Chapter 1: Overview

This guide describes how to use the scripting features of LiveMotion 2.0. The Adobe LiveMotion
Player Scripting Guide supplements the Adobe LiveMotion User Guide, enabling you to enhance
the compositions you create through the user interface.

Script authoring

LiveMotion 2.0 is a script authoring tool. It makes use of a JavaScript editor, interpreter, and
debugger that enable you to create, preview, troubleshoot, and export the scripted contents of
your composition(.l i v file).

Through the Script Editor you can write scripts to the composition and movie clip timelines. In
addition, you can write scripts that respond to events that are not time based, such as pressing a
key or loading a movie clip. The Script Editor user interface facilitates access to, and provides

guidance in using, the JavaScript core syntax and document object model (DOM) extensions. It
lists all the current movie clips, labels, and states defined in your composition, provides you with
the ability to set breakpoints, and assists you in locating all the scripts that are currently written.

LiveMotion 2.0 also includes a debugger that not only locates and identifies errors but provides
you with a number of significant debugging features including the ability to view variable values,
set script breakpoints, and step through lines of a script as it gets executed. While debugging, you
can use the t race() function to print to the Script Console window information you want to
check such as certain string values or the current point of execution. Removing t race() state-
ments is not necessary as Script Console writes are ignored on export. When you are satisfied
with the way a composition you have authored is working, you can export it to the SWF file
format for viewing in the standalone SWF player or in the SWF Player plug-in installed in your
Netscape or Microsoft Internet Explorer browser. Exporting the. | i v file causes the JavaScript it
contains to be converted to ActionScript.

19

20| CHAPTER 1
Overview

LiveMotion objects

As you recall from the LiveMotion 2.0 User Guide, objects are the basic element of a composition,
and they have a hierarchical organization. Movie clips, the focus of this guide, are also objects.
And they can be manipulated manually in all the ways you have already learned about in the User
Guide plus new ways, as this guide unveils. Before embarking on movie clips, this section briefly
reviews a few of the ways you can work with any object—movie clip or not.

To create animation, you can apply changes to objects over time. You can navigate the object
hierarchy to the object’s timeline, set property stopwatches such as the object position, and then
create animation keyframes to move the object from one position to another during playback.
You can change the object’s size or opacity. And for those LiveMotion 1.0 users making the
transition to LiveMotion 2.0, you might be interested to know that you can still set LiveMotion
1.0 object behaviors.

To create user interactivity, you can add states to an object. All objects have a normal state by
default. Each new state (such as over, down, out) has its own independent timeline to which you
can apply object changes that occur during that state. Unlike animation which occurs over
specific frames in an object’s lifetime, changing states is the result of the user doing something
like pressing a button or moving the mouse during playback.

What is a movie clip?

You also can manipulate objects through the JavaScript scripting language. This opens up all
sorts of new possibilities for handling objects. However, you can only write scripts to a certain
type of object, namely, the movie clip.

In this guide, the JavaScript scripting language is often called Player scripting. Player scripting
includes most JavaScript core functionality. Like JavaScript, Player scripting has its own set of exten-
sions for manipulating movie clips. There are also a few other differences, which are specifically noted
in “Scripting guidelines” on page 24.

A movie clip starts out as a “regular” (unscriptable) object. You must convert the object into a
movie clip. A movie clip has its own timeline so that it can play independently of the main
composition timeline and independently of any parent timeline (in the case of nested movie
clips). When you add states to an object, LiveMotion automatically converts the object into a
movie clip for you. Movie clips are equivalent to the time-independent objects and time-
independent groups in LiveMotion 1.0.

ADOBE LIVEMOTION 2.0 {21
Scripting Guide

How does writing Player scripts extend functionality?

By writing Player scripts, you can perform many functions on a movie clip that are equivalent to
those you can perform manually (without using scripting). You can, for example, set a movie
clip’s vertical and horizontal position properties. This capability is equivalent to setting the
position stopwatch and creating animation keyframes. By setting properties through Player
scripts, you can perform a number of functions such as changing an object’s opacity, rotation,
and scale—to name a few. You might ask why would you want to start writing Player scripts if
you can perform the same functions without them? And the answer is, allowing movie clips to
set properties of itself and properties of other movie clips is just the beginning of what you can
do with Player scripting.

Through Player scripting, you can set conditions to control when events occur, use logic to
compare values and make decisions based on those values, easily repeat long processes using a
variety of looping mechanisms, respond to user events such as mouse and keyboard changes, and
encapsulate actions into functions that can be called by any number of movie clips anywhere in
a composition. Not only can you write scripts that interact with the user, you can write scripts
that interact with servers. Though Player scripting, you can get data from a server and post data
to the server. The information obtained from a server can be used to dynamically update your
composition. You will find it difficult, if not, impossible, to perform most these tasks through
the use of keyframes (and basic LiveMotion 1.0 behaviors). These programmatic controls,
available through the JavaScript language, extend what you can create with keyframes and enable
you to fine tune your composition.

Document Object Model and JavaScript Core

Player scripting has its own document object model (DOM) extensions, consisting of a set of
object methods and properties that you can use to manipulate your LiveMotion movie clips.

Player scripting also makes available the JavaScript core functions, which are a set of scripting
utilities.

For details on these interfaces, see
* “Movie Clips” on page 55

* “Reference” on page 109

22| CHAPTER 1
Overview

Player scripting techniques

LiveMotion provides a number of techniques that you can use for writing Player scripts to
achieve the result that you are after, whether that be animation, user interaction, or interaction
with a server. The locations where you can place a script on a movie clip are:

* On keyframes
* In event handlers
* In state change handlers

Although using labels is not a script writing technique in and of itself, you typically use labels in
combination with scripts to redirect the flow of execution of a timeline to a frame with the
identifying label. For example, this script takes the playhead of myd i p’s timeline to the frame
labeled “start ”:

myC i p. got oAndPl ay("Start");
For details on the script writing techniques, see “Writing Scripts” on page 29. That section intro-

duces you to writing Player scripts and provides simple exercises illustrating these techniques
and variations of them.

Movie clip styles

For the purpose of introducing what you can do with movie clips, this guide groups movie clips
into three styles: animation, user interaction, and server interaction. Bear in mind that styles are
not absolute. A movie clip can exhibit any combination of these styles.

Animation

Animation in its purest form is programmed movement. The user can view the results but
cannot control them.

An example of an animation is a cloud that is programmed to float across the Composition
window.

One way to create an animation is to write code for an onEnt er Fr ame handler, for example,

cloud. _x += 5;

ADOBE LIVEMOTION 2.0 |23
Scripting Guide

This code will execute each time the playhead enters a frame to move the cloud horizontally from
left to right across the Composition.

User Interactivity

This type of interactivity is driven by user-generated events, such as moving the mouse or
pressing a key.

An example of a movie clip that responds to user-generated events is a movie clip that follows
the mouse as the user moves the mouse around the Composition window.

You can implement this using the onMbuseMove event handler. Each time the user moves the
mouse, the movie clip updates its position relative to the mouse’s position.

Interactivity with a server
This type of interactivity is driven by communication between the movie clip and a server.

An example is a movie clip that receives a company’s stock price from a server when it sends the
company name.

You can implement this using the | oadVar i abl es() global function to get the stock price from
the server. The movie clip provides the server with the stock name. The server returns the stock
price at the specified location of the movie clip.

24| CHAPTER 1
Overview

Scripting guidelines

When writing Player scripts in JavaScript to be exported to SWF file format, you need to be aware
of a few guidelines.

Differences between ActionScript and JavaScript
JavaScript and ActionScript differ in the ways described in Table 1.1.

Table 1.1 ActionScript compared to JavaScript

ActionScript JavaScript

Is not case sensitive. When writing scripts for Is case sensitive.
LiveMotion, avoid creating names that are

the same in every way except for case. For

example, using f oo and FOOto represent dis-

tinct values will generate a name conflict

because the Flash Player considers these

names to be equivalent.

Does not support the switch statement Supports the switch statement.
(swi t ch,case,conti nue, def aul t).

The Flash Player does not support exception Supports exception handling.
handling (cat ch,t hrow and try).

You should avoid using exception handlers
when exporting scripts to SWF.

The Flash Player does not support the Func- Supports the Function constructor.
t i on constructor. To use function construc-

tors, you can create a custom method for

objects:

this. myFunction = function() {}

The core JavaScript global function eval ()
can only perform variable references.

Evaluating undef i ned as a number Evaluating undef i ned as a number returns NaN.
returns 0.

toString() ofundefi ned returns"". toString() of undefined returns undef i ned.

ADOBE LIVEMOTION 2.0 |25
Scripting Guide

ActionScript

JavaScript

Only strings that can be converted to valid
nonzero numbers convert to true.

Does not support Unicode.

Supports the ISO-8859-1 and Shift-JIS charac-
ter sets.

Supports a maximum of 8 levels of nested
wi t h statements. Attempting to nest more
than 8 levels causes the export compiler to
exit.

Supports the i f Fr anesLoaded statement.

This ActionScript syntax was deprecated in
Flash 5:

call ()

chr()

get Property()
int()
randon()

set Property()
set Vari abl e()
substring()
tell Target ()
t oggl eHi ghQual ity()
$version()

All non-empty strings convert to true.

Supports Unicode.

Does not support the ISO-8859-1 and Shift-JIS char-
acter sets.

Supports an unlimited number of nested wi t h
statements.

Doesnotsupportthei f Fr amesLoaded statement.
It is ActionScript functionality only.

This is ActionScript syntax only.

26 | CHAPTER 1

Differences between ActionScript and Player script
ActionScript and Player script differ in the ways described in Table 1.2.

Table 1.2

ActionScript compared to Player script

ActionScript

Player script

This ActionScript syntax was deprecated in
Flash 5.

call ()

chr()

get Property()
int()
randon()

set Property()
set Vari abl e()
substring()
tell Target ()
t oggl eHi ghQual ity()
$version()

Supports the ond i pEvent (..) movie clip
event handlers:

| oad

unl oad
ent er Franme
nmouseMove
nmouseDown
mouseUp
dat a

ActionScript supports the on(...) button
event handlers:

press
rel ease

rel easeCut si de
rol | Over

rol | Qut
dragOver

dr agQut

Does not support setting states.

Player scripting does not support syntax that was
deprecated in Fash 5

However, you can use Player script to get and set
properties, for example:

nmovi ecl i p. property = val ue;
var val ue = novieclip.property

Supports the equivalents of the ActionScript
onCl i pEvent (..) movie clip event handlers:

onLoad

onUnl oad
onEnt er Fr ame
onMbuseMove
onMouseDown
onMouseUp
onDat a

Supports the equivalents of the ActionScript on(...
) button event handlers:

onBut t onPress

onBut t onRel ease
onBut t onRel easeQut si de
onBut t onRol | Over
onBut t onRol | Qut

onBut t onDr agOver

onBut t onDr agQut

Supports setting the state of a movie clip object:

Movi e i p. | nSet Current St at e()
| mSet Current State() //gl obal

ADOBE LIVEMOTION 2.0 |27
Scripting Guide

In conclusion

This guide provides examples of how you can use the Player script DOM and JavaScript core—
combined with the techniques of writing keyframe, event handler, and state handler scripts—to
create more sophisticated ways to achieve animation, user interaction, and server interaction

than was possible using keyframes alone.

28| CHAPTER 1
Overview

	Overview
	Script authoring
	LiveMotion objects
	What is a movie clip?
	How does writing Player scripts extend functionality?
	Document Object Model and JavaScript Core
	Player scripting techniques
	Movie clip styles
	Scripting guidelines
	In conclusion

