripts to
achieve the result that you are after, whether that be animation, user interaction, or interaction

with a server. The locations where you can place a script on a movie clip are:

• On keyframes

• In event handlers

• In state change handlers

Although using labels is not a script writing technique in and of itself, you typically use labels in
combination with scripts to redirect the flow of execution of a timeline to a frame with the
identifying label. For example, this script takes the playhead of myClip’s timeline to the frame
labeled “Start”:

myClip.gotoAndPlay("Start");

For details on the script writing techniques, see “Writing Scripts” on page 29. That section intro-
duces you to writing Player scripts and provides simple exercises illustrating these techniques
and variations of them.

Movie clip styles
For the purpose of introducing what you can do with movie clips, this guide groups movie clips
into three styles: animation, user interaction, and server interaction. Bear in mind that styles are

not absolute. A movie clip can exhibit any combination of these styles.

Animation
Animation in its purest form is programmed movement. The user can view the results but
cannot control them.

An example of an animation is a cloud that is programmed to float across the Composition
window.

One way to create an animation is to write code for an onEnterFrame handler, for example,

cloud._x += 5;

23ADOBE LIVEMOTION 2.0
Scripting Guide
This code will execute each time the playhead enters a frame to move the cloud horizontally from
left to right across the Composition.

User Interactivity
This type of interactivity is driven by user-generated events, such as moving the mouse or
pressing a key.

An example of a movie clip that responds to user-generated events is a movie clip that follows
the mouse as the user moves the mouse around the Composition window.

You can implement this using the onMouseMove event handler. Each time the user moves the
mouse, the movie clip updates its position relative to the mouse’s position.

Interactivity with a server
This type of interactivity is driven by communication between the movie clip and a server.

An example is a movie clip that receives a company’s stock price from a server when it sends the
company name.

You can implement this using the loadVariables() global function to get the stock price from
the server. The movie clip provides the server with the stock name. The server returns the stock
price at the specified location of the movie clip.

CHAPTER 124
Overview
Scripting guidelines
When writing Player scripts in JavaScript to be exported to SWF file format, you need to be aware
of a few guidelines.

Differences between ActionScript and JavaScript
JavaScript and ActionScript differ in the ways described in Table 1.1.

Table 1.1 ActionScript compared to JavaScript

ActionScript JavaScript

Is not case sensitive. When writing scripts for
LiveMotion, avoid creating names that are
the same in every way except for case. For
example, using foo and FOO to represent dis-
tinct values will generate a name conflict
because the Flash Player considers these
names to be equivalent.

Is case sensitive.

Does not support the switch statement
(switch, case, continue, default).

Supports the switch statement.

The Flash Player does not support exception
handling (catch, throw, and try).

You should avoid using exception handlers
when exporting scripts to SWF.

Supports exception handling.

The Flash Player does not support the Func-
tion constructor. To use function construc-
tors, you can create a custom method for
objects:

this.myFunction = function() {}

Supports the Function constructor.

The core JavaScript global function eval()
can only perform variable references.

Evaluating undefined as a number
returns 0.

Evaluating undefined as a number returns NaN.

toString() of undefined returns " ". toString() of undefined returns undefined.

25ADOBE LIVEMOTION 2.0
Scripting Guide
Only strings that can be converted to valid
nonzero numbers convert to true.

All non-empty strings convert to true.

Does not support Unicode. Supports Unicode.

Supports the ISO-8859-1 and Shift-JIS charac-
ter sets.

Does not support the ISO-8859-1 and Shift-JIS char-
acter sets.

Supports a maximum of 8 levels of nested
with statements. Attempting to nest more
than 8 levels causes the export compiler to
exit.

Supports an unlimited number of nested with
statements.

Supports the ifFramesLoaded statement. Does not support the ifFramesLoaded statement.
It is ActionScript functionality only.

This ActionScript syntax was deprecated in
Flash 5:

call()
chr()
getProperty()
int()
random()
setProperty()
setVariable()
substring()
tellTarget()
toggleHighQuality()
$version()

This is ActionScript syntax only.

ActionScript JavaScript

CHAPTER 126
Overview
Differences between ActionScript and Player script
ActionScript and Player script differ in the ways described in Table 1.2.

Table 1.2 ActionScript compared to Player script

ActionScript Player script

This ActionScript syntax was deprecated in
Flash 5.

call()
chr()
getProperty()
int()
random()
setProperty()
setVariable()
substring()
tellTarget()
toggleHighQuality()
$version()

Player scripting does not support syntax that was
deprecated in Fash 5

However, you can use Player script to get and set
properties, for example:

movieclip.property = value;
var value = movieclip.property

Supports the onClipEvent(...) movie clip
event handlers:

load
unload
enterFrame
mouseMove
mouseDown
mouseUp
data

Supports the equivalents of the ActionScript
onClipEvent(...) movie clip event handlers:

onLoad
onUnload
onEnterFrame
onMouseMove
onMouseDown
onMouseUp
onData

ActionScript supports the on(...) button
event handlers:

press
release
releaseOutside
rollOver
rollOut
dragOver
dragOut

Supports the equivalents of the ActionScript on(...
) button event handlers:

onButtonPress
onButtonRelease
onButtonReleaseOutside
onButtonRollOver
onButtonRollOut
onButtonDragOver
onButtonDragOut

Does not support setting states. Supports setting the state of a movie clip object:

MovieClip.lmSetCurrentState()
lmSetCurrentState() //global

27ADOBE LIVEMOTION 2.0
Scripting Guide
In conclusion
This guide provides examples of how you can use the Player script DOM and JavaScript core—
combined with the techniques of writing keyframe, event handler, and state handler scripts—to

create more sophisticated ways to achieve animation, user interaction, and server interaction
than was possible using keyframes alone.

CHAPTER 128
Overview

	Overview
	Script authoring
	LiveMotion objects
	What is a movie clip?
	How does writing Player scripts extend functionality?
	Document Object Model and JavaScript Core
	Player scripting techniques
	Movie clip styles
	Scripting guidelines
	In conclusion

