Chapter 4: Movie Clips

What is a movie clip?

A movie clip is a LiveMotion object that you can manipulate programmatically through Player
scripting. Movie clips are JavaScript objects. Like other JavaScript objects, movie clips have
properties and methods, and they can be assigned to variables and placed in arrays.

Movie clips have, in addition, a set of built-in properties and methods that are defined by the
SWE player. A movie clip’s built-in properties describe the physical features of a movie clip, for
example its height, width, position, and the number of frames on its timeline. You can set the
values of these built-in properties to programmatically control the appearance and behavior of
a movie clip throughout it's lifetime. A movie clip’s built-in methods include functionality that
you can perform on movie clips such as creating copies of them, loading and unloading movie
clips, and playing and stopping movie clips. In addition, you can use built-in methods to obtain
information about a movie clip such as its size, the number of bytes loaded, and whether it inter-
sects with other movie clips at specified points. You can also define your own methods and
properties for movie clips, as described in “Creating movie clip methods” on page 72.

In addition to having the characteristics of standard JavaScript objects, movie clips have the
ability to handle user- and system-generated events such as pressing a key or loading a movie
clip. For a movie clip to respond to an event, you must write an event handler for that event on
that movie clip; the handler is then executed whenever the event occurs. For details on movie clip
event handling, see “Movie Clip Events and Event Handlers” on page 79.

Unlike other JavaScript objects, movie clip objects cannot be instantiated: that is, you cannot
create a new, original movie clip programatically. A movie clip has no constructor, and cannot
be instantiated using the new operator.

So, you might ask, how do I create a movie clip instance? The simplest method, and the one to
work with first, is to create the movie clip manually in the Composition window. Later, this
section describes two other methods that programatically create copies of existing movie clips.

55

56 | CHAPTER 4
Movie Clips

How do you create a movie clip using LiveMotion?

LiveMotion objects start out as “regular” (unscriptable) objects. To write scripts to an object, you
must convert the object into a movie clip or a movie clip group. The exception is objects for
which you have defined additional states (besides the normal state, which all objects have by
default). In such a case, LiveMotion automatically converts the object into a movie clip. As an
indication that an object or a group of objects has been turned into a movie clip, the movie clip
icon is displayed to the left of the movie clip or the movie clip group name on the timeline.
Conversion gives the movie clip its own timeline so that it can play independently of the main
composition timeline and independently of any parent timeline, if the movie clip is nested.
Movie clips are equivalent to the time-independent objects and time-independent groups in
LiveMotion 1.0.

Basic methods
You can manually create movie clips in two basic ways: by creating movie clips and by creating
movie clip groups.

To create a movie clip,

Select one object and click the Make Movie Clip button at the bottom of the Timeline window,
or choose Timeline>Make Movie Clip from LiveMotion’s main menu.

To create a movie clip group,

Select one or more objects in the timeline and click the Make Movie Clip Group button at the
bottom of the Timeline window, or choose Timeline>Make Movie Clip Group from
LiveMotion’s main menu. Make Movie Clip Group first groups the selected objects. Then it turns
the group into a movie clip group with its own independent timeline. Movie clip groups can
contain regular objects, unscriptable objects, and movie clips, as well as other movie clip groups.

You also can create a movie clip group using this two-step approach:

1 Select one or more objects, and choose Select Object>Object Group from the main menu.
Alternately, you can press Ctrl+ G (Windows) or Command+G (Mac OS).

This selects the objects. Then it creates an object group out of them.

2 Click the Make Movie Clip button in the timeline, or choose Timeline>Make Movie Clip from
LiveMotion’s main menu.

ADOBE LIVEMOTION 2.0 |57
Scripting Guide

This turns the group of objects into a movie clip group with its own independent timeline.
Movie clip groups differ from movie clip objects in that a movie clip group contains one or more
child objects (movie clips or regular objects). A movie clip is not a group and, as such, cannot
contain a child object.

Effect of creating a movie clip and a movie clip group

When you create a movie clip group, you add an extra timeline between the objects in the movie
clip group and the main composition timeline. This is the timeline of the movie clip group
object. Figure 4.1 compares what happens before and after making a movie clip to what happens
before and after making a movie clip group.

Immediately after creating a movie clip group, the movie clip group name is displayed in the
Timeline window. To view the group’s contents, you must expand the movie clip group’s
timeline.

Make MovieClip
—

Make MovieClipGroup
—

movieClipGroup

Figure 4.1 Before and after creating a movie clip and creating a movie clip group

58 | CHAPTER 4
Movie Clips

Movie clip hierarchy

_root
movieClipGroupA
| movieClipGroupA | |movieC|ipE | movieClipB
movieClipC
|movieCIipB | |movieCIipC| movieClipE
hierarchy z-order

Figure 4.2 Movie clip hierarchy and z-order

All movie clips in a composition are arranged in a hierarchy. At the top of the hierarchy is the
main composition timeline. It is referred to as _r oot . In Figure 4.2, movi el i pG oupAis a child
of root. _root also has a second child, novi eCl i pE. Because novi edl i pG oupA and

movi eCl i pE share the same parent , they are referred to as siblings. novi eCl i pB and

nmovi ed i pC are children of novi ed i pG oupA.

In LiveMotion, you create a parent-child relationship any time you place (or create) a movie clip
or move clip group on the timeline of another movie clip group or _r oot . The movie clip group
becomes the parent of the movie clips it contains. For details on creating movie clip groups, see
“How do you create a movie clip using LiveMotion?” on page 56.

Relationship of movie clip hierarchy to z-order

In the movie clip hierarchy shown in Figure 4.2, a parent appears above its children. This
hierarchy fails to demonstrate the z-order that you see reflected in the Timeline window,
however. (Recall that z-order is the order in which objects overlap. For details, see the LiveMotion
2.0 User Guide.) To see the z-order of the children, you open the group's timeline.

Ignoring programmatically generated movie clips for the moment, the visual result in the
Composition window of the Timeline z-order window is determined by the order of the movie
clip groups and the order of the movie clips within them. This is still true when programmati-
cally generated movie clips are added to a composition, as described in “Programmatic stack
order” on page 74. The order just takes on some more detail.

ADOBE LIVEMOTION 2.0 |59
Scripting Guide

If, for example, you were to open the Timeline window for the composition shown in Figure 4.2,
z-order would show the composition timeline at the top and novi eCl i pG oupA, above

movi eCl i pE. But because movi eCl i pGr oupA is just a movie clip group containing movie clips
B and C, the movie clips would appear from front to back in this order in the Composition
window: nmovi eCl i pB, novi ed i pC, novi ed i pE.

Note in Figure 4.2 that all movie clips are represented by different names. This is intentional. To
be able to refer to child movie clips in scripting, each child must have a unique name. Otherwise,
you will only be able to access the redundant child name that is topmost in z-order.

How to access movie clips in the hierarchy
In Player scripting, children are accessed as properties of their parent using dot (.) notation. For
example, _root can access its child novi ed i pGr oupA as:

_root._novi ed i pG oupA

A child can access its parent using the movie clip _par ent property. For example, this is how
nmovi eCl i pGr oupA can access _r oot :

this. _parent

The keyword t hi s refers to the movie clip to which a script is attached. The above script is inter-

preted to mean: “From this movie clip’s position in the object hierarchy, go up one level in the
hierarchy to access the parent of t hi s, which happens to be _r oot .

In Figure 4.2 novi eCl i pB s a grandchild of _r oot . Here is how _r oot is accessed from
movi eCl i pB using the _par ent property:

this. _parent._parent

Movie clip addressing

You most likely will be changing the object hierarchy as you develop your composition. It is
important that you understand movie clip addressing, so you can make the appropriate changes
to movie clip references in your Player scripts as a result of object hierarchy changes. This section
describes movie clip addressing and makes suggestions on addressing choices, depending on
your situation.

There are two types of movie clip addresses:

60 | CHAPTER 4
Movie Clips

» Absolute reference
« Relative reference

This section uses the movie clip object hierarchy shown in Figure 4.3 to illustrate the addressing
types.

movieClipGroupA movieClipGroupE

|movieCIipB | |movieC|ipC | |movieCIipD| | movieCIipF|

movieClipG

Figure 4.3 Movie clip addressing

What is an absolute reference?

An absolute reference is a reference to a move clip that begins at the top of the composition, and
walks down through the object hierarchy— parent to child—until reaching the movie clip of
interest. An absolute reference always begins with _r oot , and uses dot (.) notation to access the
children of _r oot , and the children's children, and so on until obtaining the movie clip being
referenced. The absolute reference is the same regardless of where in the movie clip hierarchy
the source movie clip (movie clip making the reference) is located.

Absolute reference example

For example, the absolute reference to movi eCl i pBis:
_root.novi ed i pG oupA. novi eC i pB
_root is always at the top of the hierarchy and first in the absolute reference. In this example,

movi eCl i pGr oupA is at the level just above movi ed i pB. The reference ends with novi eCl i pB,
the movie clip being referenced.

ADOBE LIVEMOTION 2.0 {61
Scripting Guide

What s a relative reference?

A relative reference is a reference that begins with the source movie clip (movie clip making the
reference) and walks through the movie clip hierarchy, each step being parent-to-child or
child-to-parent until it reaches the movie clip of interest. Relative references always begin with
t hi s, and access the next movie clip in the reference either as a child, or through the _par ent
property until a reference to the desired movie clip is obtained. A relative reference is dependent
on the relationship between the source movie clip and the movie clip it is referencing and varies
from source to source.

Note: Although using 't hi s' is optional in the relative reference, this scripting guide begins all
relative references with 't hi s' so you can more easily distinguish between global function calls and
movie clip method function calls.

Relative reference examples

Here is an example of the relative reference from novi eCl i pGr oupAto novi eCl i pG oupE:

this. _parent.novied ipG oupE

t hi s refers to novi eCl i pGr oupA. _par ent is novi el i pG oupAs parent (in this case, _r oot)
which is up one level in the object hierarchy from movi edl i pGr oupA. From _r oot the reference
leads down one level to movi ed i pG oupE.

This is the relative reference from novi eCl i pCto _r oot :

this. _parent._parent

In this example, _r oot is novi eCl i pCs grandparent.

When to use an absolute or a relative reference
You can access all the movie clips in a composition using either type of reference for movie clip
addressing. However, in most cases one reference style makes more sense than the other.

Here are two rules of thumb:

* Choose the reference style that you believe is least likely to change during your editing process.

* The simpler reference is usually the better one.

62 | CHAPTER 4
Movie Clips

If, for example, you know the location of the movie clip that you want to access is not going to
change in the object hierarchy, but you are not sure where the source movie clip accessing it is
going to be, it is probably better to use an absolute reference. Then, regardless of where the source
movie clip is in the hierarchy, the reference to the target will be correct. If you know the
relationship between two movie clips in the hierarchy is not going to change, but you are not sure
where these movie clips will be located relative to _root, it is probably better to use a relative
reference. If you're still uncertain about what the relationship of the movie clips will be, choose
the simpler reference. For example, it makes more sense for movi eCl i pGto refer to movi eCl i pF
asthis._parent thanas_root. movi edl i pG oupE. novi edl i pF.

More examples of movie clip addressing
This section provides additional examples of movie clip addresses. It identifies all the references
from the objects in Figure 4.4 to movie clip novi ed i pD.

_root
I I

movieClipGroupA movieClipGroupE

movieClipB | |movieC|ipC | |movieCIipD| | movieCIipF|

movieClipG

Figure 4.4 Object hierarchy for examples

There is only one absolute reference to movi ed i pD:

_root. novied i pG oupA. novi ed i pD

Table 4.1 shows all the relative references to novi ed i pD from each of the other movie clips in

Figure 4.4.
Table 4.1 Relative references to movieClipD
Source Relative reference to movieClipD

movi eCl i pGoupA this.nmoviedipD

nmovi eC i pB this._parent. nmovi ed ipD

ADOBE LIVEMOTION 2.0 |63
Scripting Guide

Source Relative reference to movieClipD
movi eC i pC this._parent. movi eCd ipD
nmovi eC i pD this

movi eCl i pG oupE this._parent. novieC i pG oupA novieC ipD
movi ed i pF this. _parent._parent. novi ed i pG oupA. novi eC i pD

movi eC i pG this. _parent._parent._parent.novieC i pG oupA. novied ipD

Hands-on example: How to address a movie clip from a location relative to the
timeline

This hands-on example illustrates the movie clip addressing concepts described above. The
example uses a change state event to move an object. It requires creating two movie clips. One is
accessed by the other. The other is a movie clip whose down state causes the movie clip it accesses
to move to the right.

The example assumes that you know how to create rollover states. If you need help, see the Adobe
LiveMotion User Guide for details.

Figure 4.5 shows the main timeline.

‘#4 Target_event:2

[00:00:00:00 1] 41| e [0]9] =]

+ [Composition #ae Nis 03 06 09F 0]s

= Composition] =
Labels [E]
Scripts [E| 4

I B Box ==
) @ = | [D

a

ST EE ===l o

Figure 4.5 Addressing a movie clip

To address the movie clip,

1 Create a rectangular shape in the Composition window.

64 | CHAPTER 4
Movie Clips

2 Create a second, elliptical shape with a different color in the Composition window.

3 In the Timeline window, name the objects Box and Button, respectively, and make each a
Movie Clip.

4 For Button, use the States and Color palettes to create a normal, over, and down state, respec-
tively—each with a different color.

5 Select Button in the timeline.

6 Select the Button down state in the States palette.

7 Click the scripts button in the States palette.

8 Enter the following script, which uses an absolute reference:

_root.Box._x +=5;

[~ Script Editor - Composition’\Button [down]%

el'QI'BEI |down -

_root.Box._x += 5.'.|

Figure 4.6 Button down state

9 Preview the composition. Each time you click on Ball, the down state calls the down state
event handler, which moves Box to the right 5 pixels.

10 Repeat steps 5 through 8, and select the Button down state again. Change the script to:

/1 _root.Box._x +=5; coment out this statenent
this._parent.Box._x += 5;

This script shows the relative reference from Ball to Box. To access Box from Button, Ball goes
“up” one level to the composition timeline (t hi s. _par ent) and then “down” again one level to
Box.

11 Preview the movie again. The behavior should be exactly the same as when you previewed
the composition in step 10. Each click on Ball advances Box to the right 5 pixels.

ADOBE LIVEMOTION 2.0 |65
Scripting Guide

Movie clip properties

As illustrated in the previous example, you can manipulate a movie clip’s properties to create
effects such as animation. Movie clips come with a large number of built-in properties. You can
use these properties to modify the physical features of a movie clip, such as changing its size or
opacity or changing its location.

Table 4.2 lists all the built-in movie clip properties. The built-in property names start with the
underscore (_) character to distinguish them from properties that you might define yourself.

Table 4.2 Movie clip built-in properties

Property Description

_al pha Opacity of the movie clip on a scale of 0 (transparent) to 100 (opaque).
_currentfrane Position of the playhead in the movie clip's timeline.

_dropt ar get Absolute reference (in slash notation) of a movie clip over which a

movie clip passes during drag operations performed by the user.

_framesl oaded Number of the movie clip frames that have been loaded. Also a global
movie clip property.

_hei ght Height of the movie clip in pixels.

_nane Name of the movie clip.

_parent Movie clip containing this movie clip.

_rotation Rotation angle of the movie clip in degrees.

_target Absolute reference of the movie clip in slash notation.
_total franes Number of frames in the movie clip.

_url URL of the SWF file that this movie clip is a part of.
_visible Boolean indicating whether the movie clip is visible.
_width Width of the movie clip in pixels.

_X Horizontal location of the movie clip in pixels.
_xnouse Horizontal location of mouse pointer in pixels relative to the anchor

point of the movie clip.

_xscal e Horizontal percentage scale factor of the movie clip (100% is full size).

66 | CHAPTER 4
Movie Clips

Property Description

_y Vertical location of the movie clip in pixels.

_ynouse Vertical location of mouse pointer in pixels.

_yscal e The vertical percentage scale factor of the movie clip (100% is full
size).

Movie clip methods

Movie clip methods are functions attached to the movie clip object and are called using () .
Player scripting provides a set of built-in movie clip methods that you can use to control a movie
clip in various ways. Included are methods with which you can affect the behavior of a movie
clip, change or find out about a movie clip’s characteristics, load additional SWF files, and
programmatically create duplicates of a movie clip. (Programmatically creating movie clips is
described at length in “Movie clip methods and global functions that copy movie clips” on
page 68.)

Table 4.3 lists the built-in movie clip methods and describes their functions. ???(need to create
live link.) See “Reference” for details on the arguments to each of these methods.

Table 4.3 Movie clip built-in methods

Method Description

attachMovi e() Attach the named movie clip (passed in as an argument) to the movie
clip. For details see “Movie clip methods and global functions that
copy movie clips” on page 68.

dupl i cat eMovi el i p() Duplicate this movie clip. For details see “Movie clip methods and
global functions that copy movie clips” on page 68. Also a global
movie clip method. See “DuplicateMovieClip() Global Function” on
page 160.

get Bounds() Return bounds of the movie clip. The returned object contains the
values in the properties xM n, XMax, yM n and y Max.

get Byt esLoaded() Return the number of bytes already loaded if the movie clip is exter-
nal (loaded with Movi eC i p. | oadMovi e()) . If the movie clip is
internal, the number returned is always the same as that returned by
Movi eCl i p. get BytesTotal ().

ADOBE LIVEMOTION 2.0 |67
Scripting Guide

Method Description

get Byt esTot al () Return the size of the movie clip in bytes. When running under the
preview tool in LiveMotion, this number is always 1000.

get URL() Load the URL into the browser. Also a global movie clip method. See
“GetURL Global Function” on page 163

gl obal ToLocal () Convert the given global point to the movie clip's coordinate space.

got oAndPIl ay() Go to the specified frame or label and plays. Also a global movie clip

method. See “GotoAndPlay() Global Function” on page 164

got oAndSt op() Go to the specified frame or label and stops. Also a global movie clip
method. See “GotoAndStop() Global Function” on page 165

hit Test () Return a Boolean indicating whether the movie clip intersects with a
given clip (passed in as an argument) or given x/y coordinates.

| nBet Current St at e() Change the state of the movie. The LiveMotion state of the movie
must already be defined and appear in the state browser.

| oadMovi e() Load an external SWF file into the movie clip. The contents of
the movie clip are replaced with the contents of the SWF file.

Also a global movie clip method. See “LoadMovie() Global Function”
on page 180.

| oadVari abl es() Load variables into the movie clip fetched from the specified URL. The
movie clip’s onDat a handler is called when the variables have been
loaded. Also a global movie clip method. See “LoadVariables() Global
Function” on page 182.

| ocal Tod obal () Convert a point in the movie's coordinate space to global coordi-
nates.
next Franme() Go to the next frame and stop playing. Also a global movie clip

method. See “NextFrame() Global Function” on page 226.

play() Start playing. Also a global movie clip method. See “Play() Global
Function” on page 238.

prevFrame() Go to the previous frame and stop playing. Also a global movie clip
method. See “PrevFrame() Global Function” on page 239.

renoveMvi eCl i p() Delete a duplicated or attached instance. Also a global movie clip
method. See “RemoveMovieClip() Global Function” on page 244

68 | CHAPTER 4
Movie Clips

Method Description

startDrag() Start dragging a movie clip. Also a global movie clip method. See
“StopDrag() Global Function” on page 258

stop() Stop playing. Also a global movie clip method. See “Stop() Global
Function” on page 257

st opDrag() Stop any drag operation in progress. Also a global movie clip method.
See “StartDrag() Global Function” on page 256

swapDept hs() Swap the movie clips's depth with that of another movie clip. For
details on depth, see “Movie clip methods and global functions
that copy movie clips” on page 68.

unl oadMovi e() Unload a movie that was previously loaded with | oadMovi e() . Also
a global movie clip method. See “UnloadMovie() Global Function” on
page 274

val ueOXf () Returns the absolute reference to the movie in absolute terms using

dot (as opposed to slash) notation.

Movie clip methods and global functions that copy movie clips

Besides creating a movie clip manually in the Composition window, you can create a movie clip
programmatically using two movie clip built-in methods. These methods are dupl i cat eMov-
iedip() and attachMvie().

Using duplicateMovieClip() to create movie clip copies

You can call the dupl i cat eMovi eCl i p() movie clip method to create a copy of itself that is a
sibling of the original. The syntax of the method is:

dupl i cat eMovi ed i p(newNane, depth);

newNanme String indicating the name of the movie clip copy.
depth Integer that tells where in the programmatic stack to place the movie clip
copy.

You can also call dupl i cat eMovi eCl i p() as a global function. Instead of copying itself, the
global function copies a t ar get movie clip. The syntax is:

nmovi ecl i p. dupl i cat eMovi el i p(target, newName, depth);

ADOBE LIVEMOTION 2.0 |69
Scripting Guide

t ar get String indicating the path to the movie clip to copy.

newNane String indicating the name of the movie clip copy.

depth Integer that tells where in the programmatic stack to place the movie clip
copy.

Using attachMovie() to create movie clip copies

The at t achMovi e() movie clip method attaches a stored movie clip stored (22?TBA) and
identified by a string identifier to the specified dept h in the programmatic stack. It’s syntax is:

movi eC i p. attachMvi e(1 D, newNane, depth);

I D 7?TBA
newName String indicating the name of the movie clip copy.
depth Integer that tells where in movieClip’s programmatic stack to place the

movie clip copy.

Swapping movie clip positions in the programmatic stack
You can use the swapDept hs() method to swap the positions of two movie clips. For this
method to work, both movie clips must be siblings. The syntax is either of two forms:

movi eC i p. swapDept hs(target);
movi eC i p. swapDept hs(dept h) ;

t ar get String indicating the name of the movie clip to swap depths with nov-
iedip.

dept h Integer that tells where in movieClip’s parent programmatic stack to place
movieClip.

When called with the t ar get argument, the method swaps depths of novi eCl i p and t ar get,
provided that the movie clips share the same parent.

70 | CHAPTER 4
Movie Clips

When called with the dept h argument, the method places novi e i p in a new position in its
parent’s programmatic stack. If that position is occupied, the movie clip occupying it is moved
to novi eCl i p’s old position.

Movie clip methods and global functions for loading SWF files
You can load SWF files into the Flash Player with | oadMovi e() and | oadMovi eNund() .

loadMovie()
The | oadMovi e() method takes a SWF file at URL and loads it into movi eCl i p.. The syntax of
the method is:

nmovi eC i p. | oadMovi e(URL) ;

URL String specifying the location of an external SWF file to load.

You can also call | oadMovi e() as a global function. The function replaces a movie clip target or
SWE file level with the SWE file. It replaces an occupied SWEF file level or fills an empty one. The
syntax is:

| oadMbvi e(URL, target);

URL String specifying the location of an external SWF file to load.

t ar get String indicating the name of the movie clip or a SWF file level into which
the SWF file is loaded.

Movie clip methods and global functions to unload movie clips

Using unloadMovie() to unload a movie clip

You can call the unl oadMbvi e() movie clip method to unload a movie clip. The syntax of the
method is:

nmovi eCl i p. unl oadMbvi e() ;

ADOBE LIVEMOTION 2.0 {71
Scripting Guide

You also can call unl oadMovi e() as a global function, which removes a movie clip or a SWF file.
The function takes a t ar get parameter. The syntax is:

unl oadMovi e(t arget);

t ar get String indicating the name of the movie clip or SWF file level to remove
from the Player.

Global functions to load and unload SWF files

Using the loadMovieNum() global function to load a SWF file

You can call the | oadMbvi eNun() global function to load the SWEF file at URL into an empty SWF
file | evel or to replace an occupied SWF file | evel . This function does not load the SWF file
into a movie clip. The syntax is:

| oadMbvi eNun{ URL, |evel);

URL A string specifying the location of an external SWF file to load.

| evel A non-negative integer or expression that evaluates to one that indicates
the level into which the SWF file will be loaded.

Using unloadMovieNum() global function to unload a SWF file

You can use the unl oadMovi eNun() global function to unload the SWF file in the specified SWF
file level. This function does not unload a movie clip. The syntax is:

unl oadMovi eNun(| evel) ;

| evel A non-negative integer or expression that evaluates to one that indicates
the level of the SWF file to be un loaded.

72| CHAPTER 4
Movie Clips

Creating movie clip methods

In addition to using the built-in movie clip methods, you can create movie clip methods of your
own. To do so, you can navigate to the movie clip’s timeline and define a function. The following
method definitions, for example, can be placed in the onLoad handler of the gr eet i ng movie
clip.

var clock = 30;
var ctr_clock = 45;

greeting.rotate_clock = function () {
this._rotation += clock;

}

greeting.rotate_ctr_clock = function() {
this. _rotation -= ctr_cl ock;

}

You call a method that you create in the same way that you would call a method on any object.
Provide the name of the movie clip and the method name. Whenr ot ate_ct r _cl ock() is called
from gr eet i ng’s own timeline, it appears as:

this.rotate_ctr_clock();

This function rotates gr eet i ng counterclockwise.

Creating movie clips programmatically

You create movie clips programmatically using either of two movie clip methods: at t ach-

Movi e() and dupl i cat eMovi el i p() . The programmatically generated movie clips are placed
in a programmatic stack. This section starts by describing static and programmatic stacks. Then
it explains which stack is used by each movie clip method. Finally, it shows movie clip order of a
composition that includes manually created and programmatically created movie clips.

Static and programmatic stacks
There are two movie clip stacks: a static stack containing manually created movie clips and a
programmatic stack containing programmatically created movie clips.

ADOBE LIVEMOTION 2.0 |73
Scripting Guide

Figure 4.7 illustrates the static and programmatic stacks of manually created movie clip A. Movie
clip A’s static stack contains its manually created children. Immediately above A’s static stack is
its programmatic stack. The programmatic stack is where programmatically generated movie
clips are placed. Although there can be many levels to the programmatic stack, for simplicity
Figure 4.7 depicts four levels with depth values: 0, 1, 2, and 3. Each level of movie clip A’s
programmatic stack can contain a programmatically generated movie clip that is a program-
matic child of movie clip A. In the programmatic stack, the movie clip at depth 3, the highest
numeric depth, is the topmost movie clip overlapping all others when when the movie clip
executes in the Composition window in Preview mode or in the exported SWF file. The movie
clip at depth 3 overlaps the movie clip at depth 2, which overlaps the movie clip at depth 1, and
so forth.

A depth3
depth2 .
depthi Programmatic stack
depth0
] Static stack
Figure 4.7 Programmatic stack of movie clip A

Every movie clip—even those that are created programmatically—makes space for a program-
matic stack.

Stack depth

When you create a movie clip programmatically with at t achMovi e() or dupl i cat eMov-

i edip(),you assign it a dept h value. dept h can be any integer value that is 0 or higher. You
are not required to assign the depth values to movie clips generated in any particular order.

Assume for this example that movie clip A has no programmatic children yet. You can attach
movie clip instances to movie clip A to create, say, movie clips E, B, and C by making calls to the
att achMovi e() method as shown here:

A. attachMvie(--, E 3);

A. attachMvie(--, B, 0);
A attachMovie(--, C 1);

74| CHAPTER 4
Movie Clips

A E A E
depth2 depth2

C N

B B

M ()

Figure 4.8 Using attachMovie()

Figure 4.8 (1) depicts the placement of the programmatically generated movie clips in movie clip
A’s stack. A subsequent call to at t achMovi e() specifying a dept h already occupied just replaces
the current movie clip with a new one. So if you call at t achMvi e() again as shown here:

A attachMvie(--, N, 1);

Movie clip Nwill replace movie clip C, as shown in Figure 4.8 (2).

The dupl i cat eMovi eCl i p() method also creates movie clip copies. However the copies are
placed in the caller’s parent’s programmatic stack. The new movie becomes a sibling of the movie
from which it was duplicated. Here is an example of movie clip A creating a duplicate movie clip
D:

A. dupl i cateMviedip(D, 3);

In this case, new movie clip Dis placed in the programmatic stack of movie clip A" s parent. To
understand where this parent stack is, you need to understand programmatic stack order in a
composition, as described next.

Programmatic stack order

So far you have viewed a composition from the perspective of its movie clip hierarchy and its
relationship to z-order for movie clips that are created manually. For details, see “Relationship
of movie clip hierarchy to z-order” on page 58. For a composition consisting of manually and
programmatically generated movie clips, z-order has more detail. You can’t view this order in the
Composition window, however, until you preview the composition (or you export the SWEF file
to a browser). The programmatically generated movie clips appear during the course of
execution at the time they are generated.

ADOBE LIVEMOTION 2.0 |75
Scripting Guide

Figure 4.9 represents the order of manually and programmatically created movie clips. The
dashed lines separate the parent and children movie clips. Movie clips A and B are manually
created. Movie clip A has two manually created children, W and X. Like A, movie clip B has two
manually created children, Y and Z. Figure 4.9 (left) shows the manually created movie clips.
Figure 4.9 (right) shows the location of the programmatic stack for _root, movie clip A, and
movie clip B.

_root’s programmatic
root stack
_root! | (i
[A | ‘ A | = A’s programmatic
W —— _| stack
[‘ ‘ w A’s static
X X stack
T gl
B B ——7] B's programmatic
[1Y \ | — I stack
Y B’s static
| |z ‘ ‘ Z | stack
b ‘ ‘ ‘ root’s static
stack
Figure 4.9 Manually and programmatically created movie clips

Here are two examples that show how attaching and duplicating a movie clip compare. Say that
you create movie clip P with at t achMovi e() as shown here:

A attachMovie(--, P, depth);

Movie clip P is placed at the specified dept h in A’s programmatic stack. Movie clip P is a
programmatic child of movie clip A.

Now, you create a movie clip L with dupl i cat eMbvi eCl i p(), as shown here:

A. dupl i cateMovi ed i p(L, depth);

Movie clip L is placed at the specified dept h in _r oot ’s programmatic stack, because it is a sibling
of movie clip A.

Table 4.4 illustrates some more examples of programmatically generated movie clips and
indicates the stack in which the movie clips are placed.

76 | CHAPTER 4
Movie Clips

Table 4.4 Placement of programmatically generated movie clips
Method call Stack and depth where movie clip is placed
A attachMwvie(--, R 1); Ris placed in A's programmatic stack at depth 1.
B. dupl i cat eMovi ed i p(M 0); M s placed in _r oot 's programmatic stack at
depth 0.
B. attachMovie(--, N, 4); N is placed in B’s programmatic stack at depth 4.
Y. duplicateMviedip(P, 4); P is placed in B's programmatic stack at depth 4,

replacing movie clip N.

Z. attachMovie(--, Q 2); Qis placed in Z's programmatic stack at depth 2 (not
shown in Figure 4.9);

In Table 4.4, Z’s programmatic stack would be represented as a fourth view of the composition
shown in Figure 4.9. If Z had manually created children, they would appear in Z’s manual stack
just below its programmatic stack.

Viewing z-order during execution

If you were to run the Composition shown in Figure 4.9 in Preview mode, you would see the
most detailed representation of each movie clip in the Timeline window. The z-order, complete
with programmatic stacks, is shown in Figure 4.10.

—] _root’s programmatic
stack

—— 1 A’s programmatic
:] stack

=

A's static
stack

B’s programmatic
stack

Y B’s static
stack
Z

Figure 4.10 Z-order showing programmatic and static stacks

ADOBE LIVEMOTION 2.0 |77
Scripting Guide

Levels of SWF files

In addition to a programmatic stacking order, there is a stacking order that determines the
overlapping of SWE files when multiple files are loaded into the Flash Player. The first file loaded
is placed in the lowest level of the stack (_I evel 0). If additional SWF files are loaded, you can
place them at any numeric level above _| evel 0. The contents of the SWF file at the highest level
appears in front of all other SWF files in the Player. The contents of the SWF file in the next lower
level appears behind the highest, and so forth. A complete SWF file stack can consist of multiple
SWE files, each of which can contain multiple movie clips with movie clip duplicates and
attached movie clips, each with its own programmatic stack. Figure 4.11 illustrates SWF file
stacking order.

_level is a global property that you can use to refer to a SWF file when multiple SWF files are
loaded into the Player. It is also an argument to the global functions for loading and unloading
SWE files described in “Global functions to load and unload SWFE files” on page 71. For more
information, see the description of this property in “Reference” on page 109.

78 | CHAPTER 4
Movie Clips

Figure 4.11

_level2
SWF

=

_root’s programmatic
stack
movieclip1’s programmatic
stack

movieclip1’s static
stack

movieclip2's programmatic
stack

movieclip2’s static
stack

_levell
SWF

_root’s programmatic
stack

movieclip1’s programmatic
stack

movieclip1’s static
stack

movieclip2’s programmatic
stack

movieclip2's static
stack

_level0
SWF

_root's programmatic
stack

movieclip1’s programmatic
stack

movieclip1’s static
stack

movieclip2’s programmatic
stack

movieclip2's static
stack

Stacking order of SWF files

	Movie Clips
	What is a movie clip?
	How do you create a movie clip using LiveMotion?
	Movie clip hierarchy
	Movie clip addressing
	Movie clip properties
	Movie clip methods
	Creating movie clip methods
	Creating movie clips programmatically
	Levels of SWF files

