T

ADOBE SYSTEMS INCORPORATED
Copyright 2002 Adobe Systems Incorporated
All Rights Reserved

NOTICE: Adobe permits you to use, modify,

and distribute this file in accordance with the terms
of the Adobe license agreement accompanying it.
If you have received this file from a source

other than Adobe, then your use, modification,

or distribution of it requires the prior

written permission of Adobe.

T

Creating your first Live
Tab for Adobe

LiveMotion™

Before you begin
Install LiveMotion

What is a Live Tab?

LiveMotion SDK allows you to design a Live
Tab to extend the functionality of LiveMotion.
Live Tabs are custom palettes that use the inbuilt
preview engine of LiveMotion to drive the
interfaces. Just as you could open a normal .LIV
file and preview its animation, scripting, etc., you
could load a Live Tab .LIV (by placing it in your
Live Tabs folder, launching LM or choosing it
from the Live Tabs menu) and see its scripting
and animation previewed the same way.

So, to create the interfaces for a Live Tab, you
just need to know how to create a user interface:
buttons, sliders, text fields, etc. (they work the
same way as in a liv file after they're fully
implemented). The difference is that when a user
interacts with these controls, they're programmed

to send commands to LiveMotion(composition)
itself instead. That is, the controls in the Live Tab
send out automation/player script commands to
another composition or liv file. Since the
underlying preview engine is the same, Live Tabs
can do the same things as any other liv file would.

A Live Tab is an extension to LiveMotion that
you would create to perform certain complex or
repetitive tasks. New functionality can be added to
LiveMotion that can be controlled through Live
Tab palettes. JavaScript is the underlying scripting
technology that achieves this functionality. They
can also be created to combine a sequence of
tasks. They can be used to do the following:

e Create custom dialogs
e Create palettes
e Add your own menus

Live Tabs are basically created with the help of
automation scripts as well as player scripts.

Requirements

e Knowledge of automation script
Knowledge of player script
Fluency with LiveMotion
JavaScript

Why Live Tab?

LiveMotion provides you with in-built menu
commands, keyboard shortcuts, palettes and tools.
But if your requirement is such that you end up
repeating certain steps then it would be better to
collect those steps and write an automation script.
You would then, just have to run that automation
script to perform those multiple steps and your job
is done. This saves you time. You also don’t need
to remember the steps.

But lets’ say there is some user interaction
involved, like choosing a color. Automation script

alone cannot do the job. However, this can be
overcome, by using player scripts.

This means here we need the automation script
functionality with the player script’s user
interactivity. Live Tab allows us to use a
combination of player script and automation
script. Live Tabs are like saved dialogs that can be
run whenever required.

Building a Live Tab:
Decide the functionality of the Live Tab
What you would like the Live Tab to do?
Design the UI of the Live Tab

Decide what different objects you would need
on your composition like a dynamic text object
for user input, or a simple button or a check
box etc. What you would like each of the
objects to do. What — (if) different states
would be required and so on.

Functionality of the individual objects within
your Live Tab

What is the purpose of each object you placed
on the composition? How and where the
scripts will be added.

Tutorials:
Automation Scripts

Let us write an automation script to apply color to
selected objects.

[

Open a new script.
2. Add the following code in it.

3. applyColor(43, 129, 24);
function applyColor(iRed,iGreen,iBlue) //

Function to apply color
{

var selection =
application.currentComposition.selection;
// puts all currently selected objects in the
array selection

application.currentComposition.saveSelecti
on(); // saves the current selection

for (var 1=0; i<selection.length; 1++)

{ //'loops through all the selected objects

selection[i].layers[0].colorGradient.startCol
or.red = iRed; // Red value

selection[1].layers[0].colorGradient.startCol
or.green = iGreen; // Green value

selection[1].layers[0].colorGradient.startCol
or.blue = iBlue; // Blue value

}

application.currentComposition.restoreSele
ction(); // restore the current selection

}

Save the file as applyColor.js
Open a new composition.

Create one rectangle and one circle on it
with different colors.

Automation > Run Automation Script >
Navigate to applyColor.js and open it.

Result: All the objects are changed to green
color.

Now say we want to have different color
options to select while applying the color. For
this we could convert the above automation

script into a Live Tab.
Live Tabs

Let us now convert the above automation
script into a Live Tab that provides you with a
palette of different colors. Each color -
represented by a button, that the user clicks to
apply that color to an object in any
LiveMotion composition.

Why you would need this as a Live Tab?

As you know you can create a desired color by
experimenting with the RGB (Red, Green,
Blue) values in LiveMotion’s Color palette.
However, each time you need a new color you
have to repeat this procedure until you arrive at
the color you want. This could be very time
consuming. But it would be a lot easier if you
had a palette with different colored buttons in
it. These could be clicked to apply the color to
objects in your composition.

Let us now build a Live Tab with different
colored buttons, that can be clicked and as a
result that color is applied to the selected
objects.

Steps:

1. Open a new composition about the size of
the palette with width=190 and height=100.
If needed, this can be changed later.

2. Create a small rectangle to represent a
color, and name it “buttonl”.

3. Give buttonl a color combination from the
Color palette, say the RGB values are 43,
129, 24 for Red, Green and Blue
respectively.

If you do not have the Color palette open,

open it using Window > Color.

(You can use any other combination you
would like to try. This is the combination
for dark green.)

. Save the composition and name it
Swatches.liv. Keep saving it at short
intervals.

. Now we would like this button buttonl to

function in such a way that whenever
clicked, it should apply this color to
whatever objects are selected. Hence we
can say that the script required for this
should be written in buttonl’s down state
or buttonl’s onButtonPress event handler.

Here we will be writing script on buttonl’s
down state. So first create a down state for
buttonl. To create a down state, open the
States palette (Window > States or Press
F11). At the bottom of the States palette
click on the New State button. Choose
down from the dropdown menu. This also
converts buttonl to a Movie Clip.

. You can give different effects —
depth/softness etc. as you like. This is the
advantage of creating states as opposed to
using event handlers.

. Now we need to write a function that takes

as argument the Red, Green and Blue color
values and applies the color to the selected
objects in the current composition.

It is a good practice to write functions on
the onlLoad event handler of the movie clip.
This way they can then be accessed from
anywhere by a function call statement.
Here we are going to have multiple color
buttons and they all have to use the same
function. Hence it would be ideal to write it

on the onLoad event of the Composition,
which is also a movie clip. The advantage
of this is -Functions written on the
Composition become global functions that
can be accessed by all child movie clips.

Add the following code snippet (the same
we had in the automation script we wrote
above) in your Composition’s onLoad
event handler. Open the script editor using
Scripts > Editor or Ctrl/Cmd + J. The script
editor’s title bar will show Script Editor -
Swatches.liviComposition| and the handler
box dropdown menu shows onLoad. If you
do not see onLoad event handler click on
Handler Scripts button and click on the
dropdown menu and choose onLoad.

// Function to select objects and apply color
function applyColor(iRed,iGreen,iBlue) {

var selection =
application.currentComposition.selection;
// puts all currently selected objects in the
array selection

application.currentComposition.saveSelecti
on(); // saves the current selection

for (var i=0; i<selection.length; i++) {//
loops through all the selected objects

selection[i].layers[0].colorGradient.startCol
or.red = iRed; // Red value

selection[i].layers[0].colorGradient.startCol
or.green = iGreen; // Green value

selection[1].layers[0].colorGradient.startCol
or.blue = iBlue; // Blue value

b

application.currentComposition.restoreSele
ction(); // restore the current selection

b

L7 Seript Editor - Swatches.liv, Composition', : - |O] x|
I?EIQ ﬁ* *I *Ilﬁd-hhlﬁll*nnmad ll ﬂ”ﬁ
]

<7 Function to select objects and apply color

function applyColorl iBed, iGreen, iBlusl {
< puts all currently selected objects in the arraw selectiar
var selection = application.currentComposition.selection;

application.currentComposition.savelSelectionll; ~~ sawves the
for (var i=B; i<selection. length; i++] {sv loops through al
selectionlil. lavers[@].colorGradient..startColor.red = if

selectionlil. layers[@].colorGradient..startColor.green =

selectionlil. lavyers[@].colorGradient..startColor.blue =
i,

application.currentCompos it ion.restoreSelectionlly <~ reatn:'
-
_'*I_I

8. Now this function is to be called when the
buttonl1 is clicked. Hence the following
function call statement can be place in the
down state of button1. In the script editor
double click buttonl Movie Clip in the left
pane. Click on the state scripts button.
From the drop down menu select down.
Add the following function call statement
there.

_root.applyColor(43, 129, 24);
Make sure the sequence of Red, Green and

Blue values is the same as the respective
RGB combination in the Color palette.

L Script Editor - Swatches.livi, Compositionbuttonl {down)'

[?i- PE |!; fgil _:!_I_!t_l HC?I?Ha::EiJ I*dnwn

= & Caom.
@
LT
& bu...
3 pu...
& bu...
3 pu...
& bu...
3 pu...
& bu...
3 pu...

_root.applyCalorid4z, 129, 241:

MM |

9.

Similarly you can create other buttons by
duplicating this one. This saves you the
time to add states, script to states, event
handlers etc. Give another color to it from
the Color palette. Add the same RGB
combination as in the palette and also in the
function call statement in the down state.
You can create as many duplicates as you
want the same way.

"o Swatches.liv @

Swatches

JENNE "EENE

Testing your Live Tab

[u—

. Open a new composition.

2. Create at least one object on it.

3. Select the objects you want to apply the color
to.

4. Automation > Load Live Tab — Navigate to

your Live Tab and open it.

Choose any color from the buttons.

6. The color is applied to the selected objects.

N

