
109
Chapter 7: Reference

Introduction
This chapter lists all syntax (keywords, statements, operators, objects, methods, properties, and

global functions) recognized by the LiveMotion scripting engine. Table 7.1 lists and describes all

keywords and statements. Table 7.2 shows the precedence and associativity for all operators.

Table 7.3 lists and describes all operators. The remainder of the chapter is an alphabetical listing

of all built-in objects, global properties and functions.

Table 7.1 Keywords and Statement Syntax

Keyword/Statement Description

break Standard JavaScript construct. Exit the currently executing loop.

continue Standard JavaScript construct. Cease execution of the current loop iteration.

do - while Standard JavaScript construct. Similar to the while loop, except loop condi-
tion evaluation occurs at the end of the loop.

false Literal representing Boolean false.

for Standard JavaScript loop construct.

for - in Standard JavaScript construct. Provides a way to easily loop through the
properties of an object.

function Used to define a function.

if/if - else Standard JavaScript conditional constructs.

#include Standard JavaScript directive used to import files located elsewhere.

null Assigned to a variable, array element, or object property to indicate that it
does not contain a legal value.

return Standard JavaScript way of returning a value from a function or exiting a
function.

set Used to assign a value to a dynamically created variable.

switch Standard JavaScript way of evaluating an expression and attempting to
match the expression's value to a case label.

this Standard JavaScript method of indicating the current object.

Prelim
inary

Prelim
inary

Prelim
inary

CHAPTER 7110
Reference
Table 7.2 Operator Precedence

true Literal representing Boolean true.

undefined Indicates that the variable, array element, or object property has not yet been
assigned a value.

var Standard JavaScript syntax used to declare a local variable.

while Standard JavaScript construct. Similar to the do - while loop, except loop
condition evaluation occurs at the beginning of the loop.

with Standard JavaScript construct used to specify an object to use in ensuing
statements.

Operators (Listed from highest precedence —top row—to lowest) Associativity

[], (), . left to right

new, delete, -(unary negation), ~, !, typeof, void,++, -- right to left

*, /, % left to right

+, -(subtraction) left to right

<<, >>, >>> left to right

<, <=, >, >= left to right

==, != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

?: right to left

=, /=, %=, <<=, >>=, >>>=, &=, ^=, |=, +=, -=, *= right to left

, left to right

Keyword/Statement Description

Prelim
inary

Prelim
inary

111ADOBE LIVEMOTION 2.0
Scripting Guide
Table 7.3 Description of Operators

Operators Description

new Allocate object

delete Deallocate object

typeof Data type

void Returns undefined value

. Structure member

[] Array element

() Function call

++ Pre- or post-increment

-- Pre- or post-decrement

- Unary negation or subtraction

 ~ Bitwise NOT

! Logical NOT

* Multiply

/ Divide

% Modulo division

+ Add

<< Bitwise left shift

>> Bitwise right shift

>>> Unsigned bitwise right shift

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

== Equal

Prelim
inary

Prelim
inary

CHAPTER 7112
Reference
Arguments Object

Description

The Arguments object provides two types of information about an executing function:

!= Not equal

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

&& Logical AND

|| Logical OR

?: Conditional (ternary)

= Assignment

+= Assignment with add operation

-= Assignment with subtract operation

*= Assignment with multiply operation

/= Assignment with divide operation

%= Assignment with modulo operation

<<= Assignment with bitwise left shift operation

>>= Assignment with bitwise right shift operation

>>>= Assignment with bitwise right shift unsigned operation

 &= Assignment with bitwise AND operation

 ^= Assignment with bitwise XOR operation

 |= Assignment with bitwise OR operation

, Multiple evaluation

Operators Description

Prelim
inary

Prelim
inary

113ADOBE LIVEMOTION 2.0
Scripting Guide
• the name of the function itself, and

• the arguments that were passed to the function.

The Arguments object is a static object—to use the object, do not create an instance using a

constructor.

Properties

Arguments.callee Property
arguments.callee

Description

The callee property holds a reference to the currently executing function. This property can

only be read.

Example

function selfReferenceTest()
{
if (arguments.callee == selfReferenceTest)
trace("true");
else
trace("false");
};

selfReferenceTest();//prints "true"

Arguments.length Property
arguments.length

callee See “Arguments.callee
Property” on page 113

The name of the currently executing function.

length See “Arguments.length
Property” on page 113

The number of parameters passed to the currently executing
function. This value can be used to access the individual param-
eters themselves.

Prelim
inary

Prelim
inary

CHAPTER 7114
Reference
Description

The length property stores an integer specifying the number of parameters passed to the

currently executing function. The property can then be used to access the names of the

individual arguments themselves, using the arguments object as an array. The length object,

however, is not zero-based, so will always have a value of one greater than the largest index into

the array. This property can only be read.

Example

function baseball(glove, bat)
{
trace(arguments.length);
trace(arguments[0]);
trace(arguments[1]);
};

baseball("catchers", "wooden");
//prints
//2
//catchers
//wooden

Array Object

Description

The Array object provides the ability to create and manipulate arrays of data. If the Array

constructor is invoked with a single integer value, the value sets the array length. If two or more

values are used, they become the initial values of the array elements, and the array length is deter-

mined by the number of values provided. Similarly, a single non-numeric value can be used to

initialize the array with a single element with that value.

To call the Array object’s methods, you must create a new object using the constructor. Alterna-

tively, you may use the bracket syntax (e.g., var x = [a,b] populates the first two elements of

the array with the values a and b). If the Array constructor is invoked without passing

arguments to Array, then an empty array is created with 0 elements.

Constructor

new Array()

Prelim
inary

Prelim
inary

115ADOBE LIVEMOTION 2.0
Scripting Guide
new Array(length)
new Array(element0, ...elementn)

Constructor Parameters

Properties

Methods

length An non-negative integer indicating the number of elements in the
array.

element0, ...elementn One or more values that are assigned as array elements.

length See “Array.length Prop-
erty” on page 118

The number of elements in the array.

concat() See “Array.concat()
Method” on page 116

Concatenate elements to an existing array to create a new
array.

join() See “Array.join()
Method” on page 117

Join all elements of the array into a string.

pop() See “Array.pop()
Method” on page 118

Pop the last element in the array (return the value and
remove from the array).

push() See “Array.push()
Method” on page 119

Push an array element onto the end of the array (add an ele-
ment).

reverse() See “Array.reverse()
Method” on page 119

Reverse the order of the elements in the array (last element
becomes first; first element becomes last).

shift() See “Array.shift()
Method” on page 120

Same as pop()except the first element is returned and
removed from the array.

slice() See “Array.slice()
Method” on page 121

Copy a subset of an existing array to create a new array con-
sisting of just those elements.

sort() See “Array.sort()
Method” on page 122

Sort the elements of the array in place.

splice() See “Array.splice()
Method” on page 124

Add or delete array elements.

Prelim
inary

Prelim
inary

CHAPTER 7116
Reference
Array.concat() Method
array.concat(value1, ...valuen)

Description

The concat() method concatenates elements to an existing array to create a new array. The

original array is left unmodified. If an array is provided as a parameter to concat(), each of its

elements are appended as separate array elements at the end of the new array.

Parameters

Returns

A new array formed by the concatenation of the specified values or arrays to the current array.

Example

var a=[1,2,3];
b = a.concat(4,5);
c = b.concat([5,6]);
d = c.concat([7,8],[9,10]);
e = 0;
for(i=0; i<d.length;i++)
{

e = e + d[i];
};
trace(e);//prints 60

toString() See “Array.toString()
Method” on page 125

Convert an array to a string of comma-delimited values (can
also be achieved using join() without a parameter).

unshift() See “Array.unshift()
Method” on page 126

Add one or more elements to the beginning of the array and
return the new length of the array.

value1, ...valuen Any number of values to be added to the end of the array. Can also be
arrays to be concatenated to the current array.

Prelim
inary

Prelim
inary

117ADOBE LIVEMOTION 2.0
Scripting Guide
See Also

“Array.push() Method” on page 119, “Array.pop() Method” on page 118, “Array.shift() Method”

on page 120, “Array.unshift() Method” on page 126

Array.join() Method
array.join()
array.join(delimiter)

Description

The join() method joins all elements of the array into a string; each element is separated by

delimiter.

Parameters

Returns

The string containing the joined elements and delimiters.

Example

baseball = new Array("bat","ball");
baseballString = baseball.join();
trace(baseballString);// prints "bat,ball"
newString = baseball.join(" + ");
trace(newString);// prints "bat + ball"

See Also

“Array.toString() Method” on page 125, “Array.reverse() Method” on page 119, “Array.sort()

Method” on page 122

delimiter (Optional) Specifies a string to separate each element of the array. If omitted, the
array elements are separated with a comma. If omitted, results are the same as those
achieved with array.toString().

Prelim
inary

Prelim
inary

CHAPTER 7118
Reference
Array.length Property
array.length

Description

The length property is a positive integer that represents the length of the array. Since array

indices start with 0 (zero-based), length is one greater than the last index value of the array.

length is initialized when the array is created.

Example

baseball = new Array();
trace(baseball.length);// prints 0
moreBaseball = new Array("bat", "ball");
trace(moreBaseball.length);// prints 2
moreBaseball[2] = "glove";
trace(moreBaseball.length);// prints 3

Array.pop() Method
array.pop()

Description

The pop method pops the last element of the array, returns the value of the element, removes the

element from the array, and decreases length by 1.

Returns

The value of the deleted array element.

Example

var stack = [1,2,3];
trace(stack.pop());//stack is now [1,2] and pop prints 3

See Also

“Array.push() Method” on page 119, “Array.shift() Method” on page 120, “Array.unshift()

Method” on page 126, “Array.concat() Method” on page 116

Prelim
inary

Prelim
inary

119ADOBE LIVEMOTION 2.0
Scripting Guide
Array.push() Method
array.push(value1, ...valuen)

Description

The push method appends one or more values onto the end of the array and increases length

by n.

Parameters

Returns

The new length of the array.

Example

var stack = [1,2,3];
trace(stack.push(4,5));//stack is now [1,2,3,4,5] and push() prints 5
for(i=0; i<stack.length;i++)
{

trace(stack[i]);
};
//prints
//1
//2
//3
//4
//5

See Also

“Array.pop() Method” on page 118, “Array.shift() Method” on page 120, “Array.unshift()

Method” on page 126, “Array.concat() Method” on page 116

Array.reverse() Method
array.reverse()

value1, ...valuen Any number of values to be pushed onto the end of the array.

Prelim
inary

Prelim
inary

CHAPTER 7120
Reference
Description

The reverse method reverses the order of the elements in the array (last element becomes first; first
element becomes last).

Example

var baseball = ["bat", "ball", "glove", "base"];
for(i=0; (i != 4); ++i)
{
trace(baseball[i]);
};
//prints
//bat
//ball
//glove
//base
baseball.reverse();
for(i=0; (i != 4); ++i)
{
trace(baseball[i]);
};
//prints
//base
//glove
//bat
//ball

See Also

“Array.join() Method” on page 117, “Array.sort() Method” on page 122

Array.shift() Method
array.shift()

Description

The shift method is the same as pop() except the first element is returned and removed from

the array. As a result, the array length is reduced by 1.

Returns

The value of the deleted array element.

Prelim
inary

Prelim
inary

121ADOBE LIVEMOTION 2.0
Scripting Guide
Example

fish = ["shark", "guppy", "red fish", "blue fish"];
trace(fish.shift()); //prints "shark"
i=0;
while (fish[i] != "blue fish")
{
trace(fish[i]);
++i;
};
trace(fish[i]);
//prints
//guppy
//red fish
//blue fish

See Also

“Array.push() Method” on page 119, “Array.pop() Method” on page 118, “Array.unshift()

Method” on page 126, “Array.concat() Method” on page 116

Array.slice() Method
array.slice(start)
array.slice(start, end)

Description

The slice method copies a subset of an existing array to create a new array consisting of just

those elements. The new array is a subset of the existing array. start and end are indices into

the array (zero-based). The slice begins with start and continues up to, but not including, end.

If start or end are negative numbers, the index is equal to the total number of elements in the

array minus the number.

Parameters

start The array index at which to begin the slice. Can also be a negative number.

end (Optional) The array index at which to end the slice. The slice does not include this
element. If this argument is not present, the slice extends all the way to the end of
the array. Can also be a negative number.

Prelim
inary

Prelim
inary

CHAPTER 7122
Reference
Returns

A new array that begins with array element start and contains all array elements between start

up to, but not including, array element end of the original array.

Example

function printArray(arrayId)
{

for(i=0; i<arrayId.length; i++)
{

trace(arrayId[i]);
}

};
var a = [1,2,3,4,5];
b = a.slice(0,3);
printArray(b);//prints 1,2,3
b = a.slice(3);
printArray(b);//prints 4,5
b = a.slice(1,-1);
printArray(b);//prints 2,3,4
b = a.slice(-3,-2);
printArray(b);//prints 3

See Also

“Array.splice() Method” on page 124

Array.sort() Method
array.sort()
array.sort(userFunction)

Description

The sort method sorts the elements of array in place. If no argument is provided, the elements

are sorted in alphabetical order. To sort the array in any other order, you have to supply a

function that compares two array elements and returns a value indicating how they should be

sorted. For userFunction(a,b), if the return value is:

• less than 0, then b is sorted to a lower index than a;

Prelim
inary

Prelim
inary

123ADOBE LIVEMOTION 2.0
Scripting Guide
• 0, then a and b are left unchanged with respect to each other, but are sorted with respect to

all different elements;

• greater than 0, then b is sorted to a higher index than a.

Parameters

Example

fish = new Array("shark", "guppy", "red fish", "blue fish");
fish.sort();
for(i=0; (i != fish.length); ++i)
{
trace(fish[i]);
};
//prints
//blue fish
//guppy
//red fish
//shark

function numberOrder(a,b) { return a - b; }
a = new Array(33,4,1111,222);
a.sort();
for (i=0;i<a.length;i++) {
 trace(a[i]);
}
a.sort(numberOrder);
for (i=0;i<a.length;i++) {
 trace(a[i]);
}
//prints
//1111
//222
//33
//4
//4
//33
//222
//1111

userFunction (Optional) A user-supplied function that dictates sort order. If omitted, the array is
sorted lexicographically (in dictionary order) according to the string conversion of
each element.

Prelim
inary

Prelim
inary

CHAPTER 7124
Reference
See Also

“Array.join() Method” on page 117, “Array.reverse() Method” on page 119, “Array.join()

Method” on page 117

Array.splice() Method
array.splice(start, num, [val1,...valn])

Description

The splice() method removes num elements from an array. splice() optionally inserts new

elements starting at zero-based index start. To ensure element contiguity, splice moves

elements up to fill in any gaps.

Parameters

Returns

An array consisting of any elements that were spliced from the array.

Example

fishAndNumbers = new Array(1,2, "shark", 3, "guppy");
fishAndNumbers.splice(2,2,6,"red fish");
for(i=0; (i != fishAndNumbers.length); ++i)
{
trace(fishAndNumbers[i]);
};
//prints
//1

start The (zero-based) index of first array element to remove. If start is a negative value,
start is relative to the end of the array (the index is the number of elements in the
array minus the value).

num (Optional) Number of array elements to remove, including start. If 0, no elements
are removed. If num is omitted, all elements from array index start to the end of
the array are removed.

[val1,...valn] (Optional) List of one or more values to be added to the array starting at index
start.

Prelim
inary

Prelim
inary

125ADOBE LIVEMOTION 2.0
Scripting Guide
//2
//6
//redfish
//guppy

fishAndNumbers = new Array(1,2, "shark", 3, "guppy");
fishAndNumbers.splice(-3,2,6,"red fish");//negative start index
for(i=0; (i != fishAndNumbers.length); ++i)
{
trace(fishAndNumbers[i]);
};
//prints
//1
//2
//6
//red fish
//guppy

See Also

“Array.slice() Method” on page 121

Array.toString() Method
array.toString()

Description

The toString() method converts an array to a string and returns the string. Yields the same

result as the array.join() method (when that method is used without a parameter).

Parameters

None

Returns

A comma-separated list of all the elements of the array.

Example

fishAndNumbers = new Array(1,2, "shark", 3, "guppy");
trace(fishAndNumbers.toString());//prints "1,2,shark,3,guppy"

Prelim
inary

Prelim
inary

CHAPTER 7126
Reference
See Also

“Array.join() Method” on page 117, “Array.reverse() Method” on page 119, “Array.sort()

Method” on page 122

Array.unshift() Method
array.unshift(val1,...valn)

Description

The unshift() method adds elements to the beginning of the array.

Parameters

Returns

The new array length.

Example

fishAndNumbers = new Array(1,2, "shark", 3, "guppy");
trace(fishAndNumbers.unshift(2,6,"red fish")); //prints return value of 8
for(i=0; (i != fishAndNumbers.length); ++i)
{
trace(fishAndNumbers[i]);
};
//prints
//2
//6
//red fish
//1
//2
//shark
//3
//guppy

val1,...valn The values of one or more elements to be added to the beginning of the
array, starting at index 0.

Prelim
inary

Prelim
inary

127ADOBE LIVEMOTION 2.0
Scripting Guide
See Also

“Array.push() Method” on page 119, “Array.pop() Method” on page 118, “Array.shift() Method”

on page 120, “Array.concat() Method” on page 116

Boolean() Global Function
Boolean(value)

Description

The Boolean() global function converts its parameter to a Boolean value and returns the value.

Parameters

Returns

The Boolean value of value (true or false).

Example

var testFalse = 0;
var testTrue = true;
trace(Boolean(0));//prints "false"
trace(Boolean(1));//prints "true"
trace(Boolean(true));//prints "true"
trace(Boolean(false));//prints "false"
trace(Boolean(testFalse));//prints "false"
trace(Boolean(testTrue));//prints "true"

value The value to convert to Boolean.

Prelim
inary

Prelim
inary

CHAPTER 7128
Reference
Boolean Object

Description

The Boolean() function provides support for Boolean values. The Boolean() constructor with

the new operator converts its parameter to a Boolean value and returns a Boolean object

wrapper containing the value. This allows the object to inherit the methods of the Object object

(see “Object Class” on page 236).

Constructor

new Boolean()
new Boolean(value)

Parameters

Methods

Boolean.toString() Method
bool.toString()

Description

The toString() method returns the string representation of the value of bool. The method

returns the string true if the primitive value of bool is true; otherwise it returns the string

false .

value (Optional) The value that is converted to a Boolean—can be a number, string, Bool-
ean, or object. The values 0, NaN, null, the empty string (""), and undefined all
return false. All other values return true. If this parameter is omitted, the Boolean
object is initialized with a value of false.

toString() See “Boolean.toString()
Method” on page 128

Convert the value of the Boolean object to a string.

valueOf() See “Boolean.valueOf()
Method” on page 129

Return the primitive Boolean value of the object.Prelim
inary

Prelim
inary

129ADOBE LIVEMOTION 2.0
Scripting Guide
Example

bool = new Boolean(1);
trace(bool.toString()); // displays "true"

Boolean.valueOf() Method
bool.valueOf()

Description

The valueOf() method returns the primitive value of bool . The method returns true if the

primitive value of bool is true; otherwise it returns false.

Example

bool = new Boolean("true");
trace(bool.valueOf()); // displays "false" to the output window

Color Object

Description

The Color object allows you to get and set the RGB color values and transformation information

for a movie clip. You must create an instance of the Color object for a specific target before using

any of the Color methods.

Constructor

new Color(target)

Parameters

Properties

None.

target The movie clip for which an instance of the Color object is created.

Prelim
inary

Prelim
inary

CHAPTER 7130
Reference
Methods

Color.getRGB() Method
colorObject.getRGB()

Description

The getRGB() method returns the RGB values for the object as a decimal number. These are the

values that were set by a call to setRGB() or when the object was created.

Parameters

None

Returns

A decimal number indicating the RGB value of colorObject.

Example

redBaseball = new Color(_root.baseball);
redBaseball.setRGB(0xFF0000);
trace(redBaseball.getRGB());//prints "16711680"

getRGB() See “Color.getRGB()
Method” on
page 130.

Return the RGB values for the object as a decimal number.

getTransform() See “Color.getTrans-
form() Method” on
page 131.

Return the current offset and percentage values as an object
of type Object. For more information on the type Object,
see “Object Class” on page 236.

setRGB() See “Color.setRGB()
Method” on
page 132.

Set the RGB values for the object expressed as 6 hexadecimal
digits.

setTransform() See “Color.setTrans-
form Method” on
page 132.

Set the offset and/or percentage values using an object of
type Object. For more information on the type Object, see
“Object Class” on page 236.

Prelim
inary

Prelim
inary

131ADOBE LIVEMOTION 2.0
Scripting Guide
See Also

“Color.setRGB() Method” on page 132.

Color.getTransform() Method
colorObject.getTransform()

Description

The getTransform() method returns an object of type Object whose properties are the trans-

formation values set by a call to setTransform().

Parameters

None.

Returns

An object of type Object whose properties contain the transformation values of the movie clip

colorObject.

Example

redFish= new Color(_root.fish);
fishChanger = new Object();
fishChanger.ra = 100;//Red percentage
fishChanger.rb = 200;//Red offset
fishChanger.ga = 0;//Green percentage
fishChanger.gb = 0;//Green offset
fishChanger.ba = 100;//Blue percentage
fishChanger.bb = 50;//Blue offset
fishChanger.aa = 40;//Alpha percentage
fishChanger.ab = -10;//Alpha offset
redFish.setTransform(fishChanger);
fishChanger = redFish.getTransform();
fishChanger.rb = 300;//set the Red offset
fishChanger.ga = 20;//set the Green transformation percentage
redFish.setTransform(fishChanger);//changes the transformation values

See Also

“Color.setTransform Method” on page 132, “Object Class” on page 236

Prelim
inary

Prelim
inary

CHAPTER 7132
Reference
Color.setRGB() Method
colorObject.setRGB(0xRRGGBB)

Description

The setRGB() method sets the RGB color values for the Color object.

Parameters

Example

redBaseball = new Color("_root.baseball");
redBaseball.setRGB(0xFF0000);
trace(redBaseball.getRGB());//prints "16711680"

See Also

“Color.getRGB() Method” on page 130.

Color.setTransform Method
colorObj.setTransform(transformObj)

Description

The setTransform() method sets the color transform information for an object. To use

setTransform(), you first must create an object of type object (for more information on the

type Object, see “Object Class” on page 236) with a series of properties, and pass the object as

a parameter to setTransform(). setTransform() uses the values as the new offsets and

percentages of colorObj. The properties are the following:

• ra is the red transformation percentage (-100 to 100)

• rb is the red offset (-255 to 255)

• ga is the green transformation percentage (-100 to 100)

0xRRGGBB .A hexadecimal number (0x) indicating the offsets of each of the color components.
It consists of two hexadecimal digits specifying the offset of the red (RR), green (GG),
and blue (BB) components.

Prelim
inary

Prelim
inary

133ADOBE LIVEMOTION 2.0
Scripting Guide
• gb is the green offset (-255 to 255)

• ba is the blue transformation percentage (-100 to 100)

• bb is the blue offset (-255 to 255)

• aa is the alpha transformation percentage (-100 to 100)

• ab is the alpha offset (-255 to 255)

Parameters

Example

redFish= new Color(_root.fish);
fishChanger = new Object();
fishChanger.ra = 100;//Red percentage
fishChanger.rb = 200;//Red offset
fishChanger.ga = 0;//Green percentage
fishChanger.gb = 0;//Green offset
fishChanger.ba = 100;//Blue percentage
fishChanger.bb = 50;//Blue offset
fishChanger.aa = 40;//Alpha percentage
fishChanger.ab = -10;//Alpha offset
redFish.setTransform(fishChanger);//sets the new transformation values

See Also

“Color.getTransform() Method” on page 131.

Date() Global Function
Date()

Description

The Date() global function returns a string containg the current date, the current time in the

local time zone, and the offset in hours between Coordinated Universal Time (UTC—formerly

called the Greenwich Mean Time, or GMT) and the local time. For example:

transformObj .An object created using the constructor of the generic Object object that specifies
color transformation values.

Prelim
inary

Prelim
inary

CHAPTER 7134
Reference
Mon Sep 10, 16:30:29 GMT-0700 2001

Example

var now = Date();
trace(now);//prints string

Date Object

Description

The Date object allows you to get and set the local date and time or the Coordinated Universal

Time (UTC—formerly called the Greenwich Mean Time, or GMT). To call the Date object’s

methods, you must create a new object using the constructor.

All dates and time input are based on (and are as accurate as) the settings of the operating system

upon which the Flash player is running.

Constructor

new Date()
new Date(ms)
new Date(year, month, date, hour, min, sec, ms)

Description

You can create a Date object in three ways:

• With no arguments. This creates a new Date object holding the current date and time based

on the local system clock. For example:

var now = new Date();
trace(now.getDate());//prints the day of the month

• With one argument representing milliseconds. This creates a Date object holding the number

of milliseconds relative to midnight January 1, 1970. For example:

var now = new Date(999901885456);
trace(now.getTime());//prints 999901885456

• With three or more arguments. This creates a Date object indicating the year (required),

month (required), day (required), hour, minute, second, and millisecond.

Prelim
inary

Prelim
inary

135ADOBE LIVEMOTION 2.0
Scripting Guide
var now = new Date(99, 11, 31, 9, 52, 54, 999);
trace(now.getFullYear());//prints 1999
trace(now.getMonth());//prints 11
trace(now.getDate());//prints 31
trace(now.getHours());//prints 9
trace(now.getMinutes());//prints 52
trace(now.getSeconds());//prints 54
trace(now.getMilliseconds());//prints 999

Parameters

Methods

ms (Optional) An integer value representing the number of milliseconds since 1 Janu-
ary 1970 00:00:00.

year The year expressed in four digits—for example, 2001. Alternatively, if you need to
indicate a year from 1900 to 1999, specify a value from 0 to 99.

month An integer value from 0 (Jan.) to 11 (Dec.).

date An integer value from 1 to 31. If this argument is not supplied, its value is set to 0.

hour (Optional) An integer value from 0 (midnight) to 23 (11 PM). If this argument is not
supplied, its value is set to 0.

min (Optional) An integer value from 0 to 59. If this argument is not supplied, its value
is set to 0.

sec (Optional) An integer value from 0 to 59. If this argument is not supplied, its value
is set to 0.

ms (Optional) An integer value from 0 to 999. If this argument in not supplied, its value
is set to 0.

getDate() See “Date.getDate() Method” on
page 138

Return the day of the month.

getDay() See “Date.getDay() Method” on
page 138

Return the day of the week.

getFullYear() See “Date.getFullYear() Method”
on page 139

Return the year expressed in four-
digit format.

getHours() See “Date.getHours() Method”
on page 139

Return the hour.

Prelim
inary

Prelim
inary

CHAPTER 7136
Reference
getMilliseconds() See “Date.getMilliseconds()
Method” on page 140

Return the milliseconds.

getMinutes() See “Date.getMinutes() Method”
on page 140

Return the minutes.

getMonth() See “Date.getMonth() Method”
on page 141

Return the month.

getSeconds() See “Date.getSeconds() Method”
on page 141

Return the seconds.

getTime() See “Date.getTime() Method” on
page 142

Return the number of milliseconds
that have passed since January 1,
1970.

getTimezoneOffset() See “Date.getTimezoneOffset()
Method” on page 142

Return the number of minutes
between UTC and local time.

getUTCDate() See “Date.getUTCDate()
Method” on page 143

Return the day of the month in UTC.

getUTCDay() See “Date.getUTCDay() Method”
on page 143

Return the day of the week in UTC.

getUTCFullYear() See “Date.getUTCFullYear()
Method” on page 144

Return the year as four-digits in
UTC.

getUTCHours() See “Date.getUTCHours()
Method” on page 145

Return the hour in UTC.

getUTCMilliseconds() See “Date.getUTCMilliseconds()
Method” on page 145

Return the milliseconds in UTC.

getUTCMinutes() See “Date.getUTCMinutes()
Method” on page 146

Return the minutes in UTC.

getUTCMonth() See “Date.getUTCMonth()
Method” on page 146

Return the month in UTC.

getUTCSeconds() See “Date.getUTCSeconds()
Method” on page 147

Return the seconds in UTC.

getYear() See “Date.getYear() Method” on
page 147

Return the year relative to 1900.

setDate() See “Date.setDate() Method” on
page 148

Set the day of the month.

Prelim
inary

Prelim
inary

137ADOBE LIVEMOTION 2.0
Scripting Guide
setFullYear() See “Date.setFullYear() Method”
on page 148

Set the year in four-digit format.

setHours() See “Date.setHours() Method” on
page 149

Set the hour of the day.

setMilliseconds() See “Date.setMilliseconds()
Method” on page 150

Set the milliseconds.

setMinutes() See “Date.setMinutes() Method”
on page 151

Set the minutes.

setMonth() See “Date.setMonth() Method”
on page 151

Set the month.

setSeconds() See “Date.setSeconds() Method”
on page 152

Set the seconds.

setTime() See “Date.setTime() Method” on
page 153

Set the date in number of millisec-
onds that have passed since Janu-
ary 1, 1970.

setUTCDate() See “Date.setUTCDate() Method”
on page 153

Set the day of the month in UTC.

setUTCFullYear() See “Date.setUTCFullYear()
Method” on page 154

Set the year in four-digit format in
UTC.

setUTCHours() See “Date.setUTCHours()
Method” on page 155

Set the hour in UTC.

setUTCMilliseconds() See “Date.setUTCMilliseconds()
Method” on page 156

Set the milliseconds in UTC.

setUTCMinutes() See “Date.setUTCMinutes()
Method” on page 157

Set the minutes in UTC.

setUTCMonth() See “Date.setUTCMonth()
Method” on page 157

Set the month in UTC.

setUTCSeconds() See “Date.setUTCSeconds()
Method” on page 158

Set the seconds in UTC.

setYear() See “Date.setYear() Method” on
page 159

Set the year in four-digit format.

toString() See “Date.toString() Method” on
page 160

Return the date and time values as
a string.

Prelim
inary

Prelim
inary

CHAPTER 7138
Reference
Date.getDate() Method
date.getDate()

Description

The getDate() method returns the day of the month.

Returns

An integer value from 1 to 31.

Example

var now = new Date();
trace(now.getDate());//prints the day of the month

See Also

“Date.getUTCDate() Method” on page 143, “Date.getUTCDay() Method” on page 143,

“Date.setDate() Method” on page 148

Date.getDay() Method
date.getDay()

Description

The getDay() method returns the day of the week.

UTC() See “Date.UTC() Method” on
page 160

Return the number of milliseconds
between January 1, 1970 in UTC
and the time specified.

valueOf() See “Date.valueOf() Method” on
page 162

Return the number of milliseconds
that have passed since midnight,
January 1, 1970 UTC. Equivalent to
getTime().

Prelim
inary

Prelim
inary

139ADOBE LIVEMOTION 2.0
Scripting Guide
Returns

An integer from 0 (Sunday) to 6 (Saturday).

Example

var now = new Date();
trace(now.getDay());//prints the day of the week as an integer

See Also

“Date.getUTCDay() Method” on page 143, “Date.setDate() Method” on page 148

Date.getFullYear() Method
date.getFullYear()

Description

The getFullYear() method returns the year expressed in four-digit format.

Returns

The year expressed in four digits—for example, 2001.

var now = new Date();
trace(now.getFullYear());//prints the year in four digits

See Also

“Date.getYear() Method” on page 147, “Date.getUTCFullYear() Method” on page 144,

“Date.setFullYear() Method” on page 148

Date.getHours() Method
date.getHours()

Description

The getHours() method returns the hour of the day.

Prelim
inary

Prelim
inary

CHAPTER 7140
Reference
Returns

An integer value in the range of 0 (midnight) to 23 (11 PM).

Example

var now = new Date();
trace(now.getHours());//prints the hour

See Also

“Date.getUTCHours() Method” on page 145, “Date.setHours() Method” on page 149

Date.getMilliseconds() Method
date.getMilliseconds()

Description

The getMilliseconds() method returns the milliseconds.

Returns

An integer from 0 to 999.

var now = new Date();
trace(now.getMilliseconds());//prints the milliseconds

See Also

“Date.getUTCMilliseconds() Method” on page 145, “Date.setMilliseconds() Method” on

page 150

Date.getMinutes() Method
date.getMinutes()

Description

The getMinutes() method returns the minutes.

Prelim
inary

Prelim
inary

141ADOBE LIVEMOTION 2.0
Scripting Guide
Returns

An integer value in the range 0 to 59.

Example

var now = new Date();
trace(now.getMinutes());//prints the minutes

See Also

“Date.getUTCMinutes() Method” on page 146, “Date.setMinutes() Method” on page 151

Date.getMonth() Method
date.getMonth()

Description

The getMonth() method returns the month.

Returns

An integer value from 0 (Jan.) to 11 (Dec.).

Example

var now = new Date();
trace(now.getMonth());//prints the month as an integer

See Also

“Date.getUTCMonth() Method” on page 146, “Date.setMonth() Method” on page 151

Date.getSeconds() Method
date.getSeconds()

Description

The getSeconds() method returns the seconds.

Prelim
inary

Prelim
inary

CHAPTER 7142
Reference
Returns

An integer value in the range of 0 to 59.

Example

var now = new Date();
trace(now.getSeconds());//prints the seconds

See Also

“Date.getUTCSeconds() Method” on page 147, “Date.setSeconds() Method” on page 152

Date.getTime() Method
date.getTime()

Description

The getTime() method returns the number of milliseconds that have passed since January 1,

1970.

Returns

An integer.

Example

var now = new Date();
trace(now.getTime());//prints a very large integer

See Also

“Date.getUTCHours() Method” on page 145, “Date.setTime() Method” on page 153

Date.getTimezoneOffset() Method
date.getTimezoneOffset()

Prelim
inary

Prelim
inary

143ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The getTimezoneOffset() method returns the number of minutes between UTC and local

time. Accounts for daylight savings time.

Returns

An integer representing the number of minutes.

Example

var now = new Date();
trace(now.getTimezoneOffset());
// for California, prints 420 (7 hours) if daylight savings;
// if not daylight savings, prints 480

Date.getUTCDate() Method
date.getUTCDate()

Description

The getUTCDate() method returns the day of the month in UTC.

Returns

An integer value from 1 to 31.

Example

var now = new Date();
trace(now.getUTCDate());//prints the day of the month

See Also

“Date.getDate() Method” on page 138, “Date.getUTCDay() Method” on page 143,

“Date.setUTCDate() Method” on page 153

Date.getUTCDay() Method
date.getUTCDay()

Prelim
inary

Prelim
inary

CHAPTER 7144
Reference
Description

The getUTCDay() method returns the day of the week in UTC.

Returns

An integer from 0 (Sunday) to 6 (Saturday).

Example

var now = new Date();
trace(now.getUTCDay());//prints the day of the week as an integer

See Also

“Date.getDay() Method” on page 138, “Date.getUTCDate() Method” on page 143,

“Date.setUTCDate() Method” on page 153

Date.getUTCFullYear() Method
date.getUTCFullYear()

Description

The getUTCFullYear() method returns the year as four-digits in UTC.

Returns

The year expressed in four digits—for example, 2001.

Example

var now = new Date();
trace(now.getUTCFullYear());//prints the year in four digits

See Also

“Date.getFullYear() Method” on page 139, “Date.setFullYear() Method” on page 148

Prelim
inary

Prelim
inary

145ADOBE LIVEMOTION 2.0
Scripting Guide
Date.getUTCHours() Method
date.getUTCHours()

Description

The getUTCHours() method returns the hour in UTC.

Returns

An integer value in the range of 0 (midnight) to 23 (11 PM).

Example

var now = new Date();
trace(now.getUTCHours());//prints the hour

See Also

“Date.getHours() Method” on page 139, “Date.setUTCHours() Method” on page 155

Date.getUTCMilliseconds() Method
date.getUTCMilliseconds()

Description

The getUTCMilliseconds() method returns the milliseconds in UTC.

Returns

An integer from 0 to 999.

Example

var now = new Date();
trace(now.getUTCMilliseconds());//prints the milliseconds

See Also

“Date.getMilliseconds() Method” on page 140, “Date.setUTCMilliseconds() Method” on

page 156

Prelim
inary

Prelim
inary

CHAPTER 7146
Reference
Date.getUTCMinutes() Method
date.getUTCMinutes()

Description

The getUTCMinutes() method returns the minutes in UTC.

Return

An integer value in the range of 0 to 59.

Example

var now = new Date();
trace(now.getUTCMinutes());//prints the minutes

See Also

“Date.getMinutes() Method” on page 140, “Date.setUTCMinutes() Method” on page 157

Date.getUTCMonth() Method
date.getUTCMonth()

Description

The getUTCMonth() method returns the month in UTC.

Returns

An integer value from 0 (Jan.) to 11 (Dec.).

Example

var now = new Date();
trace(now.getUTCMonth());//prints the month as an integer

See Also

“Date.getMonth() Method” on page 141, “Date.setUTCMonth() Method” on page 157

Prelim
inary

Prelim
inary

147ADOBE LIVEMOTION 2.0
Scripting Guide
Date.getUTCSeconds() Method
date.getUTCSeconds()

Description

The getUTCSeconds() method returns the seconds in UTC.

Returns

An integer value in the range of 0 to 59.

Example

var now = new Date();
trace(now.getUTCSeconds());//prints the seconds

See Also

“Date.getSeconds() Method” on page 141, “Date.setUTCSeconds() Method” on page 158

Date.getYear() Method
date.getYear()

Description

The getYear() method returns the year relative to 1900. For example, 101 is returned for the

year 2001.

Returns

An integer representing the number of years that have passed since 1900.

Example

var now = new Date();
trace(now.getYear());//prints current year minus 1900

Prelim
inary

Prelim
inary

CHAPTER 7148
Reference
See Also

“Date.getFullYear() Method” on page 139, “Date.getUTCFullYear() Method” on page 144,

“Date.setYear() Method” on page 159

Date.setDate() Method
date.setDate(date)

Description

The setDate() method sets the day of the month of date. This does not affect the system clock

or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setDate(6));//prints a very large integer
trace(now.getDate());//prints 6

See Also

“Date.getDate() Method” on page 138, “Date.setUTCDate() Method” on page 153

Date.setFullYear() Method
date.setFullYear(year, month, date)

Description

The setFullYear() method sets the year of date. The method also sets month and day, if these

optional parameters are specified.This does not affect the system clock or anything else.

date An integer value from 1 to 31 indicating the day of the month to set.

Prelim
inary

Prelim
inary

149ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setFullYear(2001));//prints a very large integer
trace(now.getFullYear());//prints 2001
trace(now.getMonth());//prints month set by constructor
trace(now.getDate());//prints day of the month set by constructor

See Also

“Date.getUTCFullYear() Method” on page 144, “Date.setUTCFullYear() Method” on page 154,

“Date.setYear() Method” on page 159

Date.setHours() Method
date.setHours(hour)

Description

The setHours() method sets the hour. This does not affect the system clock or anything else.

Parameters

year A four-digit integer value indicating the year to set—for example, 2001.

month (Optional) An integer value from 0 (Jan.) to 11 (Dec.) indicating the month
of the year to set.

date (Optional) An integer value from 1 to 31 indicating the day of the month to
set.

hour An integer value from 0 (midnight) to 23 (11 PM) indicating the hour of the
day to set.

Prelim
inary

Prelim
inary

CHAPTER 7150
Reference
Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setHours(22));//prints a very large integer
trace(now.getHours());//prints 22

See Also

“Date.getHours() Method” on page 139, “Date.setUTCHours() Method” on page 155

Date.setMilliseconds() Method
date.setMilliseconds(ms)

Description

The setMilliseconds() method sets the milliseconds. This does not affect the system clock or

anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setMilliseconds(847));//prints a very large integer
trace(now.getMilliseconds());//prints 847

See Also

“Date.getMilliseconds() Method” on page 140, “Date.setUTCMilliseconds() Method” on

page 156

ms An integer value from 0 to 999 indicating the milliseconds to set.

Prelim
inary

Prelim
inary

151ADOBE LIVEMOTION 2.0
Scripting Guide
Date.setMinutes() Method
date.setMinutes(min)

Description

The setMinutes() method sets the minutes. This does not affect the system clock or anything

else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setMinutes(59));//prints a very large integer
trace(now.getMinutes());//prints 59

See Also

“Date.getMinutes() Method” on page 140, “Date.setUTCMilliseconds() Method” on page 156

Date.setMonth() Method
date.setMonth(month, date)

Description

The setMonth() method sets the month. The method also sets day, if this optional parameters

is specified. This does not affect the system clock or anything else.

min An integer value from 0 to 59 indicating the number of minutes to set.

Prelim
inary

Prelim
inary

CHAPTER 7152
Reference
Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setMonth(0, 22));//prints a very large integer
trace(now.getMonth());//prints 0
trace(now.getDate());//prints 22

See Also

“Date.getMonth() Method” on page 141, “Date.setUTCMonth() Method” on page 157

Date.setSeconds() Method
date.setSeconds(sec)

Description

The setSeconds() method sets the seconds. This does not affect the system clock or anything

else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();

month An integer value from 0 (Jan.) to 11 (Dec.) indicating the month to set.

date (Optional) An integer value from 1 to 31 indicating the day of the month to
set.

sec An integer value from 0 to 59 indicating the seconds to set.

Prelim
inary

Prelim
inary

153ADOBE LIVEMOTION 2.0
Scripting Guide
trace(now.setSeconds(59));//prints a very large integer
trace(now.getSeconds());//prints 59

See Also

“Date.getSeconds() Method” on page 141, “Date.setUTCSeconds() Method” on page 158

Date.setTime() Method
date.setTime(ms)

Description

The setTime() method sets the date in number of milliseconds that have passed since January

1, 1970. This does not affect the system clock or anything else.

Parameters

Returns

The number of milliseconds set.

Example

var now = new Date();
trace(now.setTime(999930239559));//prints a very large integer
trace(now.getTime());//prints 999930239559

See Also

“Date.getTime() Method” on page 142

Date.setUTCDate() Method
date.setUTCDate(date)

ms An integer indicating the number of milliseconds between the date to be
set and midnight, January 1, 1970.

Prelim
inary

Prelim
inary

CHAPTER 7154
Reference
Description

The setUTCDate() method sets the date of the month in UTC. This does not affect the system

clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now.setUTCDate(2));//prints a very large integer
trace(now.getUTCDate());//prints 2

See Also

“Date.getUTCDate() Method” on page 143, “Date.setDate() Method” on page 148

Date.setUTCFullYear() Method
date.setUTCFullYear(year, month, date)

Description

The setUTCFullYear() method sets the year in UTC, and optionally sets the month and day of

the month. This does not affect the system clock or anything else.

Parameters

date An integer value from 1 to 31 indicating the day to be set.

year The year expressed in four digits—for example, 2001.

month (Optional) An integer from 0 (Jan.) to 11 (Dec.).

date (Optional) An integer value from 1 to 31.

Prelim
inary

Prelim
inary

155ADOBE LIVEMOTION 2.0
Scripting Guide
Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now.setUTCFullYear(2001,3,1));//prints a very large integer
trace(now.getUTCFullYear());//prints 2001
trace(now.getUTCMonth());//prints 3
trace(now.getUTCDate());//prints 1

See Also

“Date.getUTCFullYear() Method” on page 144, “Date.setFullYear() Method” on page 148

Date.setUTCHours() Method
date.setUTCHours(hour, min, sec, ms)

Description

The setUTCHours() method sets the hour of the day in UTC. It also sets the minutes, seconds,

and milliseconds if these parameters are supplied. This does not affect the system clock or

anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

hour An integer value from 0 (midnight) to 23 (11 PM) indicating the hour to be
set.

min (Optional) An integer value from 0 to 59 indicating the number of minutes
to set.

sec (Optional) An integer value from 0 to 59 indicating the number of seconds
to set.

ms (Optional) An integer value from 0 to 999 indicating the milliseconds to set.

Prelim
inary

Prelim
inary

CHAPTER 7156
Reference
Example

var now = new Date();
trace(now.setUTCHours(22, 45, 46, 888));//prints a very large integer
trace(now.getUTCHours());//prints 22
trace(now.getUTCMinutes());//prints 45
trace(now.getUTCSeconds());//prints 46
trace(now.getUTCMilliseconds());//prints 888

See Also

“Date.getUTCHours() Method” on page 145, “Date.setHours() Method” on page 149

Date.setUTCMilliseconds() Method
date.setUTCMilliseconds(ms)

Description

The setUTCMilliseconds() method sets the milliseconds in UTC. This does not affect the

system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now.setUTCMilliseconds(220));//prints a very large integer
trace(now.getUTCMilliseconds());//prints 220

See Also

“Date.getUTCMilliseconds() Method” on page 145, “Date.setMilliseconds() Method” on

page 150

ms An integer value in the range of 0 to 999 indicating the number of millisec-
onds to set.

Prelim
inary

Prelim
inary

157ADOBE LIVEMOTION 2.0
Scripting Guide
Date.setUTCMinutes() Method
date.setUTCMinutes(min, sec, ms)

Description

The setUTCMinutes() method sets the minutes in UTC and optionally sets the seconds and

milliseconds. This does not affect the system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now.setUTCMinutes(45, 47, 889));//prints a very large integer
trace(now.getUTCMinutes());//prints 45
trace(now.getUTCSeconds());//prints 47
trace(now.getUTCMilliseconds());//prints 889

See Also

“Date.getUTCMinutes() Method” on page 146, “Date.setMinutes() Method” on page 151

Date.setUTCMonth() Method
date.setUTCMonth(month, date)

min An integer value in the range 0 to 59 indicating the number of minutes to
be set.

sec (Optional) An integer value from 0 to 59 indicating the number of seconds
to set.

ms (Optional) An integer value from 0 to 999 indicating the milliseconds to set.

Prelim
inary

Prelim
inary

CHAPTER 7158
Reference
Description

The setUTCMonth() method sets the month in UTC. It also optionally sets the day of the month.

This does not affect the system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now.setUTCMonth(11, 31));//prints a very large integer
trace(now.getUTCMonth());//prints 11
trace(now.getUTCDate());//prints 31

See Also

“Date.getUTCMonth() Method” on page 146, “Date.setMonth() Method” on page 151

Date.setUTCSeconds() Method
date.setUTCSeconds(sec, ms)

Description

The setUTCSeconds() sets the seconds in UTC. It also optionally sets the milliseconds. This

does not affect the system clock or anything else.

month An integer value in the range 0 (Jan.) to 11 (Dec.) indicating the month to
set.

date (Optional) An integer value from 1 to 31 indicating the day of the month.

Prelim
inary

Prelim
inary

159ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now.setUTCSeconds(44, 310));//prints a very large integer
trace(now.getUTCSeconds());//prints 44
trace(now.getUTCMilliseconds());//prints 310

See Also

“Date.getUTCSeconds() Method” on page 147, “Date.setSeconds() Method” on page 152

Date.setYear() Method
date.setYear(year, month, date)

Description

The setYear() method sets the year, and optionally the month and day of the month. This does

not affect the system clock or anything else.

Parameters

sec An integer value in the range 0 to 59 indicating the number of seconds to
set.

ms (Optional) An integer value from 0 to 999 indicating the milliseconds to set.

year An integer value indicating the year to set. The method interprets a 1- or 2-
digit value to mean the 1900s—for example, 13 is interpreted to mean
1913.

month (Optional) An integer value in the range of 0 (Jan.) to 11 (Dec.) indicating
the month to set. If this argument is not supplied, its value is set to 0.

date (Optional) An integer value in the range of 1 to 31 indicating the day to be
set for date. If this argument is not supplied, its value is set to 0.

Prelim
inary

Prelim
inary

CHAPTER 7160
Reference
Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setYear(2001,3,1));//prints a very large integer
trace(now.getFullYear());//prints 2001
trace(now.getMonth());//prints 3
trace(now.getDate());//prints 1

See Also

“Date.getYear() Method” on page 147, “Date.setFullYear() Method” on page 148,

“Date.setUTCFullYear() Method” on page 154

Date.toString() Method
date.toString()

Description

The toString() method returns the date and time values as a string.

Returns

The following string is an example of the format returned by this method:

Mon Aug 13, 10:54:21 GMT-0700 2001

Example

var now = new Date();
trace(now.toString());//string with the date

Date.UTC() Method
Date.UTC(year, month, date, hour, min, sec, ms)

Prelim
inary

Prelim
inary

161ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The Date.UTC() method returns the date as the number of milliseconds between the time

specified (passed in as the arguments to the method) and midnight, January 1, 1970, in UTC.

The first three parameters are required. Date.UTC() and Date() accept the same arguments; the

only difference between the two is that the new date object created using Date.UTC() assumes

UTC while the new date object created using only Date() assumes local time. A new UTC date

object is normally created like this:

now = new Date(Date.UTC(2001, 9, 30));

In addition, Date.UTC() is commonly used with the setTime() method.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date(Date.UTC(96, 11, 29, 11, 58, 59, 345));
trace(now.getTime());//prints milliseconds
trace(now.getUTCFullYear());//prints 1996
trace(now.getMonth());//prints 11
trace(now.getUTCDate());//prints 29
trace(now.getUTCHours());//prints 11
trace(now.getUTCMinutes());//prints 58
trace(now.getUTCSeconds());//prints 59
trace(now.getUTCMilliseconds());//prints 345

year The year expressed in four digits— for example, 2001. To indicate for a year from
1900 to 1999, you can specify a value from 0 to 99.

month An integer value from 0 (Jan.) to 11 (Dec.).

date An integer value from 1 to 31.

hour (Optional) An integer value in the range of 0 (midnight) to 23 (11 PM).

min (Optional) An integer value in the range of 0 to 59.

sec (Optional) An integer value in the range of 0 to 59.

ms (Optional) An integer value in the range of 0 to 999.

Prelim
inary

Prelim
inary

CHAPTER 7162
Reference
Date.valueOf() Method
date.valueOf()

Description

The valueOf() method returns the number of milliseconds that have passed since midnight,

January 1, 1970 UTC. Equivalent to getTime().

Returns

An integer.

Example

var now = new Date();
trace(now.valueOf());//prints the number of milliseconds

See Also

“Date.getTime() Method” on page 142

DuplicateMovieClip() Global Function
duplicateMovieClip(target, newName, depth)

Description

The duplicateMovieClip() global function creates a duplicate of target while target is

playing. The duplicated movie clip always starts at its frame 1 regardless of target’s frame at

the time of duplication. The duplicated movie clip inherits shape transformations but not the

timeline variables. The duplicated movie clip is placed in target’s parent’s programmatic stack.

A programmatic stack holds child movie clips; when you duplicate a movie clip it will have the

same parent as the original, and thus “live” in the parent’s programmatic stack.

The removeMovieClip() global function is used to delete duplicated movie clips.

MovieClip.removeMovieClip() can also be used by duplicated movie clips to delete

themselves. Duplicated movie clips can also be removed by placing another movie clip at the

same depth in the programmatic stack.

Prelim
inary

Prelim
inary

163ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

Example

duplicateMovieClip (_root.baseball, "newBaseball", 1);//creates new baseball
_root.newBaseball._x += 25;//moves new baseball along x axis
_root.newBaseball._y += 25;//moves new baseball along y axis

See Also

“RemoveMovieClip() Global Function” on page 242, “MovieClip.duplicateMovieClip()

Method” on page 207, “MovieClip.removeMovieClip() Method” on page 220

Escape() Global Function
escape(string)

Description

The escape() global function creates a URL-encoded string from string. In the new string,

characters of string that require URL encoding are replaced with the format %xx, where xx is

the hexadecimal value of the character. This format is used to transmit information appended to

a URL during, for example, execution of the GET method. Use the unescape() global function

to translate the string back into its original format.

Parameters

Example

//prints Billy%20went%20fishing%21%24%23%21
trace(escape("Billy went fishing!$#!"));

target The movie clip that is duplicated.

newName The name of the duplicate movie clip. This must be a unique name.

depth The depth of the movie clip in target’s parent’s programmatic stack.

string The string to be encoded.

Prelim
inary

Prelim
inary

CHAPTER 7164
Reference
See Also

“Unescape() Global Function” on page 271

Eval() Global Function
eval(expression)

Description

The eval() global function returns the value of or a reference to expression.

Note: This implementation of eval() is different from JavaScript’s implementation.

Parameters

Returns

If expression is a variable or property, the value of the variable or property is returned. If

expression is an object or movie clip, a reference to the movie clip or object is returned.

Example

x=4;
trace(eval(x));//prints 4
str = "baseball";
hitBaseball = eval("_root."+str);
hitBaseball._x += 50;//moves movie clip 50 pixels

Focusrect Global Property
_focusrect

expression An expression that evaluates to a variable, property, object, or movie clip.

Prelim
inary

Prelim
inary

165ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The _focusrect global property is a Boolean that specifies whether the button or text field that

currently has focus has a yellow rectangle that appears around it. As a Boolean, it can be assigned

only one of two values: true or false. If assigned true, the yellow rectangle appears; if false,

it does not. This property can be read or written.

Fscommand() Global Function
fscommand(string command, string arguments)

Description

The fscommand() global function is used only within the context of getURL().fscommand()

communication is supported only on the Microsoft Windows operating system—primarily on

the Internet Explorer web browser. With version 6 of the Netscape web browser, fscommand()

is no longer supported.

Parameters

See Also

“GetURL Global Function” on page 166

GetTimer Global Function
getTimer()

Description

The getTimer() global function gets the number of milliseconds that have elapsed since the

movie started playing.

string command The command to execute, in quotes.

string arguments The arguments for the command, in quotes.

Prelim
inary

Prelim
inary

CHAPTER 7166
Reference
Parameters

None.

Returns

The elapsed time in milliseconds.

GetURL Global Function
getURL(url)
getURL(url, target)
getURL(url, target, howToSendVariables)

Description

The getURL() global function gets a document from a specified URL and loads it into the

browser at the specified target. It is also used to execute a script on a server and receive the results

in a web browser window or frame. Additionally, it can be used to execute JavaScript ("javas-

cript:command") or VBScript ("vbscript:command")in a web browser, and provides

support for the fscommand() global function.

Note: This method is not supported in preview mode.

The fscommand() options are as follows:

• getURL("fscommand: allowscale", value)—Tells the stand-alone SWF player whether

its contents should scale with the size of the player’s window.value is the string "true" or

"false", indicating whether or not (respectively) the contents of the SWF player should scale.

• getURL("fscommand: exec", applicationName)—Tells the stand-alone SWF player to

launch an external application. applicationName is a string showing an absolute path to the

application.

• getURL("fscommand: fullscreen", value)—Tells the stand-alone SWF player whether

to maximize, filling the entire screen. value is the string "true" or "false", indicating whether

or not (respectively) to maximize.

• getURL("fscommand: quit")—Tells the stand-alone SWF player to quit.

• getURL("fscommand: showmenu", value)—Tells the stand-alone SWF player whether to

suppress the display of the controls in the context menu. value is the string "true" or "false",

indicating whether or not (respectively) to suppress.

Prelim
inary

Prelim
inary

167ADOBE LIVEMOTION 2.0
Scripting Guide
• getURL("fscommand: trapallkeys", value)—Tells the stand-alone SWF player whether

to send all keystrokes to the SWF files(s) executing in the player. value is the string "true" or

"false", indicating whether or not (respectively) to send.

Parameters

Example

getURL("ftp://download.intel.com");
getURL("http://www.adobe.com", "_parent");
getURL("file:///C|/coolestFile.html");
getURL("javascript: alert(\"Hi\");");

See Also

“LoadVariables() Global Function” on page 185, “MovieClip.getURL() Method” on page 211,

“MovieClip.loadVariables() Method” on page 216, “Fscommand() Global Function” on

page 165

GetVersion() Global Function
getVersion()

url A string specifying the URL to which to hyperlink (HTTP or FTP). This
may be a relative or an absolute pathname. It can be the name of a doc-
ument or it can be a script, and the fscommand() global function can
be used here.

target (Optional) A string specifying the target frame in the browser—e.g.,
_self (the default), _parent, _top, _blank. If omitted, _self is
used. Custom names can also be used.

howToSendVariables (Optional) Omit this parameter if you don’t want to send the variables.
This parameter is a string literal. Specify GET to send variables via get
(i.e., tacked onto the end of the URL) or POST to send them with post
(i.e., put into the body of the request). Both methods send them in appli-
cation/x-www-form-urlencoded MIME format. All user-defined vari-
ables are sent, except for user-defined standard handlers.

Prelim
inary

Prelim
inary

CHAPTER 7168
Reference
Description

The getVersion() global function returns, in string form, the version of Flash that the user

currently has installed. The first number refers to the major version number of Flash; the second

number gives the minor version; the third number is the build (revision); and the fourth number

is the patch.

For example, from LiveMotion’s preview mode:

LM 5,0,42,0

For example, from an exported SWF file (on a Windows machine):

WIN 5,0,30,0

Parameters

None

Returns

The version of Flash installed on the user’s system.

GotoAndPlay() Global Function
gotoAndPlay(label)

Description

The gotoAndPlay() global function sends the main timeline’s playhead to the specified label

and continues playing from label.

Note: Frame numbers should not be passed to this global function. The use of labels is recommended.

Parameters

See Also

“GotoAndStop() Global Function” on page 169

label Destination of the playhead.

Prelim
inary

Prelim
inary

169ADOBE LIVEMOTION 2.0
Scripting Guide
GotoAndStop() Global Function
gotoAndStop(label)

Description

The gotoAndStop() global function sends the main timeline’s playhead to the specified label

and stops playing at label.

Note: Frame numbers should not be passed to this global function. The use of labels is recommended.

Parameters

See Also

“MovieClip.gotoAndPlay() Method” on page 213

Highquality Global Property
_highquality

Description

The _highquality global property determines the level of anti-aliasing present in the movie

clip. This property can be read or written. One of three values is possible, as follows:

• 0 = Turns off anti-aliasing.

• 1 = Anti-aliasing applied. (Default)

• 2 = Highest level of anti-aliasing (bitmap smoothing).

See Also

“Quality Global Property” on page 242

label Destination of the playhead.

Prelim
inary

Prelim
inary

CHAPTER 7170
Reference
Infinity Global Property
Infinity

Description

The Infinity global property is a predefined variable with the value for infinity. It is any value

larger than Number.MAX_VALUE, which is the largest number that can be represented in JavaS-

cript.

See Also

“-Infinity Global Property” on page 170, “Number.POSITIVE_INFINITY Property” on

page 234, “Number.MAX_VALUE Property” on page 232

-Infinity Global Property
-Infinity

Description

The -Infinity global property is a predefined variable with the value of -infinity.

See Also

“Infinity Global Property” on page 170, “Number.NEGATIVE_INFINITY Property” on

page 233

IsFinite Global Function
isFinite(expression)

Description

The isFinite() global function evaluates an expression and returns true if the expression is a

finite number. Otherwise, it returns false—the value is infinity or negative infinity

Prelim
inary

Prelim
inary

171ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

Returns

true if the expression is a finite number, false otherwise.

See Also

“Infinity Global Property” on page 170, “-Infinity Global Property” on page 170

IsNan() Global Function
isNan(expression)

Description

The isNan() global function returns true if the expression is Not-a-Number (NaN).

Parameters

Returns

true if the expression is not a number (NaN), false otherwise.

See Also

“Number.NaN Property” on page 233

Key Object

Description

The Key object used to retrieve the state of the keyboard. The Key object and its constants and

methods are static—you do not create Key objects using a constructor.

expression Any valid JavaScript expression.

expression Any valid JavaScript expression.

Prelim
inary

Prelim
inary

CHAPTER 7172
Reference
Constants

BACKSPACE See “Key.BACKSPACE
Constant” on page 174

Passed to Key.isDown() to determine whether BACK-
SPACE key is pressed. Constant representing the value
for BACKSPACE.

CAPSLOCK See “Key.CAPSLOCK Con-
stant” on page 174

Passed to Key.isDown() to determine whether
CAPSLOCK key is pressed. Constant representing the
value for CAPSLOCK.

CONTROL See “Key.CONTROL Con-
stant” on page 174

Passed to Key.isDown() to determine whether CON-
TROL key is pressed. Constant representing the value
for the CONTROL key.

DELETEKEY See “Key.DELETEKEY Con-
stant” on page 175

Passed to Key.isDown() to determine whether
DELETEKEY key is pressed. Constant representing the
value for DELETEKEY.

DOWN See “Key.DOWN Con-
stant” on page 175

Passed to Key.isDown() to determine whether DOWN
key is pressed. Constant representing the value for the
DOWN key.

END See “Key.END Constant”
on page 175

Passed to Key.isDown()to determine whether END
key is pressed. Constant representing the value for the
END key.

ENTER See “Key.ENTER Con-
stant” on page 176

Passed to Key.isDown() to determine whether
ENTER key is pressed. Constant representing the value
for the ENTER key.

ESCAPE See “Key.ESCAPE Con-
stant” on page 176

Passed to Key.isDown() to determine whether
ESCAPE key is pressed. Constant representing the
value for the ESCAPE key.

HOME See “Key.HOME Constant”
on page 177

Passed to Key.isDown() to determine whether HOME
key is pressed. Constant representing the value for
HOME key.

INSERT See “Key.INSERT Con-
stant” on page 178

Passed to Key.isDown() to determine whether
INSERT key is pressed. Constant representing the value
for the INSERT key.

LEFT See “Key.LEFT Constant”
on page 180

Passed to Key.isDown() to determine whether LEFT
key is pressed. Constant representing the value for the
LEFT key.

Prelim
inary

Prelim
inary

173ADOBE LIVEMOTION 2.0
Scripting Guide
Methods

PGDN See “Key.PGDN Constant”
on page 180

Passed to Key.isDown() to determine whether PGDN
key is pressed. Constant representing the value for the
PGDN key.

PGUP See “Key.PGUP Constant”
on page 180

Passed to Key.isDown() to determine whether PGUP
key is pressed. Constant representing the value for the
PGUP key.

RIGHT See “Key.RIGHT Constant”
on page 181

Passed to Key.isDown() to determine whether
RIGHT key is pressed. Constant representing the value
for the RIGHT key.

SHIFT See “Key.SHIFT Constant”
on page 181

Passed to Key.isDown() to determine whether
SHIFT key is pressed. Constant representing the value
for the SHIFT key.

SPACE See “Key.SPACE Constant”
on page 181

Passed to Key.isDown() to determine whether
SPACE bar is pressed. Constant representing the value
for the SPACE bar.

TAB See “Key.TAB Constant”
on page 182

Passed to Key.isDown() to determine whether TAB
key is pressed. Constant representing the value for the
TAB key.

UP See “Key.UP Constant” on
page 182

Passed to Key.isDown() to determine whether UP
key is pressed. Constant representing the value for the
UP key.

getAscii() See “Key.getAscii()
Method” on page 176

Get the ASCII code of the last key pressed.

getCode() See “Key.getCode()
Method” on page 177

Get the key code of the last key pressed.

isDown() See “Key.isDown()
Method” on page 178

Check whether the specified key is currently down.

isToggled() See “Key.isToggled()
Method” on page 179

Check whether the num lock or caps lock key is toggled on.

Prelim
inary

Prelim
inary

CHAPTER 7174
Reference
Key.BACKSPACE Constant
Key.BACKSPACE

Description

The Key.BACKSPACE constant is passed to Key.isDown() to determine whether the BACKSPACE

key is pressed. It is returned by Key.getCode() if the BACKSPACE key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Key.CAPSLOCK Constant
Key.CAPSLOCK

Description

The Key.CAPSLOCK is passed to Key.isToggled to determine whether the CAPSLOCK key is on.

It is returned by Key.getCode() if CAPSLOCK key was last key pressed.

See Also

“Key.isToggled() Method” on page 179

Key.CONTROL Constant
Key.CONTROL

Description

The Key.CONTROL constant is passed to Key.isDown() to determine whether the CONTROL key

is pressed. It is returned by Key.getCode() if CONTROL key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Prelim
inary

Prelim
inary

175ADOBE LIVEMOTION 2.0
Scripting Guide
Key.DELETEKEY Constant
Key.DELETEKEY

Description

The Key.DELETEKEY constant is passed to Key.isDown() to determine whether the DELETEKEY

key is pressed. It is returned by Key.getCode() if the DELETEKEY key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Key.DOWN Constant
Key.DOWN

Description

The Key.DOWN constant is passed to Key.isDown() to determine whether the DOWN key is

pressed. It is returned by Key.getCode() if the DOWN key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Key.END Constant
Key.END

Description

The Key.END constant is passed to Key.isDown() to determine whether the END key is pressed.

It is returned by Key.getCode() if the END key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Prelim
inary

Prelim
inary

CHAPTER 7176
Reference
Key.ENTER Constant
Key.ENTER

Description

The Key.ENTER constant is passed to Key.isDown() to determine whether the ENTER key is

pressed. It is returned by Key.getCode() if the ENTER key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Key.ESCAPE Constant
Key.ESCAPE

Description

The Key.ESCAPE constant is passed to Key.isDown() to determine whether the ESCAPE key is

pressed. It is returned by Key.getCode() if the ESCAPE key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Key.getAscii() Method
Key.getAscii()

Description

The Key.getAscii() method returns the ASCII code of the last key pressed.

Arguments

None

Prelim
inary

Prelim
inary

177ADOBE LIVEMOTION 2.0
Scripting Guide
Example

In the onKeyUp or onKeyDown event:

var asciiVal = Key.getAscii();
if (asciiVal == 102)

{
 trace("Lower case ‘f’ has been pressed");
};

See Also

“Key.getCode() Method” on page 177

Key.getCode() Method
Key.getCode()

Description

The Key.getCode() method returns the key code of the last key pressed.

Parameters

None

Example

In the onKeyUp or onKeyDown event:

if (Key.getCode() == Key.ESCAPE)
{
 trace("Key.ESCAPE was pressed.");
};

See Also

“Key.getAscii() Method” on page 176

Key.HOME Constant
Key.HOME

Prelim
inary

Prelim
inary

CHAPTER 7178
Reference
Description

The Key.HOME constant is passed to Key.isDown() to determine whether the HOME key is

pressed. It is returned by Key.getCode() if the HOME key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Key.INSERT Constant
Key.INSERT

Description

The Key.INSERT constant is passed to Key.isDown() to determine whether INSERT key is

pressed. It is returned by Key.getCode() if the INSERT key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Key.isDown() Method
Key.isDown(keycode)

Description

The Key.isDown() method is used to check whether the specified key is currently down.

Parameters

Returns

true if the key is pressed; false otherwise.

keycode The key code to check for.

Prelim
inary

Prelim
inary

179ADOBE LIVEMOTION 2.0
Scripting Guide
Example

In the onKeyUp or onKeyDown event:

if (Key.isDown(key.RIGHT))
{
 trace("Right arrow key was pressed.");
};

See Also

“Key.isToggled() Method” on page 179

Key.isToggled() Method
Key.isToggled(keycode)

Description

The Key.isToggled() method is used to see if the caps lock or num lock key is on.

Parameters

Returns

true if the num lock or caps lock key is toggled on; false otherwise.

Example

In the onKeyUp or onKeyDown event:

if (Key.isToggled(20))//detect whether caps lock key is toggled on
{
 trace("Caps lock key is on.");
};

keycode If this parameter is Key.CAPSLOCK or the integer 20, then the
method checks for whether the caps lock key is toggled on. If the
parameter is the integer 144, then the method checks for whether
the num lock key is toggled on.

Prelim
inary

Prelim
inary

CHAPTER 7180
Reference
See Also

“Key.isDown() Method” on page 178

Key.LEFT Constant
Key.LEFT

Description

The Key.LEFT is passed to Key.isDown() to determine whether the LEFT key is pressed. It is

returned by Key.getCode() if the LEFT key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Key.PGDN Constant
Key.PGDN

Description

The Key.PGDN is passed to Key.isDown() to determine whether the PGDN key is pressed. It is

returned by Key.getCode() if the PGDN key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Key.PGUP Constant
Key.PGUP

Description

The Key.PGUP constant is passed to Key.isDown() to determine whether the PGUP key is

pressed. It is returned by Key.getCode() if the PGUP key was last key pressed.

Prelim
inary

Prelim
inary

181ADOBE LIVEMOTION 2.0
Scripting Guide
See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Key.RIGHT Constant
Key.RIGHT

Description

The Key.RIGHT constant is passed to Key.isDown() to determine whether the RIGHT key is

pressed. It is returned by Key.getCode() if the RIGHT key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Key.SHIFT Constant
Key.SHIFT

Description

The Key.SHIFT constant is passed to Key.isDown() to determine whether the SHIFT key is

pressed. It is returned by Key.getCode() if the SHIFT key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Key.SPACE Constant
Key.SPACE

Description

The Key.SPACE constant is passed to Key.isDown() to determine whether the SPACE key is

pressed. It is returned by Key.getCode() if the SPACE key was last key pressed.

Prelim
inary

Prelim
inary

CHAPTER 7182
Reference
See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Key.TAB Constant
Key.TAB

Description

The Key.TAB constant is passed to Key.isDown() to determine whether the TAB key is pressed.

It is returned by Key.getCode() if the TAB key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Key.UP Constant
Key.UP

Description

The Key.UP constant is passed to Key.isDown() to determine whether the UP key is pressed. It

is returned by Key.getCode() if the UP key was last key pressed.

See Also

“Key.getCode() Method” on page 177, “Key.isDown() Method” on page 178

Leveln Global Property
_leveln

Prelim
inary

Prelim
inary

183ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The _leveln global property is used to specify the level into which to load a movie clip using the

loadMovie() global function. It is also used to refer to that movie clip after it has been loaded.

The root level movie clip loads at level 0 by default.

Note: This global property is not supported in preview mode (except for _level0).

Example

loadMovie("http://devtech.corp.adobe.com/livemotion/test.swf", "_level1");
_level1.stop();

See Also

“LoadMovie() Global Function” on page 184

lmFrameOfLabel() Global Function
lmFrameOfLabel(label)

Description

The lmFrameOfLabel() global function returns the frame number at which label resides.

Parameters

Returns

The frame number associated with label, or 0 if label is not found on the composition

timeline.

Example

//returns frame number of "firstThrow" label
lmFrameOfLabel("firstThrow");

label String literal name of a label on the composition timeline.

Must appear in quotes.Prelim
inary

Prelim
inary

CHAPTER 7184
Reference
LoadMovie() Global Function
loadMovie(url, target)
loadMovie(url, target, howToSendVariables)

Description

The loadMovie() global function loads additional SWF files into the Flash player. These SWF

files can be loaded into “higher” levels (the main movie “lives” at _level0), or they can be

loaded into existing movie clips, replacing those movie clips.

If a new main movie clip is loaded at level 0, every level is unloaded and the effect is the same as

starting a new SWF file in the Flash player. The movie clip loaded in level 0 sets the frame rate,

background color, and frame size for all other loaded movie clips.

Movie clips loaded with the loadMovie() global function can be unloaded using the unload-

Movie() global function or the unloadMovieNum() global function. Likewise, a new movie clip

can be loaded into the level using the loadMovie() or loadMovieNum() global function.

Note: This method is not supported in preview mode.

Parameters

Example

loadMovie("http://devtech.corp.adobe.com/docs/livemotion/billys.swf",
"_level1");

url The URL from which to load the SWF file. The URL must be in the same sub-
domain as the URL where the movie clip currently resides.

target String representing the name of another movie clip that the new movie will
replace, or the document level. The loaded movie inherits the position, scal-
ing, and rotation of the movie it’s replacing.

howToSendVariables (Optional) GET or POST. String literal that specifies the method for sending
variables to the server. The GET method appends them to the URL; the POST
method sends them in a separate HTTP packet.

Prelim
inary

Prelim
inary

185ADOBE LIVEMOTION 2.0
Scripting Guide
See Also

“LoadMovieNum() Global Function” on page 185, “UnloadMovie() Global Function” on

page 271, “UnloadMovieNum() Global Function” on page 272, “MovieClip.loadMovie()

Method” on page 216

LoadMovieNum() Global Function
loadMovieNum(url, level)
loadMovieNum(url, level, method)

Description

The loadMovieNum() global function is the same as loadMovie() except that the second

parameter must be specified as a number rather than as a string. With loadMovieNum() you

cannot specify the name of another movie clip to be replaced.

Note: This method is not supported in preview mode.

Parameters

See Also

“LoadMovie() Global Function” on page 184, “UnloadMovie() Global Function” on page 271,
“UnloadMovieNum() Global Function” on page 272

LoadVariables() Global Function
loadVariables(url, target)
loadVariables(url, target, howToSendVariables)

url The URL from which to load the movie.

level Document level.

method (Optional)String literal. GET or POST.

Prelim
inary

Prelim
inary

CHAPTER 7186
Reference
Description

The loadVariables() global function loads variables fetched from the specified URL. The

movie clip's onData event handler is called when the variables have been loaded. The data that’s

loaded has the same scope as the movie clip/level that it’s loaded into. All the values loaded are

considered the string data type.

The data fetched from the URL must be in the application/x-www-form-urlencoded MIME

format.

Parameters

Example

//last two arguments are optional placeholders used instead
loadVariables("http://pdcmotion1.corp.adobe.com/cgi-
bin/stockdata.pl?ticker=" + this.symbol,this,"DONT_SEND");

See Also

“LoadVariablesNum() Global Function” on page 187, “GetURL Global Function” on page 166,

“MovieClip.getURL() Method” on page 211, “MovieClip.loadVariables() Method” on page 216

url The URL from which to get the variables. The host for the URL
must be in the same subdomain as the movie clip when
accessed using a web browser.

target The target to load the variables to. There are three possibilities:

• if a number, the variables are loaded into the level the number
specifies;

• if a string, the variables are loaded into the movie clip specified
by the path in the string,

• if a movie clip object, the variables are loaded into it.

howToSendVariables (Optional) Omit this parameter if you don't want to send the vari-
ables. GET or POST. String literal that specifies the method for
sending variables to the movie clip that is to be loaded. The GET
method appends them to the URL; the POST method sends
them in a separate HTTP packet. Using either method they're
sent in application/x-www-form-urlencoded MIME format. All
user defined variables are sent, except for user-defined standard
handlers.Prelim

inary

Prelim
inary

187ADOBE LIVEMOTION 2.0
Scripting Guide
LoadVariablesNum() Global Function
loadVariablesNum (url, target)
loadVariablesNum (url, target, howToSendVariables)

Description

The loadVariablesNum() global function is the same as loadVariables() except the second

argument must be a level number.

Parameters

See Also

“LoadVariables() Global Function” on page 185, “GetURL Global Function” on page 166,

“LoadMovie() Global Function” on page 184, “LoadMovieNum() Global Function” on page 185

Math Object

Description

The Math object has constants and methods to facilitate use of constants and common mathe-

matical functions. The Math object and its constants and methods are static—you do not create

Math objects using a constructor. For example, you refer to the constant PI as Math.PI and you

call the sine function as Math.sin(x), where x is the method’s argument. Constants are defined

with the full precision of real numbers.

url The URL from which to get the variables.

level The level number of the target to which to load the variables.

howToSendVariables (Optional) String literal. GET or POST.

Prelim
inary

Prelim
inary

CHAPTER 7188
Reference
Constants

Methods

E See “Math.E Constant” on
page 193.

Euler's constant and the base of natural logarithms
(approximately 2.718).

LN2 See “Math.LN2 Constant” on
page 194.

Natural logarithm of 2 (approximately 0.693).

LN10 See “Math.LN10 Constant” on
page 194.

Natural logarithm of 10 (approximately 2.302).

LOG2E See “Math.LOG2E Constant” on
page 195.

NBase 2 logarithm of E (approximately 1.442).

LOG10E See “Math.LOG10E Constant” on
page 195.

Base 10 logarithm of E (approximately 0.434).

PI See “Math.PI Constant” on
page 196.

Ratio of the circumference of a circle to its diameter
(approximately 3.14159).

SQRT1_2 See “Math.SQRT1_2 Constant”
on page 198.

Square root of 1/2; equivalently, 1 over the square
root of 2 (approximately 0.707).

SQRT2 See “Math.SQRT2 Constant” on
page 198.

Square root of 2 (approximately 1.414).

abs() See “Math.abs() Method” on
page 189.

Return the absolute value of a number.

acos() See “Math.acos() Method” on
page 190.

Return the arccosine (in radians) of a number.

asin() See “Math.asin() Method” on
page 190.

Return the arcsine (in radians) of a number.

atan() See “Math.atan() Method” on
page 191.

Return the arctangent (in radians) of a number.

atan2() See “Math.atan2() Method” on
page 191.

Return the arctangent of a point to the X-axis.

ceil() See “Math.ceil() Method” on
page 192.

Return the value rounded up.

Prelim
inary

Prelim
inary

189ADOBE LIVEMOTION 2.0
Scripting Guide
Math.abs() Method
Math.abs(x)

Description

The abs() method returns the absolute value of a number.

cos() See “Math.cos() Method” on
page 192.

Return the cosine of a number.

exp() See “Math.exp() Method” on
page 193.

Return the computed exponential of E.

floor() See “Math.floor() Method” on
page 193.

Return the value rounded down.

log() See “Math.log() Method” on
page 194 .

Return the natural logarithm of a number.

max() See “Math.max() Method” on
page 195.

Return the greater of two numbers.

min() See “Math.min() Method” on
page 195.

Return the lesser of two numbers.

pow() See “Math.pow() Method” on
page 196.

Return XY.

random() See “Math.random() Method”
on page 197.

Return a pseudo-random number between 0 and 1.

round() See “Math.round() Method” on
page 197.

Return the value of a number rounded to the nearest
integer.

sin() See “Math.sin() Method” on
page 197.

Return the sine of a number.

sqrt() See “Math.sqrt() Method” on
page 198.

Return the square root of a number.

tan() See “Math.tan() Method” on
page 199.

Return the tangent of a number.Prelim
inary

Prelim
inary

CHAPTER 7190
Reference
Parameters

Math.acos() Method
Math.acos(x)

Description

The acos() method returns the arccosine (in radians) of a number. The value is between 0 and

PI radians. If the argument is outside this range, the method returns NaN.

Parameters

See Also

“Math.asin() Method” on page 190, “Math.atan() Method” on page 191, “Math.atan2()

Method” on page 191, “Math.cos() Method” on page 192, “Math.sin() Method” on page 197,

“Math.tan() Method” on page 199

Math.asin() Method
Math.asin(x)

Description

The asin() method returns the arcsine (in radians) of a number. The value is between -PI/2 and

PI/2 radians. If the value of the argument is outside this range, it returns NaN.

Parameters

x A number.

x A number between -1.0 and 1.0.

x A number between -1.0 and 1.0.

Prelim
inary

Prelim
inary

191ADOBE LIVEMOTION 2.0
Scripting Guide
See Also

“Math.acos() Method” on page 190, “Math.atan() Method” on page 191, “Math.atan2()

Method” on page 191, “Math.cos() Method” on page 192, “Math.sin() Method” on page 197,

“Math.tan() Method” on page 199

Math.atan() Method
Math.atan(x)

Description

The atan() method returns the arctangent (in radians) of a number. The value is between -PI/2

and PI/2 radians.

Parameters

See Also

“Math.acos() Method” on page 190, “Math.asin() Method” on page 190, “Math.atan2()

Method” on page 191, “Math.cos() Method” on page 192, “Math.sin() Method” on page 197,

“Math.tan() Method” on page 199

Math.atan2() Method
Math.atan2(y,x)

Description

The atan2() method returns the arctangent of a point to the X-axis. The numeric value is

between -PI and PI. Note that the arguments to this function pass the y-coordinate first and the

x-coordinate second.

Parameters
.

x A number

x,y Numbers.

Prelim
inary

Prelim
inary

CHAPTER 7192
Reference
See Also

“Math.acos() Method” on page 190, “Math.asin() Method” on page 190, “Math.atan() Method”

on page 191, “Math.cos() Method” on page 192, “Math.sin() Method” on page 197, “Math.tan()

Method” on page 199

Math.ceil() Method
Math.ceil(x)

Description

The ceil() method returns the value rounded up.

Parameters

See Also

“Math.floor() Method” on page 193

Math.cos() Method
Math.cos(x)

Description

The cos() method returns the cosine (in radians) of a number. The value is between -1 and 1.

Parameters

See Also

“Math.acos() Method” on page 190, “Math.asin() Method” on page 190, “Math.atan() Method”

on page 191, “Math.sin() Method” on page 197, “Math.tan() Method” on page 199

x A number

x A number

Prelim
inary

Prelim
inary

193ADOBE LIVEMOTION 2.0
Scripting Guide
Math.E Constant
Math.E

Description

The E property represents Euler's constant and the base of natural logarithms (approximately

2.718). This property can only be read.

Math.exp() Method
Math.exp(x)

Description

The exp() method returns the computed exponential of E.

Parameters

See Also

“Math.E Constant” on page 193, “Math.log() Method” on page 194, “Math.pow() Method” on

page 196

Math.floor() Method
Math.floor(x)

Description

The floor() method returns the value rounded down.

Parameters

x A number

x A number

Prelim
inary

Prelim
inary

CHAPTER 7194
Reference
See Also

“Math.ceil() Method” on page 192

Math.LN2 Constant
Math.LN2

Description

The LN2 property is the natural logarithm of 2 (approximately 0.693). This property can only be

read.

Math.LN10 Constant
Math.LN10

Description

The LN10 property is the natural logarithm of 10 (approximately 2.302). This property can only

be read.

Math.log() Method
Math.log(x)

Description

The log() method returns the natural logarithm of a number. If the value is negative, the return

value is always NaN.

Parameters

See Also

“Math.exp() Method” on page 193, “Math.pow() Method” on page 196

x A number

Prelim
inary

Prelim
inary

195ADOBE LIVEMOTION 2.0
Scripting Guide
Math.LOG2E Constant
Math.LOG2E

Description

The LOG2E property is the base 2 logarithm of E (approximately 1.442). This property can only

be read.

Math.LOG10E Constant
Math.LOG10E

Description

The LOG10E property is the base 10 logarithm of E (approximately 0.434). This property can only

be read.

Math.max() Method
Math.max(x,y)

Description

The max() method returns the larger of two numbers.

Parameters

See Also

“Math.min() Method” on page 195

Math.min() Method
Math.min(x,y)

x,y Numbers.

Prelim
inary

Prelim
inary

CHAPTER 7196
Reference
Description

The min() method returns the smaller of two numbers.

Parameters

See Also

“Math.max() Method” on page 195

Math.PI Constant
Math.PI

Description

The PI property is the ratio of the circumference of a circle to its diameter (approximately

3.14159). This property can only be read.

Math.pow() Method
Math.pow(base,exponent)

Description

The pow() method returns XY.

Parameters

See Also

“Math.exp() Method” on page 193, “Math.log() Method” on page 194

x,y Numbers.

base The base number.

exponent The exponent to which base is raised.

Prelim
inary

Prelim
inary

197ADOBE LIVEMOTION 2.0
Scripting Guide
Math.random() Method
Math.random()

Description

The random() method returns a pseudo-random number between 0 and 1. The random

number generator is seeded from the current time.

Parameters

None.

Math.round() Method
math.round(x)

Description

The round() method returns the value of a number rounded to the nearest integer. If the

fractional portion of number is .5 or greater, the argument is rounded to the next higher integer.

If the fractional portion of number is less than .5, the argument is rounded to the next lower

integer.

Parameters

Math.sin() Method
Math.sin(x)

Description

The sin() method returns the sine of a number. The value is between -1 and 1.

x A numberPrelim
inary

Prelim
inary

CHAPTER 7198
Reference
Parameters

See Also

“Math.acos() Method” on page 190, “Math.asin() Method” on page 190, “Math.atan() Method”

on page 191, “Math.atan2() Method” on page 191, “Math.cos() Method” on page 192,

“Math.tan() Method” on page 199

Math.sqrt() Method
Math.sqrt(x)

Description

The sqrt() method returns the square root of a number.

Parameters

Math.SQRT1_2 Constant
Math.SQRT1_2

Description

The SQRT1_2 property represents the square root of 1/2—equivalently, 1 over the square root of

2, approximately 0.707. This property can only be read.

Math.SQRT2 Constant
Math.SQRT2

x A number

x A number

Prelim
inary

Prelim
inary

199ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The SQRT2 property represents the square root of 2 (approximately 1.414). This property can

only be read.

Math.tan() Method
Math.tan(x)

Description

The tan() method returns the tangent (in radians) of a number.

Parameters

See Also

“Math.acos() Method” on page 190, “Math.asin() Method” on page 190, “Math.atan() Method”

on page 191, “Math.atan2() Method” on page 191, “Math.cos() Method” on page 192,

“Math.sin() Method” on page 197

Maxscroll() Global Property
variableName.maxscroll

Description

The maxscroll global property specifies the maximum value allowed for the scroll property.

variableName specifies a variable associated with a text field. maxscroll is used in conjunction

with the scroll property. This property is read-only.

See Also

“Scroll Global Property” on page 243

x A number

Prelim
inary

Prelim
inary

CHAPTER 7200
Reference
Mouse Object

Description

The Mouse object is used to show or hide the cursor. The Mouse object and methods are static—

you do not create Mouse objects using a constructor.

Properties

None.

Methods

Mouse.hide() Method
Mouse.hide()

Description

The hide() method hides the mouse cursor.

Parameters

None.

See Also

“Mouse.show() Method” on page 200

Mouse.show() Method
Mouse.show()

Mouse.hide See “Mouse.hide()
Method” on page 200

Hide the mouse cursor.

Mouse.show See “Mouse.show()
Method” on page 200

Show the mouse cursor.

Prelim
inary

Prelim
inary

201ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The show() method shows the mouse cursor.

Parameters

None

See Also

“Mouse.hide() Method” on page 200

MovieClip Object

Description

The MovieClip object is the object at the heart of LiveMotion. _root itself is an instance of the

MovieClip object, and most of the MovieClip properties and methods are also available as global

properties and functions.

Constructor

None. Movies are created using the LiveMotion composition window. Movie instances can be

created with attachMovie() and duplicateMovieClip().

Properties

_alpha See “MovieClip._alpha Prop-
erty” on page 205

Opacity of the movie clip on a scale of 0 (transpar-
ent) to 100 (opaque).

_currentframe See “MovieClip._currentframe
Property” on page 207

Location of the movie clip playhead.

_droptarget See “MovieClip._droptarget
Property” on page 207

Absolute path (in slash notation) of a movie clip
over which the MovieClip passes during drag
operations by the user.

_framesloaded See “MovieClip._framesloaded
Property” on page 208

Number of movie clip frames that have been
loaded.

Prelim
inary

Prelim
inary

CHAPTER 7202
Reference
_height See “MovieClip._height Prop-
erty” on page 213

Height of the movie clip in pixels.

_name See “MovieClip._name Prop-
erty” on page 218

Name of the movie clip.

_parent See “MovieClip._parent Prop-
erty” on page 218

The movie clip containing this movie clip.

_rotation See “MovieClip._rotation Prop-
erty” on page 220

Rotation angle of the movie clip in degrees.

_target See “MovieClip._target Prop-
erty” on page 223

Absolute path of the movie clip.

_totalframes See “MovieClip._totalframes
Property” on page 223

Number of frames in the movie clip.

_url See “MovieClip._url Property”
on page 224

URL from which the movie clip was loaded.

_visible See “MovieClip._visible Prop-
erty” on page 225

Boolean indicating whether the movie clip is visi-
ble.

_width See “MovieClip._width Prop-
erty” on page 225

Width of the movie clip in pixels. Also a global
movie clip property.

_x See “MovieClip._x Property” on
page 226

Horizontal location of the movie clip in pixels.

_xmouse See “MovieClip._xmouse Prop-
erty” on page 226

Horizontal location of mouse pointer in pixels. Also
a global movie clip property.

_xscale See “MovieClip._xscale Prop-
erty” on page 227

Horizontal scaling factor of the movie clip (0% -
100%).

_y See “MovieClip._y Property” on
page 227

Vertical location of the movie clip in pixels.

_ymouse See “MovieClip._ymouse Prop-
erty” on page 228

Vertical location of mouse pointer in pixels. Also a
global movie clip property.

_yscale See “MovieClip._yscale Prop-
erty” on page 228

The vertical scaling factor of the movie clip (0% -
100%).

Prelim
inary

Prelim
inary

203ADOBE LIVEMOTION 2.0
Scripting Guide
Methods

attachMovie() See “MovieClip.attachMovie()
Method” on page 205

Attach the named movie clip (passed in
as an argument) to the movie clip.

duplicateMovieClip() See “MovieClip.duplicateMov-
ieClip() Method” on page 207

Duplicate this movie clip. Also a global
movie clip function. See “DuplicateMov-
ieClip() Global Function” on page 162

getBounds() See “MovieClip.getBounds()
Method” on page 209

Return bounds of the movie clip. The
returned object contains the values in
the properties xMin, XMax, yMin and
yMax.

getBytesLoaded() See “MovieClip.getBytes-
Loaded() Method” on page 210

Return the number of bytes already
loaded if the movie clip is external
(loaded with MovieClip.load-
Movie()). If the movie clip is internal,
the number returned is always the same
as that returned by MovieClip.get-
BytesTotal().

getBytesTotal() See “MovieClip.getBytesTotal()
Method” on page 210

Return the size of the movie clip in bytes.
When running under the preview mode
in LiveMotion, this number is always
1000.

getURL() See “MovieClip.getURL()
Method” on page 211

Load the URL into the browser. Also a glo-
bal movie clip function. See “GetURL Glo-
bal Function” on page 166.

globalToLocal() See “MovieClip.globalToLocal()
Method” on page 212

Convert the given global point to local
coordinates.

gotoAndPlay() See “MovieClip.gotoAndPlay()
Method” on page 213

Go to the specified frame or label and
play. Also a global movie clip function.
See “GotoAndPlay() Global Function” on
page 168.

gotoAndStop() See “MovieClip.gotoAndStop()
Method” on page 213

Go to the specified frame or label and
stop. Also a global movie clip function.
See “GotoAndStop() Global Function” on
page 169.

Prelim
inary

Prelim
inary

CHAPTER 7204
Reference
hitTest() See “MovieClip.hitTest()
Method” on page 214

Return a Boolean indicating whether the
movie clip intersects with a given clip
(passed in as an argument) or given x/y
coordinates.

lmSetCurrentState() See “MovieClip.lmSetCurrent-
State() Method” on page 215

Change the state of the movie clip. The
LiveMotion state of the movie clip must
already be defined and appear in the
state browser.

loadMovie() See “MovieClip.loadMovie()
Method” on page 216

Load an external SWF file into the player.
Also a global movie clip function. See
“LoadMovie() Global Function” on
page 184

loadVariables() See “MovieClip.loadVariables()
Method” on page 216

Load variables fetched from the specified
URL. The movie clip’s onData handler is
called when the variables have been
loaded. Also a global movie clip function.
See “LoadVariables() Global Function” on
page 185.

localToGlobal() See “MovieClip.localToGlobal()
Method” on page 217

Convert the given local point to global
coordinates.

nextFrame() See “MovieClip.nextFrame()
Method” on page 218

Go to the next frame and stop playing.
Also a global movie clip function. See
“NextFrame() Global Function” on
page 229.

play() See “MovieClip.play() Method”
on page 219

Start playing. Also a global movie clip
function. See “Play() Global Function” on
page 241.

prevFrame() See “MovieClip.prevFrame()
Method” on page 219

Go to the previous frame and stop play-
ing. Also a global movie clip function. See
“PrevFrame() Global Function” on
page 241.

removeMovieClip() See “MovieClip.removeMov-
ieClip() Method” on page 220

Delete a duplicated or attached instance.
Also a global movie clip function. See
“RemoveMovieClip() Global Function” on
page 242.

Prelim
inary

Prelim
inary

205ADOBE LIVEMOTION 2.0
Scripting Guide
MovieClip._alpha Property
MovieClip._alpha

Description

The _alpha property sets the opacity of the movie clip. 0 is transparent; 100 is opaque. This

property may be read or written.

MovieClip.attachMovie() Method
MovieClip.attachMovie(exportName, newName, depth)

startDrag() See “MovieClip.startDrag()
Method” on page 220

Start dragging a movie clip. Also a global
movie clip function. See “StartDrag() Glo-
bal Function” on page 255.

stop() See “MovieClip.stop() Method”
on page 221

Stop playing. Also a global movie clip
function. See “Stop() Global Function” on
page 255.

stopDrag() See “MovieClip.stopDrag()
Method” on page 222

Stop any drag operation in progress. Also
a global movie clip function. See “Start-
Drag() Global Function” on page 255.

swapDepths() See “MovieClip.swapDepths()
Method” on page 222

Swap the movie clip’s depth with that of
another movie clip.

unloadMovie() See “MovieClip.unloadMovie()
Method” on page 224

Unload a movie that was previously
loaded with loadmovie(). Also a global
movie clip function. See “UnloadMovie()
Global Function” on page 271.

valueOf() See “MovieClip.valueOf()
Method” on page 225

Returns the absolute path to the movie
clip using dot (as opposed to slash) nota-
tion.

Prelim
inary

Prelim
inary

CHAPTER 7206
Reference
Description

The attachMovie() method creates a new instance of exportName and attaches it to the movie

clip by placing it at the designated depth in MovieClip’s programmatic stack. Remove the

attached movie clip by using the MovieClip.removeMovieClip() method or the removeMov-

ieClip() global function. The movie clip may also be removed by placing another movie clip

at the same depth in the programmatic stack.

exportName is the sharing name of the movie clip that is to be attached.

A movie clip can be attached to the main movie clip as well using the syntax _root.attach-

Movie(library, newName, depth).

A movie clip instanced using attachMovie() becomes a child of the movie clip through which

the method was called, and is in that movie’s programmatic stack. For example:

clipA.attachMovie(url, "clipB", depth);

clipB is a child of clipA and is in clipA’s programmatic stack.

In contrast, a movie clip instanced using duplicateMovieClip() becomes a child of the parent

of the movie clip through which the method was called, and is in the parent’s programmatic

stack. For example:

clipA.duplicateMovieClip("clipB", depth);

clipB is a child of clipA._parent and is in clipA._parent’s programmatic stack.

Note: In preview, the movie clip that is attached is the local version only. If the “Use External Asset”

feature is used from the Export palette, this will not be the same movie clip that is actually used when

the SWF file is executing in the Flash player.

Parameters

exportName The movie clip to be attached. This movie clip already exists in the current SWF
file. It was assigned its sharing name (exportName) via the Export palette. A
remote copy may or may not have been loaded in when the SWF file was loaded
into the Flash player, depending on whether the “Use External Asset” feature was
used from the Export palette.

newName Name for the movie clip.

depth Depth for the movie clip on the programmatic stack.

Prelim
inary

Prelim
inary

207ADOBE LIVEMOTION 2.0
Scripting Guide
See Also

“RemoveMovieClip() Global Function” on page 242, “UnloadMovie() Global Function” on

page 271, “MovieClip.removeMovieClip() Method” on page 220, “MovieClip.unloadMovie()

Method” on page 224, “MovieClip.attachMovie() Method” on page 205

MovieClip._currentframe Property
MovieClip._currentframe

Description

The _currentframe property specifies the location (frame number) of the playhead of

MovieClip. This property can only be read.

MovieClip._droptarget Property
MovieClip._droptarget

Description

The _droptarget property is a string value that specifies the absolute path (in slash notation)

of a movie clip over which MovieClip passes during drag operations by the user. This property

can only be read.

MovieClip.duplicateMovieClip() Method
MovieClip.duplicateMovieClip(newName, depth)

Description

The duplicateMovieClip() method duplicates MovieClip. Duplicated movies always start

playing at frame 1. The duplicated movie clip inherits shape transformations but not the

timeline variables. The duplicated movie clip is placed in MovieClip’s parent’s programmatic

stack. A programmatic stack holds child movie clips; when you duplicate a movie clip it will have

the same parent as the original, and thus “live” in the parent’s programmatic stack.The remove-

MovieClip() method is used to delete duplicated movie clips.

Prelim
inary

Prelim
inary

CHAPTER 7208
Reference
MovieClip.removeMovieClip() can be used by duplicated movie clips to delete themselves, or

the removeMovieClip() global function can be used to delete duplicated movie clips. Dupli-

cated movie clips can also be removed by placing another movie clip at the same depth in the

programmatic stack.

A movie clip instanced using duplicateMovieClip() becomes a child of the parent of the

movie clip through which the method was called, and is in the parent’s programmatic stack. For

example:

clipA.duplicateMovieClip("clipB", depth);

clipB is a child of clipA._parent and is in clipA._parent’s programmatic stack.

In contrast, a movie clip instanced using attachMovie() becomes a child of the movie clip

through which the method was called, and is in that movie’s programmatic stack. For example:

clipA.attachMovie(url, "clipB", depth);

clipB is a child of clipA and is in clipA’s programmatic stack.

Parameters

Example

_root.baseball.duplicateMovieClip ("newBaseball", 1);//creates new baseball
_root.newBaseball._x += 25;//moves new baseball along x axis
_root.newBaseball._y += 25;//moves new baseball along y axis

See Also

“RemoveMovieClip() Global Function” on page 242, “MovieClip.removeMovieClip() Method”

on page 220, “DuplicateMovieClip() Global Function” on page 162, “MovieClip.attachMovie()

Method” on page 205

MovieClip._framesloaded Property
MovieClip.framesloaded

newName A string indicating the new name for the duplicate movie clip.

depth An integer indicating the depth at which the duplicated movie clip is placed
in MovieClip’s parent’s programmatic stack.

Prelim
inary

Prelim
inary

209ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The _framesloaded property holds the number of frames that have already been downloaded.

This property is read-only.

This property is often used in conjunction with the _totalframes property to create a preloader

for the _root movie clip. For example, you could place the following code in a script on a

keyframe somewhere between the beginLoop and Start labels. The _root movie clip loops

between the beginLoop label and the keyframe where the script is, then jumps to the Start

label when the entire _root movie clip has downloaded.

if (_root._framesloaded == _root._totalframes)
{

_root.gotoAndPlay("Start");
}
else
{
 _root.gotoAndPlay("beginLoop");
}

See Also

“MovieClip._totalframes Property” on page 223

MovieClip.getBounds() Method
MovieClip.getBounds()
MovieClip.getBounds(targetCoordinateSpace)

Description

The getBounds() method returns the bounds of the movie clip as an object. The values

returned represent the x and y coordinates of targetCoordinateSpace.

Parameters

Returns

An object with four properties: object.xMin, object.xMax, object.yMin, object.yMax.

targetCoordinateSpace (Optional) String showing the path to the movie clip. Defaults to
MovieClip if not specified.

Prelim
inary

Prelim
inary

CHAPTER 7210
Reference
Example

var coordinates = _root.baseball.getBounds();
trace(coordinates.xMin);//prints value
trace(coordinates.xMax);//prints value
trace(coordinates.yMin);//prints value
trace(coordinates.yMax);//prints value

See Also

“MovieClip.globalToLocal() Method” on page 212, “MovieClip.localToGlobal() Method” on

page 217

MovieClip.getBytesLoaded() Method
MovieClip.getBytesLoaded()

Description

The getBytesLoaded() method returns the number of bytes already loaded if this movie clip

is external. If internal, the number returned is always the same as that returned by

MovieClip.getBytesTotal().

Parameters

None.

Returns

The number of bytes already loaded for MovieClip.

See Also

“MovieClip.getBytesTotal() Method” on page 210

MovieClip.getBytesTotal() Method
MovieClip.getBytesTotal()

Prelim
inary

Prelim
inary

211ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The size of MovieClip in bytes. When running under the preview tool in LiveMotion, this

number is always 1000.

Parameters

None

Returns

The size of MovieClip in bytes.

See Also

“MovieClip.getBytesLoaded() Method” on page 210

MovieClip.getURL() Method
MovieClip.getURL(url, target)
MovieClip.getURL(url, target, howToSendVariables)

Description

The getURL()method loads a URL into the web browser. It operates the same as the global form,

except when variables are sent they are sent from the MovieClip timeline rather than the main

timeline.

Note: This method is not supported in preview mode.

Parameters

url A string specifying the URL to which to hyperlink. This may be a relative
or an absolute pathname, or the name of a document or script.

Prelim
inary

Prelim
inary

CHAPTER 7212
Reference
See Also

“GetURL Global Function” on page 166

MovieClip.globalToLocal() Method
MovieClip.globalToLocal(point)

Description

The globalToLocal() method converts the given global point to local coordinates.

Parameters

Example

wheresTheMouse = new Object();
wheresTheMouse.x = _root._xmouse;
wheresTheMouse.y = _root._ymouse;
this.globalToLocal(wheresTheMouse);
//wheresTheMouse.x and wheresTheMouse.y now contain local coordinates

See Also

“MovieClip.getBounds() Method” on page 209, “MovieClip.localToGlobal() Method” on

page 217

target (Optional) A string specifying the target frame in the browser—e.g.,
_self (the default), _parent, _top, _blank. If omitted, _self is
used. Custom names can also be used.

howToSendVariables (Optional) Omit this parameter if you don’t want to send the variables.
This parameter is a string literal. Specify GET to send variables via get
(i.e., tacked onto the end of the URL) or POST to send them with post
(i.e., put into the body of the request). Both methods send them in appli-
cation/x-www-form-urlencoded MIME format. All user-defined vari-
ables are sent, except for user-defined standard handlers.

point An object of type Object with two properties: x and y. x and y are set to the global
coordinates before the object point is passed to globalToLocal().Prelim

inary

Prelim
inary

213ADOBE LIVEMOTION 2.0
Scripting Guide
MovieClip.gotoAndPlay() Method
MovieClip.gotoAndPlay(framelabel)

Description

The gotoAndPlay() method goes to the specified frame or label and plays.

Parameters

See Also

“MovieClip.gotoAndStop() Method” on page 213

MovieClip.gotoAndStop() Method
MovieClip.gotoAndStop(framelabel)

Description

The gotoAndStop() method goes to the specified frame or label and stops.

Parameters

See Also

“MovieClip.gotoAndPlay() Method” on page 213

MovieClip._height Property
MovieClip._height

framelabel String representing a label.

framenumber Integer or expression that evaluates to an integer. Indicates a
frame number.

framelabel String representing a label.
Prelim

inary

Prelim
inary

CHAPTER 7214
Reference
Description

The _height property represents the height of the movie clip in pixels. The _height property

is based on the content within MovieClip. If MovieClip has no content, then _height is 0.

_height is also determined by placement of the objects within MovieClip: the farthest object

toward the top or bottom determines the value of _height. This property is read-only.

Note: Only _root.height and _root.width return dimensions of the _root movie clip. Techni-

cally, these are local properties that can also be used on the _root movie clip.

See Also

“MovieClip._width Property” on page 225

MovieClip.hitTest() Method
MovieClip.hitTest(x, y, shapeFlag)
MovieClip.hitTest(target)

Description

The hitTest() method returns a Boolean indicating whether MovieClip intersects with a

specific point on the stage, or overlaps with another movie clip. When specifying the hit test, you

indicate whether the test involves matching a specific x/y point on the stage against just the

border of MovieClip or all of it (first form), or finding any overlap with the other clip (target

in the second form).

Parameters

x Horizontal component of the hit test. Defined in global coordi-
nate space.

y Vertical component of the hit test. Defined in global coordinate
space.

shapeFlag Boolean indicating whether the test should test just the bound-
ing box (false) or all pixels (true) of the movie clip.

target String indicating path to the movie clip against which the hit test
is made.

Prelim
inary

Prelim
inary

215ADOBE LIVEMOTION 2.0
Scripting Guide
Returns

true if a hit occurred; false otherwise.

Example

if (this.hitTest(_root._xmouse, _root._ymouse, true))
{

trace("The mouse has passed over the movie clip");
};

See Also

“MovieClip.getBounds() Method” on page 209

MovieClip.lmSetCurrentState() Method
MovieClip.lmSetCurrentState(label)

Description

The lmSetCurrentState() sets the state of MovieClip. MovieClip’s states are defined from

the composition window and are shown in the state browser.

Parameters

Example

if (_xmouse < 175 && _ymouse > 100)
{
_root.Spiral.lmSetCurrentState("Purple");
}
if (_xmouse > 175 && _ymouse > 100)
{
_root.Spiral.lmSetCurrentState("Green");
}

label String literal representing MovieClip state that was already
defined for MovieClip and that appears in the state browser.
This can be a standard state like “over”, or a custom state. Must
appear in quotes.Prelim

inary

Prelim
inary

CHAPTER 7216
Reference
MovieClip.loadMovie() Method
MovieClip.loadMovie(url)
MovieClip.loadMovie(url, howToSendVariables)

Description

The loadMovie() method brings an external SWF file into the player and optionally loads

variables. MovieClip and any associated programmatically generated movies associated with it

(previously created with attachMovie() or duplicateMovie()) are replaced with the new

SWF file. Use unloadMovie() to remove the movie. The unloadMovie() global function can

also be used to remove the movie clip.

Note: This method is not supported in preview mode.

Parameters

Example

_root.baseball.loadMovie("http://devtech.corp.adobe.com/docs/livemotion/bil
lys.swf");

See Also

“LoadMovie() Global Function” on page 184, “UnloadMovie() Global Function” on page 271,

“MovieClip.unloadMovie() Method” on page 224

MovieClip.loadVariables() Method
MovieClip.loadVariables(URL, howToSendVariables)

url String literal representing URL from which to get the SWF file to
load. This can be an absolute or a relative URL. The URL must be
in the same subdomain as the URL where the movie clip cur-
rently resides.

howToSendVariables (Optional) GET or POST. String literal that specifies the method
for sending variables to the server. The GET method appends
them to the URL; the POST method sends them in a separate
HTTP packet.

Prelim
inary

Prelim
inary

217ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The loadVariables() method loads variables fetched from the specified URL. The movie clip's

onData event handler is called when all of the variables have been loaded.

The data fetched from the URL must be in the application/x-www-form-urlencoded MIME

format.

Parameters

See Also

“LoadVariables() Global Function” on page 185, “LoadVariablesNum() Global Function” on

page 187, “GetURL Global Function” on page 166, “MovieClip.getURL() Method” on page 211,

MovieClip.localToGlobal() Method
MovieClip.localToGlobal(point)

Description

The localToGlobal() method converts the given local point to global coordinates.

Parameters

URL The URL from which to get the variables. The host for the URL must
be in the same subdomain as the movie clip.

howToSendVariables (Optional) Omit this parameter if you don't want to send the vari-
ables. GET or POST. String literal that specifies the method for send-
ing variables to the movie clip that is to be loaded. The GET method
appends them to the URL; the POST method sends them in a sepa-
rate HTTP packet. Using either method they're sent in application/x-
www-form-urlencoded MIME format. All user defined variables are
sent, except for user-defined standard handlers.

point An object of type Object with two properties: x and y. x and y
are set to the local coordinates before the object point is
passed to localToGlobal().

Prelim
inary

Prelim
inary

CHAPTER 7218
Reference
See Also

“MovieClip.getBounds() Method” on page 209, “MovieClip.localToGlobal() Method” on

page 217

MovieClip._name Property
MovieClip._name

Description

The _name property of the movie clip represents the name of the movie clip as a string (as

opposed to a reference). This is a relative reference (no pathname is returned). This property can

be read or written.

MovieClip.nextFrame() Method
MovieClip.nextFrame()

Description

The nextFrame() method moves the playhead to the next frame and stops the playhead.

Parameters

None.

See Also

“NextFrame() Global Function” on page 229, “MovieClip.prevFrame() Method” on page 219,

“MovieClip.stop() Method” on page 221, “MovieClip.play() Method” on page 219

MovieClip._parent Property
MovieClip._parent

Prelim
inary

Prelim
inary

219ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The _parent property is a reference (does not contain a string) to the movie clip or movie clip

group containing this MovieClip. This allows syntax such as: _parent._parent.stop();

MovieClip.play() Method
MovieClip.play()

Description

The play() method starts MovieClip playing.

Parameters

None.

See Also

“Play() Global Function” on page 241, “MovieClip.prevFrame() Method” on page 219,

“MovieClip.stop() Method” on page 221

MovieClip.prevFrame() Method
MovieClip.prevFrame()

Description

The prevFrame() method takes the playhead to the previous frame and stops playing.

Parameters

None.

See Also

“PrevFrame() Global Function” on page 241, “MovieClip.nextFrame() Method” on page 218,

“MovieClip.stop() Method” on page 221, “MovieClip.play() Method” on page 219

Prelim
inary

Prelim
inary

CHAPTER 7220
Reference
MovieClip.removeMovieClip() Method
MovieClip.removeMovieClip()

Description

The removeMovieClip() method deletes a duplicated or attached movie clip. Unlike the

removeMovieClip() global function, duplicated or attached movie clips that call this method

can only delete themselves.

Parameters

None

See Also

“RemoveMovieClip() Global Function” on page 242, “DuplicateMovieClip() Global Function”

on page 162, “MovieClip.duplicateMovieClip() Method” on page 207, “MovieClip.attach-

Movie() Method” on page 205

MovieClip._rotation Property
MovieClip._rotation

Description

The _rotation property specifies the rotation of the movie clip in degrees. This property can

be read or written.

MovieClip.startDrag() Method
MovieClip.startDrag()
MovieClip.startDrag(lockCenter)
MovieClip.startDrag(lockCenter, left, top, right, bottom)

Description

The startDrag() method causes MovieClip to physically follow the mouse pointer. Use

stopDrag() to halt dragging.

Prelim
inary

Prelim
inary

221ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

Example

//onButtonPress event
this.startDrag();
//onButtonRelease event
this.stopDrag();

See Also

“MovieClip.stopDrag() Method” on page 222, “StartDrag() Global Function” on page 255

MovieClip.stop() Method
MovieClip.stop()

Description

The stop() method stops the playing of MovieClip.

Parameters

None.

lockCenter (Optional) Boolean indicating whether the draggable Mov-
ieClip should be centered under the mouse pointer (true) or
dragged relative to the mouse pointer’s location when clicked
(false). Default is false.

left (Optional) x-coordinate boundary to the left of which Mov-
ieClip cannot be dragged.

top (Optional) y-coordinate boundary above which MovieClip
cannot be dragged.

right (Optional) x-coordinate boundary to the right of which Mov-
ieClip cannot be dragged.

bottom (Optional) y-coordinate boundary below which MovieClip can-
not be dragged.

Prelim
inary

Prelim
inary

CHAPTER 7222
Reference
MovieClip.stopDrag() Method
MovieClip.stopDrag()

Description

The stopDrag() method ends any drag operation currently in progress.

Parameters

None.

Example

//onButtonPress event
this.startDrag();
//onButtonRelease event
this.stopDrag();

See Also

“MovieClip.startDrag() Method” on page 220, “StopDrag() Global Function” on page 256

MovieClip.swapDepths() Method
MovieClip.swapDepths(target)
MovieClip.swapDepths(depth)

Description

The swapDepths() method changes the position of MovieClip in MovieClip’s parent’s visual

stacking order. Movie clips at the top of the stack (higher level numbers) cover those lower in the

stack. You can swap the depths of attached or duplicated movie clips with manually created clips,

but ensure that you test extensively since this has been a problem area with the Flash player in

the past.

Parameters

Prelim
inary

Prelim
inary

223ADOBE LIVEMOTION 2.0
Scripting Guide
Example

swapDepths(_root.ellipse);//swaps depths with the movie clip ellipse
swapDepths(3);//swaps depths at level 3

MovieClip._target Property
MovieClip._target

Description

The _target property represents the target path of MovieClip in absolute terms using slash

notation. To get the path in dot notation, use the targetPath() global function.

Example

trace(this._target);//prints .root/baseball/homer (this = homer)

See Also

“TargetPath() Global Function” on page 269

MovieClip._totalframes Property
MovieClip._totalframes

target String indicating the path to the movie clip to be swapped with
MovieClip. The movie clip and MovieClip must have the
same parent.

depth Integer specifying the level in MovieClip’s parent’s visual stack
with which to swap. If another movie clip resides at this level,
then full swapping occurs. Otherwise, MovieClip is simply
moved to that level. This integer may be positive, negative, or 0.
The higher the number, the more visible the layer is.

Prelim
inary

CHAPTER 7224
Reference
Description

The _totalframes property specifies the total number of frames in MovieClip. It is often used

in conjunction with the _framesloaded property to determine the percentage of total frames

that have already downloaded; when an acceptable number are ready, the movie clip is started.

This property is read-only.

See Also

“MovieClip._framesloaded Property” on page 208

MovieClip.unloadMovie() Method
MovieClip.unloadMovie()

Description

The unloadMovie() method unloads a movie clip that was previously loaded with

loadmovie().

Parameters

None.

See Also

“UnloadMovie() Global Function” on page 271, “MovieClip.loadMovie() Method” on page 216

MovieClip._url Property
MovieClip._url

Description

The _url property specifies the URL from which MovieClip was loaded.

See Also

“LoadMovie() Global Function” on page 184, “LoadMovieNum() Global Function” on page 185

Prelim
inary

225ADOBE LIVEMOTION 2.0
Scripting Guide
MovieClip.valueOf() Method
MovieClip.valueOf()

Description

The valueOf() method returns the path to the instance in absolute terms using dot notation.

Parameters

None.

MovieClip._visible Property
MovieClip._visible

Description

Boolean indicating whether MovieClip is visible. Visibility: true if visible; false if hidden.

This property can be read or written.

See Also

“MovieClip.swapDepths() Method” on page 222

MovieClip._width Property
MovieClip._width

Description

The _width property represents the width of the movie clip in pixels. The _width property is

based on the content within MovieClip. If MovieClip has no content, then _width is 0. _width

is also determined by placement of the objects within MovieClip: the farthest object to the left

or right determines the value of _width.This property is read-only.

Note: Only _root._width and _root._height return dimensions of the _root movie clip.

Technically, these are local properties that can also be used on the _root movie clip.

Prelim
inary

CHAPTER 7226
Reference
See Also

“MovieClip._height Property” on page 213

MovieClip._x Property
MovieClip._x

Description

The _x property specifies the horizontal position of MovieClip in pixels.If MovieClip is on the

main timeline, then the coordinate system is based on 0,0 x/y coordinates in the upper left corner

of the stage.If MovieClip is contained within another movie clip, MovieClip’s coordinates are

relative to the position of the enclosing movie clip’s anchor point—that point which represents

the 0,0 point for the enclosing movie clip’s x/y coordinate system. This property can be read or

written.

See Also

“MovieClip._x Property” on page 226

MovieClip._xmouse Property
MovieClip._xmouse

Description

The _xmouse property specifies the horizontal location of the mouse pointer in pixels.If

MovieClip is on the main timeline, then the coordinate system is based on 0,0 x/y coordinates

in the upper left corner of the stage. If MovieClip is contained within another movie clip, the

_xmouse coordinate is relative to the position of the enclosing movie clip’s anchor point—that

point which represents the 0,0 point for the enclosing movie clip’s x/y coordinate system. This

property can only be read.

Note: The _xmouse and _ymouse coordinates are relative to the anchor point of the parent movie

clip (unless the point of reference is the _root movie clip, in which case the upper left-hand corner

is the absolute point of origin). Only _root._xmouse and _root._ymouse return absolute

positions. Technically, these are local properties that can also be used on the _root movie clip.

Prelim
inary

227ADOBE LIVEMOTION 2.0
Scripting Guide
See Also

“MovieClip._ymouse Property” on page 228

MovieClip._xscale Property
MovieClip._xscale

Description

The _xscale property of MovieClip represents the horizontal scaling percentage (0% - 100%)

of the movie clip relative to its original size. This property can be read or written.

See Also

“MovieClip._yscale Property” on page 228

MovieClip._y Property
MovieClip._y

Description

The _y property specifies the vertical position of MovieClip in pixels.If MovieClip is on the

main timeline, then the coordinate system is based on 0,0 x/y coordinates in the upper left corner

of the stage.If MovieClip is contained within another movie clip, MovieClip’s coordinates are

relative to the position of the enclosing movie clip’s anchor point—that point which represents

the 0,0 point for the enclosing movie clip’s x/y coordinate system. This property can be read or

written.

Note: In the Flash player, the y-axis is inverted—that is, positive values increase in the “downward”

direction rather than upward.

See Also

“MovieClip._x Property” on page 226

Prelim
inary

CHAPTER 7228
Reference
MovieClip._ymouse Property
MovieClip._ymouse

Description

The _ymouse property specifies the vertical location of mouse pointer in pixels.If MovieClip is

on the main timeline, then the coordinate system is based on 0,0 x/y coordinates in the upper

left corner of the stage. If MovieClip is contained within another movie clip, the _ymouse

coordinate is relative to the position of the enclosing movie clip’s anchor point—that point

which represents the 0,0 point for the enclosing movie clip’s x/y coordinate system. This

property can only be read.

Note: The _ymouse and _xmouse coordinates are relative to the anchor point of the parent movie

clip (unless the point of reference is the _root movie clip, in which case the upper left-hand corner

is the absolute point of origin). Only _root._ymouse and _root._xmouse return absolute

positions. Technically, these are local properties that can also be used on the _root movie clip.

Note: In Flash player, the y-axis is inverted—that is, positive values increase in the “downward”

direction rather than upward.

See Also

“MovieClip._xmouse Property” on page 226

MovieClip._yscale Property
MovieClip._yscale

Description

The _yscale property of MovieClip represents the vertical scaling percentage (0% - 100%) of

the movie clip relative to its original size. This property can be read or written.

See Also

“MovieClip._xscale Property” on page 227

Prelim
inary

229ADOBE LIVEMOTION 2.0
Scripting Guide
NaN Global Property
NaN

Description

The NaN global property is a predefined variable with the value NaN (Not-a-Number), as

specified by the IEEE-754 standard.

Example

trace(NaN);//prints NaN
var redFish = NaN;
trace(redFish);//prints NaN

See Also

“IsNan() Global Function” on page 171, “Number.NaN Property” on page 233

Newline Constant
newline

Description

The newline constant is used wherever a \n could be used in text to force a line break. It is equiv-

alent to the ASCII value of 10.

NextFrame() Global Function
nextFrame()

Description

The nextFrame() global function moves the playhead to the next frame and stops it.

Parameters

None

Prelim
inary

CHAPTER 7230
Reference
See Also

“MovieClip.nextFrame() Method” on page 218, “PrevFrame() Global Function” on page 241

Number() Global Function
Number(expression)

Description

The Number() global function converts expression into a number.

Parameters

Returns

A number representing the expression.

Example

trace(Number(2 * 2));//prints 4

See Also

“ParseFloat() Global Function” on page 239, “ParseInt() Global Function” on page 240

Number Object

Description

The Number object helps you work with numeric values. It is an object wrapper for primitive

numeric values.

The primary uses for the Number object are to access constant properties that represent the

largest and smallest representable numbers, positive and negative infinity, and the Not-a-

Number (NaN) value.

expression String, Boolean, or other expression to convert into a number.

Prelim
inary

231ADOBE LIVEMOTION 2.0
Scripting Guide
The properties of Number are properties of the object itself, not of individual Number objects. You

need to create an individual object instance of type Number only when you wish to use its

methods.

Constructor

new Number(value)

Parameters

Properties

Methods

This table lists each method alphabetically and provides a brief description.

value The numeric value of the object being created.

MAX_VALUE See “Number.MAX_VALUE Prop-
erty” on page 232

A constant representing the largest rep-
resentable number

MIN_VALUE See “Number.MIN_VALUE Prop-
erty” on page 232

A constant representing the smallest
representable number.

NaN See “Number.NaN Property” on
page 233

A constant representing the special "Not
a Number" value.

NEGATIVE_INFINITY See “Num-
ber.NEGATIVE_INFINITY Prop-
erty” on page 233

A constant representing negative infin-
ity.

POSITIVE_INFINITY See “Num-
ber.POSITIVE_INFINITY Property”
on page 234

A constant representing positive infinity.

Number.toString See “Number.toString()
Method” on page 234

Return a string representing the object

Number.valueOf See “Number.valueOf()
Method” on page 235

Return the primitive value of the object.

Prelim
inary

CHAPTER 7232
Reference
Number.MAX_VALUE Property
Number.MAX_VALUE

Description

The MAX_VALUE property represents the maximum representable numeric value. It has value of
approximately 1.79E+308. Values larger than MAX_VALUE are represented as infinity (see

“Number.POSITIVE_INFINITY Property” on page 234 and “Number.NEGATIVE_INFINITY

Property” on page 233). This property can only be read.

Example

if (1000 * 100001 <= Number.MAX_VALUE)
trace("No overflow");//prints "No overflow"

else
trace("Overflow");

See Also

“Number.MIN_VALUE Property” on page 232, “Infinity Global Property” on page 170

Number.MIN_VALUE Property
Number.MIN_VALUE

Description

The MIN_VALUE property represents the smallest positive representable numeric value. It is the
number closest to 0—not the most negative number that can be represented. MIN_VALUE has a
value of approximately 2.22E-308. Values smaller than MIN_VALUE (“underflow values”) are
converted to 0.

Example

if (1/1000000000000000000000000<= Number.MAX_VALUE)
trace("No underflow");//prints "No underflow"

else
trace("Underflow");

Prelim
inary

233ADOBE LIVEMOTION 2.0
Scripting Guide
See Also

“Number.MAX_VALUE Property” on page 232

Number.NaN Property
Number.Nan

Description

The Nan property is a special value representing Not-A-Number. This value complies with the

IEEE-754 value for Not-A-Number. This property can only be read.

Example

var twoFish = 1;
if (twoFish < 2 || twoFish > 2) {

twoFish = Number.NaN;
}
trace(twoFish);//prints "NaN"

Number.NEGATIVE_INFINITY Property
Number.NEGATIVE_INFINITY

Description

The NEGATIVE_INFINITY property is a special numeric value representing negative infinity.

Mathematically, this value behaves like infinity—for example, anything multiplied by infinity is

infinity, and anything divided by infinity is 0.

Example

var IQ = -Number.MAX_VALUE*10;
if (IQ == Number.NEGATIVE_INFINITY)

trace("Really low");//prints "Really low"
else

trace("Not so low");

Prelim
inary

CHAPTER 7234
Reference
See Also

“Number.POSITIVE_INFINITY Property” on page 234

Number.POSITIVE_INFINITY Property
Number.POSITIVE_INFINITY

Description

The POSITIVE_INFINITY property is a special numeric value representing infinity. This value

behaves mathematically like infinity—for example, anything multiplied by infinity is infinity,

and anything divided by infinity is 0.

Example

var IQ = Number.MAX_VALUE*10;
if (IQ == Number.POSITIVE_INFINITY)

trace("Really high");//prints "Really high"
else

trace("Not so high");

See Also

“Number.NEGATIVE_INFINITY Property” on page 233

Number.toString() Method
Number.toString()
Number.toString(radix)

Description

The tostring() method returns a string representing the specified object. Since every JavaS-

cript object has the Object class as its base class, every object has a tostring() method that is

automatically called when it is to be represented as a text value or when an object is referred to

it in a string concatenation.

Parameters

Prelim
inary

235ADOBE LIVEMOTION 2.0
Scripting Guide
Returns

A string representing the specified object.

Example

var tenFish = new Number(10);
trace("Billy and Monica caught " + tenFish.toString() + " fish.");
//prints "Billy and Monica caught 10 fish."

See Also

“Object.toString() Method” on page 237

Number.valueOf() Method
Number.valueOf()

Description

The valueOf() method returns the primitive value of the specified object. Since every JavaScript

object has the Object object as its base class, every object has a valueOf() method that is

automatically called when its primitive value is to be returned.

Parameters

None.

See Also

“Object.valueOf() Method” on page 239

radix (Optional) An integer between 2 and 16 specifying the base to
use for representing numeric values.

Prelim
inary

CHAPTER 7236
Reference
Object Class

Description

Object is the primitive JavaScript object type. All JavaScript objects are derived from Object.

That is, all JavaScript objects have the methods and properties defined for Object available to

them. In C++ terminology, Object is the base class that is inherited by all JavaScript objects.

In addition to using a constructor to create a new Object object, you can also use the bracket

syntax (e.g., newObject = { value1: 1, value2: 2};).

Constructor

new Object()
new Object(value)

Parameters

Properties

Methods

Object.constructor Property
Object.constuctor

value (Optional) A number, Boolean, or string.

constructor See “Object.constructor Prop-
erty” on page 236

Specifies the function that creates an object's proto-
type.

__proto__ See “Object.__proto__ Prop-
erty” on page 237

A reference to Object.prototype. The proto-
type object is used to pass properties and methods
to inherited objects.

toString() See “Object.toString() Method” on
page 237

Returns a string representing the specified object.

valueOf() See “Object.valueOf() Method” on
page 239

Returns the primitive value of the specified
object.

Prelim
inary

237ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The constructor property identifies the function that creates the Object object’s prototype.

The value of this property is a reference to the function itself, not a string containing the

function's name. This property can be read or written.

Example

beret = new Object();
trace (beret.constructor == Object);//prints "true"

beret = {};
trace (beret.constructor == Object);//prints "true"

Object.__proto__ Property
Object.__proto__

Description

The __proto__ (double underscores) property is a reference to the Object.prototype object.

The prototype object is used to pass properties and methods to objects that inherit the Object

class. Note that the __proto__ property and prototype object are common to all scripting

objects. Since all LiveMotion objects are derived from the Object class, you can use the

__proto__ property to add methods and properties to all static and dynamic LiveMotion

objects. This property can be read or written.

Example

oval = new Object();
trace(oval.__proto__ == Object.prototype); //prints "true"

Object.prototype.newProp = "office";
oval2 = new Date();
trace(oval2.newProp); //Displays "office"

Object.toString() Method
Object.toString()

Prelim
inary

CHAPTER 7238
Reference
Description

Returns a string representing the specified object. Many objects override this method in favor of

their own implementation (for example, Date.toString()).

If an object has no string value and no user-defined toString() method, toString() returns

[object type], where type is the object type or the name of the constructor function that

created the object.

Parameters

None.

Example

function Cat(name,breed,color,sex) {
this.name=name
this.breed=breed
this.color=color
this.sex=sex

}
theCat = new Cat("Socks","Calico","chocolate","girl");

The following code creates catToString(), the function that will be used in place of the default

toString() method. This function generates a string containing each property, of the form

“property = value”.

function catToString() {
var ret = "Cat " + this.name + " is [";
for (var prop in this)
ret += " " + prop + " is " + this[prop] + ";"
return ret + "]"

}

The following code assigns the user-defined function to the object's toString() method:

Cat.__proto__.toString = catToString;

With the preceding code in place, any time theCat is used in a string context, JavaScript

automatically calls the catToString function, which returns the following string:

Cat Socks is [name is Socks; breed is Calico; color is chocolate; sex is
girl; toString is function catToString() { var ret = "Object " + this.name +
" is ["; for (var prop in this) { ret += " " + prop + " is " + this[prop] +
";"; } return ret + "]"; } ;]

Prelim
inary

239ADOBE LIVEMOTION 2.0
Scripting Guide
See Also

“Array.toString() Method” on page 125, “Date.toString() Method” on page 160,

“Number.toString() Method” on page 234, “Object.valueOf() Method” on page 239

Object.valueOf() Method
Object.valueOf()

Description

The valueOf() method returns the primitive value of the specified object. If an object has no

primitive value, valueOf() returns the object itself. Note that you rarely need to invoke the

valueOf() method yourself. JavaScript automatically invokes it when encountering an object

where a primitive value is expected.

The following shows the object types for which the valueOf() method is most useful. Most

other objects have no primitive value.

• Number object type—valueOf() returns primitive numeric value associated with the object.

• Boolean object type—valueOf() returns primitive Boolean value associated with the object.

• String object type—valueOf() returns string associated with the object.

You can create a function to be called in place of the default valueOf method. Your function must

take no arguments.

Parameters

None.

See Also

“Boolean.valueOf() Method” on page 129, “MovieClip.valueOf() Method” on page 225,

“Number.valueOf() Method” on page 235, “Object.toString() Method” on page 237

ParseFloat() Global Function
parseFloat(string)

Prelim
inary

CHAPTER 7240
Reference
Description

The parseFloat() global function converts string to a floating-point number. If the function

encounters a character that it cannot convert to a number, it returns NaN. The function supports

exponential notation (see examples).

Parameters

Returns

A floating-point decimal number.

Example

trace(parseFloat("2.12"));//prints 2.12
trace(parseFloat("a23"));//prints NaN
trace(parseFloat("25e10"));//prints 250000000000

See Also

“Number() Global Function” on page 230, “ParseInt() Global Function” on page 240

ParseInt() Global Function
parseInt(string, base)

Description

The parseInt() global function converts a string to an integer.

Parameters

string The string to convert to a floating-point number.

string A string, number, or expression. Leading 0x represents hexadec-
imal. Leading 0 represents octal.

base The base of the string to parse (from base 2 to base 36). If not
supplied, base is determined by the format of string.

Prelim
inary

241ADOBE LIVEMOTION 2.0
Scripting Guide
Returns

An integer decimal number.

Example

trace(parseInt("10"));//prints 10
trace(parseInt("10", 2));//prints 2 (decimal equivalent of binary 10)
trace(parseInt(10 * 10));//prints 100
trace(parseInt("0xFF"));//prints 255 (decimal equivalent of hex FF)
trace(parseInt("0377"));//prints 255 (decimal equivalent of octal 377)

See Also

“Number() Global Function” on page 230, “ParseFloat() Global Function” on page 239

Play() Global Function
play()

Description

The play() global function moves the playhead forward on the timeline.

Parameters

None.

See Also

“GotoAndPlay() Global Function” on page 168, “MovieClip.play() Method” on page 219,

“Stop() Global Function” on page 255

PrevFrame() Global Function
prevFrame()

Description

The prevFrame() global function moves the playhead to the previous frame and stops it.

Prelim
inary

CHAPTER 7242
Reference
Parameters

None

See Also

“MovieClip.prevFrame() Method” on page 219, “NextFrame() Global Function” on page 229

Quality Global Property
_quality

Description

The _quality global property sets the level of rendering quality. It takes one of the following

strings (must be used with quotes):

• "LOW"—Graphics aren’t anti-aliased; bitmaps aren’t smoothed.

• "MEDIUM"—Graphics are anti-aliased using a 2x2 grid; bitmaps aren’t smoothed.

• "HIGH"—Graphics are anti-aliased using a 4x4 grid; bitmaps are smoothed if the movie clip is

static. (Default)

• "BEST"—Graphics are anti-aliased using a 4x4 grid; bitmaps are always smoothed.

See Also

“Highquality Global Property” on page 169

RemoveMovieClip() Global Function
removeMovieClip(target)

Description

The removeMovieClip() global function deletes a movie clip created with the duplicateMov-

ieClip(), MovieClip.duplicateMovieClip(),or MovieClip.attachMovie().

Prelim
inary

243ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

See Also

“DuplicateMovieClip() Global Function” on page 162, “MovieClip.duplicateMovieClip()

Method” on page 207, “MovieClip.attachMovie() Method” on page 205

Root Global Property
_root

Description

_root is a special case of the MovieClip object. _root is a reference to the main movie clip, and

as such it can be used in absolute paths to any object. It’s equivalent to saying _level4 if the

script is also at _level4. It is most often used to invoke methods and reference properties that

are members of the _root movie clip. For example:

_root.attachMovie(exportName, newName, depth)//attaches a movie clip to root
_root._x = -150 //causes a horizontal offset of the entire SWF file

See Also

“Leveln Global Property” on page 182, “MovieClip._parent Property” on page 218

Scroll Global Property
variableName.scroll

Description

The scroll global property allows you to control the display of information in a text field by

moving the text field to a specific position. It is set to the line number of the topmost visible line

in a text field. variableName is the name of the variable associated with the text field. scroll

is used in conjunction with the maxscroll property. This property can be read or written.

target The movie clip to be deleted.

Prelim
inary

CHAPTER 7244
Reference
See Also

“Maxscroll() Global Property” on page 199

Selection Object

Description

The Selection object contains information about the text field that currently has focus. A text

field gets focus when the user clicks on the text field with the mouse. Since only one text field can

have focus at a time, the Selection object is static. No constructor is required. In LiveMotion,

text fields are created using the Text Field Tool.

Using the Selection object you can control a user’s interaction with text fields and capture text

from the text fields. You can position or get the position of the cursor in a text field.

Properties

None

Methods

getBeginIndex() See “Selection.getBegin-
Index() Method” on
page 245

Return the index of the beginning of the selec-
tion span. Return -1 if there is no currently
selected field.

getCaretIndex() See “Selection.getCaretIn-
dex() Method” on
page 245

Return the index of the current caret (vertical text
cursor).

getEndIndex() See “Selection.getEndIn-
dex() Method” on
page 246

Return the index of the end of the current selec-
tion. Returns -1 if there is no selection.

getFocus() See “Selection.getFocus()
Method” on page 246

Return the name of the text field with the current
focus.

Prelim
inary

245ADOBE LIVEMOTION 2.0
Scripting Guide
Selection.getBeginIndex() Method
selection.getBeginIndex()

Description

The getBeginIndex() method returns the index of the first character of the selection span. It

returns -1 if there is no currently selected field. The index is zero-based, where the first position

in the text field is 0. If no text is selected, the position of the cursor is returned.

Parameters

None.

Returns

The index of the beginning of the selection span. Returns -1 if there is no currently selected field.

If no text is selected, the position of the cursor is returned.

See Also

“Selection.getEndIndex() Method” on page 246

Selection.getCaretIndex() Method
selection.getCaretIndex()

Description

The getCaretIndex() method returns the index of the current caret (vertical text cursor) in the

selection that currently has focus. If there is no current selection, -1 is returned.

setFocus() See “Selection.setFocus()
Method” on page 247

Set the focus of the editable text field associated
with the variable in the argument.

setSelection() See “Selection.setSelec-
tion() Method” on
page 247

Set the beginning and ending index of the selec-
tion span.

Prelim
inary

CHAPTER 7246
Reference
Parameters

None.

Returns

The index of the current caret (vertical text cursor) in the selection that currently has focus. If

there is no current selection, -1 is returned.

Selection.getEndIndex() Method
selection.getEndIndex()

Description

The getEndIndex() method returns the index of the last character of the selection span. It

returns -1 if there is no currently selected field. The index is zero-based, where the first position

in the text field is 0. If no text is selected, the position of the cursor is returned.

Parameters

None.

Returns

The index of the end of the selection span. Returns -1 if there is no currently selected field. If no

text is selected, the position of the cursor is returned.

See Also

“Selection.getEndIndex() Method” on page 246

Selection.getFocus() Method
selection.getFocus()

Description

Returns the name of the text field that has the current focus. If no text field is selected, null is

returned.

Prelim
inary

247ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

None.

Returns

The name of the text field that has the current focus. If no text field is selected, null is returned.

See Also

“Selection.setFocus() Method” on page 247

Selection.setFocus() Method
selection.setFocus(variable)

Description

The setFocus() method sets the focus of the editable text field associated with the variable in

the argument.

Parameters

See Also

“Selection.getFocus() Method” on page 246

Selection.setSelection() Method
selection.setSelection(start, end)

Description

The setSelection() method sets the beginning and ending indices of the selection span. The

indices are zero-based, where the first position in the text field is 0. The method has no effect if

there is no currently selected text field. If start = end, the cursor is set at that point in the text.

variable The name of the variable that is associated with the text field that
gets focus.

Prelim
inary

CHAPTER 7248
Reference
Parameters

See Also

“Selection.getBeginIndex() Method” on page 245, “Selection.getEndIndex() Method” on

page 246

Sound Object

Description

The Sound object is used to create a new sound object. The Sound object can then be set and

controlled to provide the sounds for an individual movie clip, including _root, or for the global

timeline.

Constructor

new Sound()
new Sound(target)

Parameters

Methods

start Index of the beginning of the selection.

end Index of the end of the selection.

target (Optional) The name of the movie clip to which sound is applied. If not specified, the
Sound object created controls all sounds in the global timeline.

attachSound() See “Sound.attachSound()
Method” on page 249

Add a new sound to a movie clip.

getPan() See “Sound.getPan() Method” on
page 249

Get the current pan value of a sound.

getTransform() See “Sound.getTransform()
Method” on page 250

Get the current panning transform value of a
sound.

Prelim
inary

249ADOBE LIVEMOTION 2.0
Scripting Guide
Sound.attachSound() Method
sound.attachSound(exportName)

Description

The attachSound() method attaches a sound to a Sound object.exportName is the sharing

name of the sound. This is the sound file that was imported into LiveMotion, then assigned a

sharing name using the Export palette.

Note: In preview, the sound that is attached is the local version only. If the “Use External Asset”

feature is used from the Export palette, this will not be the same sound that is actually used when the

SWF file is executing in the Flash player.

Parameters

Sound.getPan() Method
sound.getPan()

getVolume() See “Sound.getVolume()
Method” on page 251

Get the current volume of a sound.

setPan() See “Sound.setPan() Method” on
page 251

Set the current pan value of a sound.

setTransform() See “Sound.setTransform()
Method” on page 252

Set the current panning transform value of a
sound.

setVolume() See “Sound.setVolume()
Method” on page 253

Set the current volume of a sound.

start() See “Sound.start() Method” on
page 253

Play a sound.

stop() See “Sound.stop() Method” on
page 254

Stop playing a sound or all sounds.

exportName Sharing name of the sound to attach. This name was assigned to
the sound using the Export palette.

Prelim
inary

CHAPTER 7250
Reference
Description

The getPan() method gets the current pan value of the sound. This value was set by the last call

to setPan(). The pan value is used to implement the balance function between audio channels.

A value of -100 routes all sound through the left channel only; a value of 100 routes all sound

through the right channel. Values in between reflect the range between these two extremes, with

a value of 0 indicating equal balance between the two channels.

Parameters

None.

Returns

The pan value of the sound (an integer in the range of -100 to 100).

See Also

“Sound.setPan() Method” on page 251

Sound.getTransform() Method
sound.getTransform()

Description

The getTransform() method gets the current panning transform values of a Sound object. The

panning transform values are similar to the pan value, but they let you specify the relative

amounts of right channel sound to be included in the left speaker, or vice versa.

Parameters

None

Returns

An object of type Object with the following properties:

• ll— the percentage of the left channel to play in the left speaker (an integer value in the range

of 0 to 100).

Prelim
inary

251ADOBE LIVEMOTION 2.0
Scripting Guide
• lr—the percentage of the left channel to play in the right speaker (an integer value in the range
of 0 to 100).

• rl—the percentage of the right channel to play in the left speaker (an integer value in the range
of 0 to 100).

• rr—the percentage of the right channel to play in the right speaker (an integer value in the

range of 0 to 100).

See Also

“Sound.setTransform() Method” on page 252

Sound.getVolume() Method
sound.getVolume()

Description

The getVolume() method gets the current volume of a sound. This is the volume set by the last

setVolume() call. Values are from 0 - 100.

Parameters

None

Returns

The volume of the sound (an integer value in the range from 0 - 100).

See Also

“Sound.setVolume() Method” on page 253

Sound.setPan() Method
sound.setPan(pan)

Prelim
inary

CHAPTER 7252
Reference
Description

The setPan() method sets the current pan value of a Sound object. The pan value is used to

implement the balance function between audio channels. A value of -100 routes all sound

through the left channel only; a value of 100 routes all sound through the right channel. Values

in between reflect the range between these two extremes, with a value of 0 indicating equal

balance between the two channels.

Parameters

See Also

“Sound.getPan() Method” on page 249

Sound.setTransform() Method
sound.setTransform(transform)

Description

The setTransform() method sets the current panning transform values of a Sound object. The

panning transform values are similar to the pan value, but they let you specify the relative

amounts of right channel sound to be included in the left speaker, or vice versa. The panning

transform values are passed into the setTransform() method by instantiating an object of type

Object and setting the following four properties:

• ll— the percentage of the left channel to play in the left speaker (an integer value in the range

of 0 to 100);

• lr—the percentage of the left channel to play in the right speaker (an integer value in the range
of 0 to 100);

• rl—the percentage of the right channel to play in the left speaker (an integer value in the range
of 0 to 100);

• rr—the percentage of the right channel to play in the right speaker (an integer value in the

range of 0 to 100).

pan The pan value of the sound (an integer in the range of -100 to
100).

Prelim
inary

253ADOBE LIVEMOTION 2.0
Scripting Guide
An ll value of, for example, 50% indicates that 50% of the left channel content should be played

through the left speaker. The default is ll = 100% and rr = 100%.

Parameters

Example

waveringVoice = new Object();
voice.ll = 50;
voice.lr = 50;
voice.rl = 50;
voice.rr = 50;
sound.setTransform(waveringVoice);

See Also

“Sound.getTransform() Method” on page 250

Sound.setVolume() Method
sound.setVolume(volume)

Description

The setVolume() method sets the current volume of a sound.

Parameters

See Also

“Sound.setVolume() Method” on page 253

Sound.start() Method
sound.start(offset, loops)

transform An object with ll, lr, rl, and rr members.

volume The volume of the sound (an integer in the range of 0 - 100).

Prelim
inary

CHAPTER 7254
Reference
Description

The start() method plays a sound.

Parameters

See Also

“Sound.stop() Method” on page 254

Sound.stop() Method
sound.stop()
sound.stop(string)

Description

The stop() method stops playing a sound or all sounds. All sounds are stopped if no argument

is provided.

Parameters

See Also

“Sound.start() Method” on page 253

Soundbuftime Global Property
_soundbuftime

Description

The number of seconds before the movie clip starts to stream.

offset The number of seconds to wait before playing the sound.

loops The number of times to loop the sound before stopping.

string (Optional) The name of the sound to stop playing.Prelim
inary

255ADOBE LIVEMOTION 2.0
Scripting Guide
StartDrag() Global Function
startDrag(target)
startDrag(target, lockCenter)
startDrag(target, lockCenter, left, top, right, bottom)

Description

The startDrag() global function causes target to physically follow the mouse pointer. Use

the stopDrag() global function to halt dragging.

Parameters

See Also

“StopDrag() Global Function” on page 256, “MovieClip.startDrag() Method” on page 220

Stop() Global Function
stop()

target The pathname of the movie clip to drag.

lockCenter (Optional) Boolean indicating whether the draggable target
should be centered under the mouse pointer (true) or dragged
relative to the mouse pointer’s location when clicked (false).
The default is false.

left (Optional) x-coordinate boundary to the left of which target
cannot be dragged.

top (Optional) y-coordinate boundary above which target cannot
be dragged.

right (Optional) x-coordinate boundary to the right of which target
cannot be dragged.

bottom (Optional) y-coordinate boundary below which target cannot
be dragged.Prelim

inary

CHAPTER 7256
Reference
Description

The stop() global function stops a movie clip from playing.

Parameters

None.

See Also

“Play() Global Function” on page 241

StopAllSounds() Global Function
stopAllSounds()

Description

The stopAllSounds() method stops all the sounds in the global timeline. It doesn’t stop the

playhead.

Parameters

None

StopDrag() Global Function
stopDrag()

Description

The stopDrag() global function stops the dragging of the currently draggable object.

Parameters

None.

See Also

“StartDrag() Global Function” on page 255, “MovieClip.stopDrag() Method” on page 222

Prelim
inary

257ADOBE LIVEMOTION 2.0
Scripting Guide
String() Global Function
String(value)

Description

The String() global function returns a string representation of value.

Parameters

Returns

• If value is a Boolean, returns true or false.

• If value is a string, returns the string.

• If value is a number, returns a string representation of the number.

• If value is a MovieClip object, returns the absolute path in dot notation.

• If value is an object, returns a string representation of the object by referencing the string

property for the object. If there is no string property for the object, the base class

Object.toString() method is called.

• If value is undefined, returns an empty string.

See Also

“String Object” on page 257, “Object.toString() Method” on page 237

String Object

Description

The String object is a wrapper around the string primitive data type. Do not confuse a string

literal with the String object. For example, the following code creates the string literal s1 and

also the String object s2:

s1 = "foo" // creates a string literal value

value A number, string, variable, or Boolean to convert to a string.

Prelim
inary

CHAPTER 7258
Reference
s2 = new String("foo") // creates a String object

You can call any of the methods of the String object on a string literal value— JavaScript

automatically converts the string literal to a temporary String object, calls the method, then

discards the temporary String object. You can also use the String.length property with a

string literal.

Constructor

new String(value)

Parameters

Properties

Methods

value The string encapsulated in the newly created object. If this parameter is not sup-
plied, the string will be set to ““.

String.length See “String.length Property”
on page 264

The length of the string.

charAt() See “String.charAt() Method”
on page 259

Return the character at the specified index.

charCodeAt() See “String.charCodeAt()
Method” on page 260

Return the character at the specified index as a 16-
bit integer.

concat() See “String.concat() Method”
on page 261

Concatenate the text of two or more strings and
return the new string.

fromCharCode() See “String.fromCharCode()
Method” on page 261

Return a string created from the characters specified
in the argument list.

indexOf() See “String.indexOf()
Method” on page 262

Return the index of the first occurrence of the speci-
fied value in the string, or -1 if not found.

lastIndexOf() See “String.lastIndexOf()
Method” on page 263

Return the index of the last occurrence of the speci-
fied value in the string, or -1 if not found.

splice() See “String.slice() Method” on
page 264

Return a string consisting of the sub-string specified
in the argument list.

Prelim
inary

259ADOBE LIVEMOTION 2.0
Scripting Guide
String.charAt() Method
String.charAT(index)

Description

The charAT() method returns the specified character from the string. Characters in a string are

indexed from left to right. The index of the first character is 0, and the index of the last character

is the length of string minus 1 (zero-based indexing). If the index is out of range, JavaScript

returns an empty string.

Parameters

Returns

A string consisting of one character or an empty string (if the index is out of range).

Example

The following example displays characters at sequential locations in the string “Billy”:

var anyString="Billy"
trace("The character at index 0 is " + anyString.charAt(0));
trace("The character at index 1 is " + anyString.charAt(1));

split() See “String.split() Method” on
page 265

Split a string into an array of sub-strings.

substr() See “String.substr() Method”
on page 266

Return the specified number of characters in a string
beginning at the specified location.

substring() See “String.substring()
Method” on page 267

Return the characters between the two indices into
the string.

toLowerCase() See “String.toLowerCase()
Method” on page 268

Convert the string to lowercase and return.

toUpperCase() See “String.toUpperCase()
Method” on page 269

Convert the string to uppercase and return.

index An integer between 0 and the length of the string - 1 (zero-based
indexing).Prelim

inary

CHAPTER 7260
Reference
trace("The character at index 2 is " + anyString.charAt(2));
trace("The character at index 3 is " + anyString.charAt(3));
trace("The character at index 4 is " + anyString.charAt(4));

These lines display the following:

The character at index 0 is B
The character at index 1 is i
The character at index 2 is l
The character at index 3 is l
The character at index 4 is y

See Also

“String.indexOf() Method” on page 262, “String.lastIndexOf() Method” on page 263

String.charCodeAt() Method
String.charCodeAt(index)

Description

The charCodeAt() method returns the ASCII value of the character at the given index.

Parameters

Returns

The ASCII value of the character.

Example

trace("ICE".charCodeAt(0));// prints 73 - the ASCII value of "I"
trace("ICE".charCodeAt());// prints 73 - the ASCII value of "I"
trace("ICE".charCodeAt(1));// prints 67 - the ASCII value of "C"
trace("ICE".charCodeAt(2));// prints 69 - the ASCII value of "E"

index An integer between 0 and the length of the string minus 1 (zero-
based). The default value is 0.Prelim

inary

261ADOBE LIVEMOTION 2.0
Scripting Guide
String.concat() Method
String.concat(string1, string2, ..., stringN)

Description

The concat() method concatenates the text of two or more strings and returns the new string.

Parameters

Returns

The concatenated string.

Example

The following example combines two strings into a new string.

s1="Billy ";
s2="and ";
s3="Monica are fishing.";
trace(s1.concat(s2,s3)); // prints "Billy and Monica are fishing."

String.fromCharCode() Method
String.fromCharCode(num1, ...numN)

Description

The fromCharCode() method returns a string created by using the specified sequence of ASCII

values. This method returns a string and not a String object. Because fromCharCode is a static

method of String, you always use it as String.fromCharCode(), rather than as a method of a

String object you created.

Parameters

string1, string2, ..., stringN Strings to concatenate to the current string.

num1, ..., numN A sequence of ASCII values.

Prelim
inary

CHAPTER 7262
Reference
Returns

A string consisting of the characters provided as ASCII values.

Example

trace(String.fromCharCode(66,105,108,108,121)); //Returns "Billy"

String.indexOf() Method
String.indexOf(searchValue, fromIndex)

Description

The indexOf() method returns the index within the string of the first occurrence of the

specified value, starting the search at fromIndex if provided. The method returns -1 if the value

is not found.

Characters in a string are indexed from left to right. The index of the first character is 0, and the

index of the last character is length of the string minus 1 (zero-based).

Parameters

Returns

The position (zero-based) within the string where the first occurrence of searchValue was

found, or -1 if it was not found.

Example

trace("Favorite beret".indexOf("Favorite")); // prints 0
trace("Favorite beret".indexOf("Hat")); // prints -1
trace("Favorite beret".indexOf("beret",0)); // prints 9
trace("Favorite beret".indexOf("beret",9)); // prints 9

The indexOf() method is case sensitive. For example, the following expression prints -1:

searchValue The string value for which to search.

fromIndex (Optional) The location within the current string from which to start the
search. Can be any integer between 0 and the length of the string minus 1
(zero-based). If this argument is not supplied, the default value is 0.Prelim

inary

263ADOBE LIVEMOTION 2.0
Scripting Guide
trace("Favorite beret".indexOf("favorite"));

See Also

“String.charAt() Method” on page 259, “String.lastIndexOf() Method” on page 263

String.lastIndexOf() Method
String.lastIndexOf(searchValue, fromIndex)

Description

The lastIndexOf() method returns the index within string of the last occurrence of the

specified value, or -1 if not found. The string is searched backward, starting at fromIndex.

Characters in a string are indexed from left to right. The index of the first character is 0, and the

index of the last character is the length of the string minus 1. The lastIndexOf() method is case

sensitive.

Parameters

Returns

The position (zero-based) within the string where the last occurrence of searchValue was

found, or -1 if it was not found.

Example

trace("Billy".lastIndexOf("l")); // prints 3
trace("Billy".lastIndexOf("l",2)); // prints 2
trace("Billy".lastIndexOf("x")); // prints -1

See Also

“String.charAt() Method” on page 259, “String.indexOf() Method” on page 262

searchValue A string representing the value to search for.

fromIndex (Optional) The location within the current string from which to start the
search. Can be any integer between 0 and the length of the string minus 1
(zero-based). If this argument is not supplied, the default value is 0.

Prelim
inary

CHAPTER 7264
Reference
String.length Property
String.length

Description

The length property is the length of the string. A null string has a length of 0. This property can

only be read.

Example

var x="Billy";
trace("Length is " + x.length);//Prints "Length is 5"

String.slice() Method
String.slice(beginslice, endSlice)

Description

The slice() method extracts a section of a string and returns the new string. slice() extracts

up to but not including endSlice. Indexing is zero-based. For example, slice(1,4) extracts

the second character through the fourth character (characters indexed 1, 2, and 3).

As a negative index, endSlice indicates an offset from the end of the string. For example,

slice(2,-1) extracts the third character through the second to last character in the string.

Parameters

Returns

A string.

Example

str1="Billy and Monica are ice skating.";

beginslice The zero-based index at which to begin extraction.

endSlice (Optional) The zero-based index at which to end extraction. If
omitted, slice extracts to the end of the string.

Prelim
inary

265ADOBE LIVEMOTION 2.0
Scripting Guide
str2=str1.slice(10,-5);
trace(str2); //Prints "Monica are ice ska"

See Also

“String.substring() Method” on page 267, “String.substr() Method” on page 266

String.split() Method
String.split(delimiter)

Description

The split() method splits a string into an array of strings by separating the string into sub-

strings. The method returns the strings as an array.

When found, delimiter is removed from the string and the resulting substrings are returned

in the array. If delimiter is omitted, the array contains one element consisting of the entire

string.

Parameters

Returns

An array whose elements are the sub-strings.

Example

string = "Hello Billy. Let’s go fishing.";
splits = string.split(" ");
for(i=0; (splits[i] != "fishing."); ++i)
{
trace(splits[i]);
};
trace(splits[i]);
//Displays
//"Hello"

delimiter (Optional) Specifies the character to use for delimiting. The
delimiter is treated as a string. If delimiter is omitted, the
array returned contains one element consisting of the entire
string.

Prelim
inary

CHAPTER 7266
Reference
//"Billy."
//"Let’s"
//"go"
//"fishing."

See Also

“String.charAt() Method” on page 259, “String.lastIndexOf() Method” on page 263,

“String.indexOf() Method” on page 262

String.substr() Method
String.substr(start, length)

Description

The substr() method returns the characters in a string beginning at the specified location

through the specified number of characters.start is a character index. The index of the first

character is 0, and the index of the last character is the length of the string minus 1 (zero-based).

substr() begins extracting characters at start and collects length number of characters. If

start is positive and is the length of the string or longer, substr() returns no characters.

If start is negative, substr() uses it as a character index from the end of the string. If start is

negative and abs(start) is larger than the length of the string, substr() uses 0 as the start

index.

If length is 0 or negative, substr() returns no characters. If length is omitted, start extracts

characters to the end of the string.

Parameters

Returns

A string.

start Location at which to begin extracting characters.

length (Optional) The number of characters to extract.

Prelim
inary

267ADOBE LIVEMOTION 2.0
Scripting Guide
Example

str = "phonecall"
trace("(1,2): " + str.substr(1,2));
trace("(-2,2): " + str.substr(-2,2));
trace("(1): " + str.substr(1));
trace("(20, 2): " + str.substr(20,2));
//prints
//(1,2): ho
//(-2,2): ll
//(1): honecall
//(20, 2):

See Also

“String.substring() Method” on page 267, “String.slice() Method” on page 264

String.substring() Method
String.substring(indexA, indexB)

Description

The substring() method returns a subset of a string by extracting characters from indexA up

to but not including indexB. Specifically:

• If indexA is less than 0, indexA is treated as if it were 0.

• If indexB is greater than stringName.length, indexB is treated as if it were

stringName.length.

• If indexA equals indexB, substring returns an empty string.

• If indexB is omitted, indexB extracts characters to the end of the string.

Parameters

indexA An integer between 0 and the length of the string minus 1 (zero-based).

indexB (Optional) An integer between 0 and the length of the string minus 1
(zero-based).

Prelim
inary

CHAPTER 7268
Reference
Returns

A string.

Example

var str="trolling";
// Displays "tro"
trace(str.substring(0,3));
trace(str.substring(3,0));
// Displays "lin"
trace(str.substring(4,7));
trace(str.substring(7,4));
// Displays "trollin"
trace(str.substring(0,7));
// Displays "trolling"
trace(str.substring(0,8));
trace(str.substring(0,10));

See Also

“String.substr() Method” on page 266, “String.slice() Method” on page 264

String.toLowerCase() Method
String.toLowerCase()

Description

The toLowerCase() method returns the calling string value converted to lowercase without

affecting the value of the string itself.

Parameters

None.

Returns

A lower case string.

Example

The following example displays the lowercase string “white house”:

Prelim
inary

269ADOBE LIVEMOTION 2.0
Scripting Guide
var upperCase="WHITE HOUSE";
trace(upperCase.toLowerCase()) //Displays "white house"

See Also

“String.toUpperCase() Method” on page 269

String.toUpperCase() Method
String.toUpperCase()

Description

The toUpperCase() method returns the calling string value converted to uppercase without

affecting the value of the string itself.

Parameters

None.

Returns

An upper case string.

Example

The following example displays the string “WHITE HOUSE”:

var lowerCase="white house";
trace(lowerCase.toUpperCase()); //displays "WHITE HOUSE"

See Also

“String.toLowerCase() Method” on page 268

TargetPath() Global Function
targetPath(movieClip)

Prelim
inary

CHAPTER 7270
Reference
Description

The targetPath() global function returns the path to the movieClip. in dot notation. To get

the path in slash notation, use the _target property of MovieClip.

Parameters

Returns

The path to the movieClip.

See Also

“MovieClip._target Property” on page 223

Trace() Global Function
trace(expression)

Description

The trace() global function evaluates expression and outputs the results to the console

window. Used for debugging.

trace() is only useful from within LiveMotion. If you want to display the results of an

expression to a text field of the executing SWF file, use the following code, where display is the

var name of your text field:

_root.display = expression;

Parameters

Example

trace(this);//prints MovieClip ("primitive" type)
trace(2 * 2);//prints 4
trace("Monica and Billy were here.");//prints "Monica and Billy were here"

movieClip The movie clip for which the path is requested.

expression The expression to evaluate.

Prelim
inary

271ADOBE LIVEMOTION 2.0
Scripting Guide
Unescape() Global Function
unescape(stringExpression)

Description

The unescape() global function translates URL-encoded string stringExpression into a

regular string. Use the escape() global function to URL-encode strings.

Parameters

Example

//prints "Billy went fishing!#?!"
trace(unescape("Billy%20went%20fishing%21%24%23%21"));

See Also

“Escape() Global Function” on page 163

UnloadMovie() Global Function
unloadMovie(target)

Description

The unloadMovie() global function unloads a movie clip that was previously loaded using the

loadMovie() global function, the loadMovieNum() global function, or the

MovieClip.loadMovie() method.

Parameters

stringExpression A URL-encoded string with hexadecimal characters.

Prelim
inary

CHAPTER 7272
Reference
See Also

“LoadMovie() Global Function” on page 184, “LoadMovieNum() Global Function” on

page 185, “MovieClip.loadMovie() Method” on page 216, “MovieClip.unloadMovie() Method”

on page 224

UnloadMovieNum() Global Function
unloadMovieNum(number)

Description

Same as unloadMovie() except that a number is used to specify the movie clip level. Therefore,

it can only be used to unload movie clips previously loaded using the loadMovie() global

function or the loadMovieNum() global function.

Parameters

See Also

“LoadMovie() Global Function” on page 184, “LoadMovieNum() Global Function” on

page 185, “MovieClip.loadMovie() Method” on page 216, “MovieClip.unloadMovie() Method”

on page 224

UpdateAfterEvent() Global Function
updateAfterEvent()

target Where to unload the movie from. There are three possibilities:

1. If a number, the movie clip is unloaded from the level the num-
ber specifies;

2. If a string, the movie is unloaded from the movie clip specified
by the path in the string;

3 If a movie clip object, the movie is unloaded from it.

number Integer specifying movie clip level.Prelim
inary

273ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The updateAfterEvent() global function updates the display when one of the following events

occurs: onMouseMove, onMouseDown, onMouseUp, onKeyDown, onKeyUp. Place this function in

the appropriate event handler to cause refresh to occur.

Parameters

None.

XML Object

Description

The XML object enables you to load, parse, send, build, and manipulate EXtensible Markup

Language (XML) document trees. Unlike HTML, which uses a defined set of tags, XML allows

you to define your own document tags. LiveMotion allows you to either build an XML document

from scratch or read in and modify an existing XML document.

The following shows three levels of child nodes (the document itself is the parent):

<fish>//level 1 child node
<type>Bass</type>//"type" tag is level 2 child node; "Bass" is level 3

</fish>

For example, the following creates an XML document:

xmlDocument = new XML("<fish><type>Bass</type></fish>");

The text can then be accessed as follows:

//prints "Bass"
trace(xmlDocument.firstChild.firstChild.firstChild.nodeValue);

Constructor

new XML()
new XML(source)

Prelim
inary

CHAPTER 7274
Reference
Parameters

Properties

source (Optional) Source XML document. If not provided, the XML object
will contain a new, empty XML document.

attributes See “XML.attributes Property”
on page 276

An array listing all of the attributes of the given
node.

childNodes See “XML.childNodes Property”
on page 277

An array of child nodes of this node.

contentType See “XML.contentType Prop-
erty” on page 278

The MIME content type.

docTypeDecl See “XML.docTypeDecl Prop-
erty” on page 280

The DOCTYPE declaration of the XML document.

firstChild See “XML.firstChild Property”
on page 281

The first child of this node, null if there are no
children.

ignoreWhite See “XML.ignoreWhite Prop-
erty” on page 282

Whether to ignore whitespace during XML pars-
ing.

lastChild See “XML.lastChild Property”
on page 283

The last child of this node, null if there are no
children.

loaded See “XML.loaded Property” on
page 285

true if the load or SendAndLoad operation
has completed.

nextSibling See “XML.nextSibling Property”
on page 285

The next sibling of this node, null if this is the
last node.

nodeName See “XML.nodeName Property”
on page 286

The tag name of this node. null if this node
is a text node.

nodeType See “XML.nodeType Property”
on page 286

The type of this node. Either 1 if this node is an
element node, or 3 if this node is a text node.

nodeValue See “XML.nodeValue Property”
on page 287

The text contained in this node. null if this
node is not a text node.

parentNode See “XML.parentNode Prop-
erty” on page 289

The parent node of this node. null if this
node is at the top of the hierarchy.

Prelim
inary

275ADOBE LIVEMOTION 2.0
Scripting Guide
Methods

previousSibling See “XML.previousSibling Prop-
erty” on page 290

The previous sibling of this node, null if this is
the first node.

status See “XML.status Property” on
page 292

Indicates whether there was an error parsing the
XML document. 0 indicates no error.s

xmlDecl See “XML.xmlDecl Property” on
page 294

The DOCTYPE declaration of the XML document.

appendChild() See “XML.appendChild()
Method” on page 276

Append a child to this node.

cloneNode() See “XML.cloneNode()
Method” on page 278

Clone this node.

createElement() See “XML.createElement()
Method” on page 279

Create an XML element node.

createTextNode() See “XML.createTextNode()
Method” on page 280

Create an XML text node.

hasChildNodes() See “XML.hasChildNodes()
Method” on page 281

Return an indication whether this node
has children.

insertBefore() See “XML.insertBefore()
Method” on page 283

Insert a child node before another child
node.

load() See “XML.load() Method” on
page 284

Load and parse an XML document from the
given URL.

parseXML() See “XML.parseXML() Method”
on page 289

Parse the given text as an XML document.

removeNode() See “XML.removeNode()
Method” on page 290

Delete this node and all of its children from
the containing document.

send() See “XML.send() Method” on
page 291

Convert the XML document into a string and
send it to the given URL.

sendAndLoad() See “XML.sendAndLoad()
Method” on page 292

Convert the XML document into a string and
send it to the given URL. The receiving appli-
cation is to reply with an XML document.

toString() See “XML.toString() Method”
on page 293

Convert the XML object into a string.

Prelim
inary

CHAPTER 7276
Reference
Event Handlers

XML.appendChild() Method
XML.appendChild(node)

Description

The appendChild(node) appends a child node to this node.

Parameters

Example

xmlDocument = new XML("<fish><type>Bass</type></fish>");
newDocument = new XML();
node = xmlDocument.firstChild.cloneNode(true);
newDocument.appendChild(node);
trace(newDocument.firstChild.nodeValue);

See Also

“XML.createElement() Method” on page 279, “XML.createTextNode() Method” on page 280,

“XML.cloneNode() Method” on page 278, “XML.insertBefore() Method” on page 283

XML.attributes Property
XML.attributes

onData See “XML.onData() Event Han-
dler” on page 287

Indicates that the XML doc parsing can
begin.

onLoad See “XML.onLoad() Event Han-
dler” on page 288

Indicates that the load of an XML doc com-
pleted successfully.

node The node of the child to append.

Prelim
inary

277ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The attributes property holds an array containing the attributes of the given node as

properties. This property may be read or written.

Example

string = "<testtag name=\"value\"> Bass </testtag>"
xmlDocument = new XML(string);
nameAttribute = xmlDocument.firstChild.attributes.name;
trace(nameAttribute);//prints "value"

See Also

“XML.nodeType Property” on page 286

XML.childNodes Property
XML.childNodes[n]

Description

The childNodes property holds an array of child nodes of this node. Each element in the array

is a reference to a child node of the XML object. Use the methods appendChild(), insert-

Before(), and removeNode() to manipulate child nodes. This property can only be read.

Example

xmlDocument = new XML("<fish><type>Bass</type><color>grey</color></fish>");
trace(xmlDocument.childNodes[0].childNodes[0].nodeValue);//prints "type"
trace(xmlDocument.childNodes[0].childNodes[1].nodeValue);//prints "color"

See Also

“XML.firstChild Property” on page 281, “XML.hasChildNodes() Method” on page 281,

“XML.lastChild Property” on page 283, “XML.nextSibling Property” on page 285, “XML.previ-

ousSibling Property” on page 290, “XML.appendChild() Method” on page 276, “XML.insert-

Before() Method” on page 283,“XML.removeNode() Method” on page 290

Prelim
inary

CHAPTER 7278
Reference
XML.cloneNode() Method
XML.cloneNode(deep)

Description

The cloneNode() method clones this node and, optionally, all of its children.

Parameters

Returns

The cloned node or, optionally, all of its children as well.

Example

xmlDocument = new XML("<fish><type>Bass</type></fish>");
newDocument = new XML();
node = xmlDocument.firstChild.cloneNode(true);
newDocument.appendChild(node);
trace(newDocument.firstChild.nodeValue);

See Also

“XML.appendChild() Method” on page 276, “XML.createElement() Method” on page 279,

“XML.createTextNode() Method” on page 280, “XML.insertBefore() Method” on page 283

XML.contentType Property
XML.contentType

Description

The contentType property holds the MIME content type. The MIME type is sent to the server

when either the XML.send() or XML.sendAndLoad() methods are used. This property may be

read or written. The default is application/x-www-urlform-encoded.

deep A Boolean indicating whether a deep clone (all of the node’s chil-
dren as well as this node) should be performed. If true, a deep
clone is performed. If false, only this node is cloned.

Prelim
inary

279ADOBE LIVEMOTION 2.0
Scripting Guide
See Also

“XML.send() Method” on page 291, “XML.sendAndLoad() Method” on page 292

XML.createElement() Method
XML.createElement(tagMame)

Description

The createElement() method creates a new element, or tag, node (not a text node). The new

node has no parent and no children. Note that the new node that is returned is not inserted into

XML. To do that, you must use appendChild() or insertBefore().

As an example of a tag node, examine the line:

<type>Bass</type>

type is a tag node, whereas Bass is the associated text node.

Parameters

Returns

The new tag node.

Example

xmlDocument = new XML();
node = xmlDocument.createElement("fish");
xmlDocument.appendChild(node);
trace(xmlDocument.firstChild.nodeValue);

See Also

“XML.appendChild() Method” on page 276, “XML.cloneNode() Method” on page 278,

“XML.createTextNode() Method” on page 280, “XML.insertBefore() Method” on page 283,

tagMame The tag name of the node to create.

Prelim
inary

CHAPTER 7280
Reference
XML.createTextNode() Method
XML.createTextNode(text)

Description

The createTextNode() method creates a text node (as opposed to an element, or tag, node).

The new node has no parent and no children. Note that the new node that is returned is not

inserted into XML. To do that, you must use appendChild() or insertBefore().

As an example of a text node, examine the line:

<type>Bass</type>

type is a tag node, whereas Bass is the associated text node.

Parameters

Returns

The new text node.

Example

xmlDocument = new XML();
node = xmlDocument.createElement("fish");
xmlDocument.appendChild(node);
textString = xmlDocument.createTextNode("Bass");
xmlDocument.firstChild.appendChild(textString);
trace(xmlDocument.firstChild.nodeValue);//prints "fish"
trace(xmlDocument.firstChild.firstChild.nodeValue);//prints "Bass"

See Also

“XML.appendChild() Method” on page 276, “XML.cloneNode() Method” on page 278,

“XML.createElement() Method” on page 279, “XML.insertBefore() Method” on page 283

XML.docTypeDecl Property
XML.docTypeDecl

text The text of the node to create.

Prelim
inary

281ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The docTypeDecl property specifies the DOCTYPE declaration of the XML document. If there

is no DOCTYPE, then this property is undefined. This property may be read or written.

Example

xmlDocument = new XML("<fish><type>Bass</type><color>grey</color></fish>");
xmlDocument.docTypeDecl = "<!DOCTYPE salutation SYSTEM \"hello.dtd\">";
trace(xmlDocument.docTypeDecl);
//prints "<!DOCTYPE salutation SYSTEM "hello.dtd">"

See Also

“XML.xmlDecl Property” on page 294

XML.firstChild Property
XML.firstChild

Description

The firstChild property specifies the first child of this node, or null if there are no children.

This property is read-only.

Example

xmlDocument = new XML("<fish><type>Bass</type></fish>");
trace(xmlDocument.firstChild.nodeValue);//prints "fish"

See Also

“XML.childNodes Property” on page 277, “XML.lastChild Property” on page 283,

“XML.nextSibling Property” on page 285, “XML.previousSibling Property” on page 290

XML.hasChildNodes() Method
XML.hasChildNodes()

Prelim
inary

CHAPTER 7282
Reference
Description

The hasChildNodes() method returns an indication of whether this node has children.

Parameters

None

Returns

true if this node has children; false otherwise.

Example

xmlDocument = new XML("<fish><type>Bass</type></fish>");
if (xmlDocument.hasChildNodes())

{
 trace("yes");//prints "yes"

}
else

{
 trace("no");

}

See Also

“XML.childNodes Property” on page 277

XML.ignoreWhite Property
XML.ignoreWhite

Description

The ignoreWhite property stores a Boolean that indicates whether to ignore whitespace during

XML parsing. The default is false. This property is read-only.

Note: Previous to release 41of the Netscape Flash player and release 42 of the Internet Explorer Flash

player, the Flash 5 player treated whitespace (carriage returns, tabs, spaces) as nodes. The ignore-

White property is supported in the later releases. If your XML code needs to run on earlier versions

of the Flash 5 player, you will need to include code that strips out whitespace from incoming XML

documents.

Prelim
inary

283ADOBE LIVEMOTION 2.0
Scripting Guide
temp = new Boolean(true);
trace(temp.valueOf());//prints "true"
xmlDocument = new XML("<fish><type>Bass</type></fish>");
temp = xmlDocument.ignoreWhite;
trace(temp.valueOf());//prints "false"

XML.insertBefore() Method
XML.insertBefore(newChild, insertBeforeChild)

Description

The insertBefore() method inserts a child node before another child node.

Parameters

Example

xmlDocument = new XML("<color>grey</color>");
newNode = xmlDocument.createElement("<color>");
newText = xmlDocument.createTextNode("white");
newNode.appendChild(newText);
xmlDocument.insertBefore(newNode, xmlDocument.firstChild);
trace(xmlDocument.childNodes[0].childNodes[0].nodeValue);//prints "grey"
trace(xmlDocument.childNodes[1].childNodes[0].nodeValue);//prints "white"

//xmlDocument = new XML("<color>white</color><color>grey</color>");
//trace(xmlDocument.childNodes[0].childNodes[0].nodeValue);//prints "white"
//trace(xmlDocument.childNodes[1].childNodes[0].nodeValue);//prints "grey"

See Also

“XML.appendChild() Method” on page 276

XML.lastChild Property
XML.lastChild

newChild The child to insert.

insertBeforeChild The child to insert the new child before.

Prelim
inary

CHAPTER 7284
Reference
Description

The lastChild property holds the last child of this node, or null if there are no children.It is

equivalent to childNodes[childNodes.length-1]. This property is read-only. Do not use this

method to manipulate child nodes—use the appendChild(), insertBefore(), and

removeNode() methods instead/

Example

xmlDocument = new XML("<color>white</color><color2>grey</color2>");
trace(xmlDocument.lastChild.nodeValue);//prints "color2"

See Also

“XML.childNodes Property” on page 277, “XML.firstChild Property” on page 281,

“XML.nextSibling Property” on page 285, “XML.previousSibling Property” on page 290,

“XML.appendChild() Method” on page 276, “XML.insertBefore() Method” on page 283,

“XML.removeNode() Method” on page 290

XML.load() Method
XML.load(url)

Description

The load() method loads and parses an XML document from url. The load doesn’t happen

immediately. Use the XML.onLoad() event handler to hold instructions for when the document

has finished downloading. The loaded document replaces the contents of XML with the

downloaded XML data. When load() is first executed, the loaded property is set to false;

then, when the download is complete, the loaded property is set to true and the onLoad()

method is invoked. The XML data is not parsed until the entire document is loaded. The parsing

may be done using the default JavaScript parser, or the XML.onData() event handler may be

used to write your own parser.

Parameters

url URL of the document to load and parse. The URL must be in
the same subdomain as the URL where the movie clip cur-
rently resides.

Prelim
inary

285ADOBE LIVEMOTION 2.0
Scripting Guide
Returns

The root of the parsed XML document.

See Also

“XML.loaded Property” on page 285, “XML.onLoad() Event Handler” on page 288,

“XML.sendAndLoad() Method” on page 292, “XML.status Property” on page 292,

“XML.onData() Event Handler” on page 287

XML.loaded Property
XML.loaded

Description

The loaded property holds true if the load() or sendAndLoad() operation has completed.

Otherwise it holds false.This property is read-only.

See Also

“XML.load() Method” on page 284, “XML.onLoad() Event Handler” on page 288,

“XML.sendAndLoad() Method” on page 292

XML.nextSibling Property
XML.nextSibling

Description

The nextSibling property holds the next sibling of this node, or null if this is the last node.

This property is read-only. Don’t use this method to attempt to manipulated child nodes. Use

appendChild(), insertbefore(), and removeNode() to manipulate child nodes.

Example

xmlDocument = new XML("<color>white</color><color2>grey</color2>");
tempNode = xmlDocument.childNodes[0];
trace(tempNode.firstChild.nodeValue);//prints "white"
tempNode = tempNode.nextSibling;

Prelim
inary

CHAPTER 7286
Reference
trace(tempNode.firstChild.nodeValue);//prints "grey"

See Also

“XML.childNodes Property” on page 277, “XML.firstChild Property” on page 281,
“XML.lastChild Property” on page 283, “XML.nodeName Property” on page 286,
“XML.nodeValue Property” on page 287, “XML.previousSibling Property” on page 290,
“XML.appendChild() Method” on page 276, “XML.insertBefore() Method” on page 283,
“XML.removeNode() Method” on page 290

XML.nodeName Property
XML.nodeName

Description

The nodeName property holds the tag name of this node, or null if this node is a text node. If

the tag is <mynode> then the nodeName is myNode. This property may only be read.

See Also

“XML.nodeType Property” on page 286, “XML.nodeValue Property” on page 287

XML.nodeType Property
XML.nodeType

Description

The nodeType property holds the type of this node. The possible values are 1 if this node is an

element node, or 3 if this node is a text node. This property is read-only.

See Also

“XML.nodeName Property” on page 286, “XML.nodeValue Property” on page 287

Prelim
inary

287ADOBE LIVEMOTION 2.0
Scripting Guide
XML.nodeValue Property
XML.nodeValue

Description

The nodeValue property holds the text contained in this node, or null if this node is an

element node. This property may be read or written, though writing to it only makes sense if the

node is a text node.

See Also

“XML.nodeName Property” on page 286, “XML.nodeType Property” on page 286

XML.onData() Event Handler
XML.onData(source)

Description

The onData() event handler executes automatically whenever raw XML source has finished

loading into the XML document due to a previous XML.load() or XML.sendAndLoad() call.

This allows you to write a custom function that handles the raw XML, or you can simply let the

JavaScript XML parser execute on the raw XML. If the raw source that is received is undefined,

the onData() event handler calls the XML.onLoad() event handler with the success parameter

set to false. Otherwise, the onData() event handler parses the raw XML, sets the XML.loaded

property to true, and calls the XML.onLoad() event handler with the success parameter set to

true.

Parameters

Example

This example shows how to intercept the raw XML using the onData() event handler. It uses a

function literal.

xmlDocument = new XML();

source A string with the raw XML source.

Prelim
inary

CHAPTER 7288
Reference
xmlDocument.onData = function(source)
{

trace("Print the raw XML: \n" + source);
};

See Also

“XML.onLoad() Event Handler” on page 288, “XML.load() Method” on page 284,

“XML.sendAndLoad() Method” on page 292, “XML.loaded Property” on page 285

XML.onLoad() Event Handler
XML.onLoad(result)

Description

The onLoad() event handler is automatically executed whenever an external XML file is loaded

into XML via the XML.load() or XML.sendAndLoad() method. By default, the onLoad() event

handler is an empty function: you must provide your own callback handler, as shown in the

example. The onLoad() event handler offers an alternative to monitoring the state to the

XML.loaded property before proceeding with processing the downloaded XML.

Parameters

Example

xmlDocument = new XML();
xmlDocument.onLoad = xmlProcessor;
function xmlProcessor(success)
{

//function body
};

See Also

“XML.onData() Event Handler” on page 287, “XML.load() Method” on page 284,

“XML.sendAndLoad() Method” on page 292

result Boolean indicating success (true) or failure (false) of the
XML.load() or XML.sendAndLoad() method.

Prelim
inary

289ADOBE LIVEMOTION 2.0
Scripting Guide
XML.parentNode Property
XML.parentNode

Description

The parentNode property holds the parent node of this node, or null if this node is at the

top of the hierarchy. This property is read-only. Don’t use this method to attempt to manipulated

child nodes. Use appendChild(), insertbefore(), and removeNode() to manipulate child

nodes.

Example

xmlDocument = new XML("<color>white</color><color2>grey</color2>");
tempNode = xmlDocument.childNodes[0];
trace(tempNode.parentNode.nodeValue);

See Also

“XML.childNodes Property” on page 277, “XML.firstChild Property” on page 281,

“XML.lastChild Property” on page 283, “XML.previousSibling Property” on page 290,

“XML.appendChild() Method” on page 276, “XML.insertBefore() Method” on page 283,

“XML.removeNode() Method” on page 290

XML.parseXML() Method
XML.parseXML(xml)

Description

The parseXML() method parses xml as an XML document. It also replaces any existing XML in

XML with the resulting XML tree from xml. This method is similar to the load() method, but

the source is passed in as a string so can be used, for example, to pass in user input rather than

just the contents of a url or file.

Parameters

xml The text to parse.

Prelim
inary

CHAPTER 7290
Reference
See Also

“XML.load() Method” on page 284, “XML.status Property” on page 292

XML.previousSibling Property
XML.previousSibling

Description

The previousSibling property holds the previous sibling of this node, or null if this is the

first node. This property is read-only. Don’t use this method to attempt to manipulated child

nodes. Use appendChild(), insertbefore(), and removeNode() to manipulate child nodes.

Example

xmlDocument = new XML("<color>white</color><color2>grey</color2>");
tempNode = xmlDocument.childNodes[1];
trace(tempNode.firstChild.nodeValue);//prints "grey"
tempNode = tempNode.previousSibling;
trace(tempNode.firstChild.nodeValue);//prints "white"

See Also

“XML.childNodes Property” on page 277, “XML.firstChild Property” on page 281,

“XML.lastChild Property” on page 283, “XML.nextSibling Property” on page 285,

“XML.nodeName Property” on page 286, “XML.nodeValue Property” on page 287,

“XML.parentNode Property” on page 289, “XML.appendChild() Method” on page 276,

“XML.insertBefore() Method” on page 283, “XML.removeNode() Method” on page 290

XML.removeNode() Method
XML.removeNode()

Description

The removeNode() method deletes this node and all of its children from the containing

document.

Prelim
inary

291ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

None.

See Also

“XML.appendChild() Method” on page 276

XML.send() Method
XML.send(url)
XML.send(url, window)

Description

The send() method converts XML into a string and sends it to url. The document is sent via the

POST method (in a separate HTTP packet, not attached to url). The response data is usually an

HTML file for display in a browser window; this contrasts with the sendAndLoad() method,

which receives XML for display directly from the Flash movie clip.

Parameters

See Also

“XML.sendAndLoad() Method” on page 292, “XML.load() Method” on page 284, “XML.loaded

Property” on page 285, “XML.onLoad() Event Handler” on page 288, “XML.status Property” on

page 292

url The URL to which to send the XML text. The URL must be in the
same subdomain as the URL where the movie clip was down-
loaded from.

window (Optional) The window in which to display data returned by the
server. This may be a custom name or one of the standard Java-
Script windows (_blank, _parent, _self, or _top). Default is
_self.Prelim

inary

CHAPTER 7292
Reference
XML.sendAndLoad() Method
XML.sendAndLoad(url, responseXML)

Description

The sendAndLoad() method converts XML into a string and sends it to the given URL. The

receiving application is supposed to reply with an XML document; this contrasts with the

send() method, which receives an HTML file for display in a browser window. Any previous

contents of XML is replaced with the parsed responseXML.

Parameters

See Also

“XML.load() Method” on page 284, “XML.loaded Property” on page 285, “XML.send()

Method” on page 291, “XML.status Property” on page 292, “XML.onData() Event Handler” on

page 287, “XML.onLoad() Event Handler” on page 288

XML.status Property
XML.status

Description

The status property indicates whether there was an error parsing the XML document. This

property is read-only. The possible error codes are:

• 0 — No error; parsing completed successfully.

• -2 — A CDATA section was not properly terminated.

• -3 — The XML declaration was not properly terminated.

• -4 — The DOCTYPE declaration was not properly terminated.

• -5 — A comment was not properly terminated.

url The URL to which to send the XML text.

responseXML The XML object into which to parse the response.

Prelim
inary

293ADOBE LIVEMOTION 2.0
Scripting Guide
• -6 — An XML element was malformed.

• -7 — Out of memory.

• -8 — An attribute value was not properly terminated.

• -9 — A start-tag was not matched with an end-tag.

• -10 — An end-tag was not properly matched with a start-tag.

Parsing occurs in several instances: when an XML object is first instantiated using the XML

constructor, when an XML object is loaded using the load() or sendAndLoad() method, or

XML is passed for parsing to the parseXML() method. Before checking the value of this

property, check the loaded property to ensure that the load() or sendAndLoad() method has

completed successfully.

See Also

“XML.load() Method” on page 284, “XML.loaded Property” on page 285, “XML.onLoad()

Event Handler” on page 288, “XML.parseXML() Method” on page 289, “XML.sendAndLoad()

Method” on page 292,

XML.toString() Method
XML.toString()

Description

The toString() method converts XML into a string. If you’re debugging with trace(), you

probably won’t use this much.

Parameters

None

Returns

The string.

Example

xmlDocument = new XML("<color>white</color><color2>grey</color2>");
trace(xmlDocument.toString());

Prelim
inary

CHAPTER 7294
Reference
//displays "<color>white</color><color2>grey</color2>"

See Also

“Object.toString() Method” on page 237, “XML.nodeValue Property” on page 287

XML.xmlDecl Property
XML.xmlDecl

Description

The xmlDecl property holds the XML declaration tag of the XML document. This property may

be read or written.

Example

xmlDocument = new XML("<?xml version=\"1.0\"?><type>Bass</type>");
trace(xmlDocument.xmlDecl);
//prints "<?xml version="1.0"?>"

See Also

“XML.docTypeDecl Property” on page 280

XMLnode Object

Description

The XMLnode object is the base class defining core properties and methods of nodes in an XML

object hierarchy. Few programmers will need to access this object, but it is possible to use it to

extend the default functionality of XML objects.

Prelim
inary

295ADOBE LIVEMOTION 2.0
Scripting Guide
XMLSocket Object

Description

The XMLSocket object is used to implement a client socket that allows the Flash player to

communicate with a server via an “open” connection. A socket connection is useful because it

remains “open”—that is, a TCP/IP connection doesn’t have to be made between the client and

the server each time communications occur between the two, as is required when the HTTP/IP

protocol is used. This enables the Flash player to listen for incoming messages and quickly

process them; it also allows it to respond quickly.

The three primary characteristics of an XML socket connection between a Flash player movie

clip and a server are the following:

• XML messages are sent over a full-duplex (two-way) TCP/IP connection;

• Each XML message is a complete XML document, terminated by a zero byte (ASCII null

character);

• An unlimited number of XML messages can be sent and received over a single connection.

If all of these requirements are not required by your application, consider using LiveMotion’s

other Internet dynamic connectivity global functions, objects, and methods: loadVariables(),

loadVariablesNum(), MovieClip.loadVariables(), XML.load(), XML.sendAndLoad(),

and XML.send().

Constructor

new XMLSocket()

Parameters

None

Methods

close() See “XMLSocket.close() Method” on
page 296

Close an open socket connection.

Prelim
inary

CHAPTER 7296
Reference
Event Handlers

XMLSocket.close() Method
XMLSocket.close()

Description

The close() method closes an open socket connection.

Parameters

None

See Also

“XMLSocket.connect() Method” on page 297, “XMLSocket.onClose() Event Handler” on

page 298

connect() See “XMLSocket.connect() Method”
on page 297

Create a connection to a specified server.

send() See “XMLSocket.send() Method” on
page 301

Send an XML object to the server.

onClose() See “XMLSocket.onClose() Event Han-
dler” on page 298

Callback function that is called when a con-
nection has closed.

onConnect() See “XMLSocket.onConnect() Event
Handler” on page 298

Callback function that is called when a con-
nection is created.

onData() See “XMLSocket.onData() Event Han-
dler” on page 299

Callback function that is called when data is
received but has not yet been parsed as
XML.

onXML() See “XMLSocket.onXML() Event Han-
dler” on page 300

Callback function that is called when data
has been received and parsed into an XML
object hierarchy.

Prelim
inary

297ADOBE LIVEMOTION 2.0
Scripting Guide
XMLSocket.connect() Method
XMLSocket.connect(host, port)

Description

The connect() method creates a connection to a specified server. If this method returns true,

then the onConnect() event handler is invoked to complete the connection.

Parameters

Returns

true if a connection is successfully created; false otherwise.

Example

function socketConnect(success)
{

if (success)
{

trace("Full connection achieved");
};

};

newSocket = new XMLSocket();
newSocket.onConnect = socketConnect();
if (newSocket.connect("http://www.adobe.com", 2000))
{

trace("Initial connection achieved");
};

host Full DNS name or an IP address. null if you want to specify the current
server (where the Flash movie clip is running). If the Flash Netscape plug-in
or an ActiveX control is being used, the host must have the same subdo-
main as the host from which the Flash movie clip was downloaded.

port TCP port to which you wish to establish a connection. Must be a number
equal to or greater than 1024.

Prelim
inary

CHAPTER 7298
Reference
See Also

“XMLSocket.close() Method” on page 296, “XMLSocket.onConnect() Event Handler” on

page 298

XMLSocket.onClose() Event Handler
XMLSocket.onClose() = functionName

Description

The onClose() event handler is a callback function that is called when a connection has closed.

The default implementation of this method performs no action. To override default implemen-

tation, you must write your own handler, as shown in the example.

Parameters

Example

newSocket = new XMLSocket();
newSocket.onClose = socketClosed;
function socketClosed()
{

trace("The connection was closed by the server");
};

See Also

“XMLSocket.close() Method” on page 296

XMLSocket.onConnect() Event Handler
XMLSocket.onConnect(success)
XMLSocket.onConnect() = functionName

functionName The name of the function to call when the indicated connection has
been closed. If omitted, the function does nothing.

Prelim
inary

299ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The onConnect() event handler is a callback function that is called when a connection is

created. The default implementation of this method performs no action. To override default

implementation, you must write your own handler, as shown in the example.

Parameters

Returns

true if a connection is successfully created; false otherwise.

Example

function socketConnect(success)
{

if (success)
{

trace("Full connection achieved");
};

};

newSocket = new XMLSocket();
newSocket.onConnect = socketConnect();
if (newSocket.connect("http://www.adobe.com", 2000))
{

trace("Initial connection achieved");
};

See Also

“XMLSocket.connect() Method” on page 297

XMLSocket.onData() Event Handler
XMLSocket.onData(source)

success Boolean indicating success.

functionName The name of the function to call when the indicated connection has been success-
fully created.

Prelim
inary

CHAPTER 7300
Reference
Description

The onData() event handler is a callback function that is called when data is received but has

not yet been parsed as XML. The onData() event handler executes automatically whenever a

zero byte (ASCII null character) is transmitted to Flash over XMLSocket. This allows you to write

a function that handles the raw XML instead of the JavaScript parser that would otherwise be

used before the XML is passed onto the XMLSocket.onXML() event handler. If you have not

supplied onData() with a custom callback function, the XML is passed onto the default JavaS-

cript XML parser.

Parameters

Example

The following shows how to implement the onData() event handler using a function literal.

newSocket = new XMLSocket();
newSocket.onData = function(source)
{

trace("Print the raw XML: \n" + source);
};

See Also

“XMLSocket.onXML() Event Handler” on page 300; “XML.onData() Event Handler” on

page 287

XMLSocket.onXML() Event Handler
XMLSocket.onXML(object)
XMLSocket.onXML() = functionName

source A string containing loaded data, which is usually XML source code.

Prelim
inary

301ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The onXML() event handler is a callback function that is called when data has been received and

parsed into an XML object hierarchy. It has been parsed either by the default JavaScript parser

or by a custom onData() event handler. The default implementation of this method performs

no action. To override default implementation, you must write your own handler, as shown in

the example.

Parameters

Example

The following shows how to implement the onXML() event handler using a function literal.

newSocket = new XMLSocket();
newSocket.onXML = function(object)
{

trace("Handle the object in some way");
};

See Also

“XMLSocket.send() Method” on page 301, “XMLSocket.onData() Event Handler” on page 299,

“XML.onLoad() Event Handler” on page 288

XMLSocket.send() Method
XMLSocket.send(object)

Description

The send() method converts object to a string and sends it to the server over the XMLSocket

connection, followed by a zero byte (ASCII null character). This operation is asynchronous: the

send() is initiated, but the operating system and networking software may not complete the

transmission until some amount of time has passed.

object An instance of the XML object containing a parsed XML document that
was received from the server.

functionName Function to call when the specified XML object has been received

Prelim
inary

CHAPTER 7302
Reference
Parameters

See Also

“XMLSocket.onXML() Event Handler” on page 300, “XMLSocket.send() Method” on page 301

object XML object to send.

Prelim
inary

	Chapter 7
	Reference
	Arguments Object
	Description
	Properties

	Arguments.callee Property
	Description
	Example

	Arguments.length Property
	Description
	Example

	Array Object
	Description
	Constructor
	Constructor Parameters
	Properties
	Methods

	Array.concat() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Array.join() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Array.length Property
	Description
	Example

	Array.pop() Method
	Description
	Returns
	Example
	See Also

	Array.push() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Array.reverse() Method
	Description
	Example
	See Also

	Array.shift() Method
	Description
	Returns
	Example
	See Also

	Array.slice() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Array.sort() Method
	Description
	Parameters
	Example
	See Also

	Array.splice() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Array.toString() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Array.unshift() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Boolean() Global Function
	Description
	Parameters
	Returns
	Example

	Boolean Object
	Description
	Constructor
	Parameters
	Methods

	Boolean.toString() Method
	Description
	Example

	Boolean.valueOf() Method
	Description
	Example

	Color Object
	Description
	Constructor
	Parameters
	Properties
	Methods

	Color.getRGB() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Color.getTransform() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Color.setRGB() Method
	Description
	Parameters
	Example
	See Also

	Color.setTransform Method
	Description
	Parameters
	Example
	See Also

	Date() Global Function
	Description

	Date Object
	Description
	Constructor
	Description
	Parameters
	Methods

	Date.getDate() Method
	Description
	Returns
	Example
	See Also

	Date.getDay() Method
	Description
	Returns
	Example
	See Also

	Date.getFullYear() Method
	Description
	See Also

	Date.getHours() Method
	Description
	Returns
	Example
	See Also

	Date.getMilliseconds() Method
	Description
	Returns
	See Also

	Date.getMinutes() Method
	Description
	Returns
	Example
	See Also

	Date.getMonth() Method
	Description
	Returns
	Example
	See Also

	Date.getSeconds() Method
	Description
	Example
	See Also

	Date.getTime() Method
	Description
	Returns
	Example
	See Also

	Date.getTimezoneOffset() Method
	Description
	Returns
	Example

	Date.getUTCDate() Method
	Description
	Returns
	Example
	See Also

	Date.getUTCDay() Method
	Description
	Returns
	Example
	See Also

	Date.getUTCFullYear() Method
	Description
	Returns
	Example
	See Also

	Date.getUTCHours() Method
	Description
	Returns
	Example
	See Also

	Date.getUTCMilliseconds() Method
	Description
	Returns
	Example
	See Also

	Date.getUTCMinutes() Method
	Description
	Return
	Example
	See Also

	Date.getUTCMonth() Method
	Description
	Returns
	Example
	See Also

	Date.getUTCSeconds() Method
	Description
	Returns
	Example
	See Also

	Date.getYear() Method
	Description
	Returns
	Example
	See Also

	Date.setDate() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setFullYear() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setHours() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setMilliseconds() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setMinutes() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setMonth() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setSeconds() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setTime() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setUTCDate() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setUTCFullYear() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setUTCHours() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setUTCMilliseconds() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setUTCMinutes() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setUTCMonth() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setUTCSeconds() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.setYear() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Date.toString() Method
	Description
	Returns
	Example

	Date.UTC() Method
	Description
	Parameters
	Returns
	Example

	Date.valueOf() Method
	Description
	Returns
	Example
	See Also

	DuplicateMovieClip() Global Function
	Description
	Parameters
	Example
	See Also

	Escape() Global Function
	Description
	Parameters
	Example
	See Also

	Eval() Global Function
	Description
	Parameters
	Returns
	Example

	Focusrect Global Property
	Description

	Fscommand() Global Function
	Description
	Parameters
	See Also

	GetTimer Global Function
	Description
	Parameters
	Returns

	GetURL Global Function
	Description
	Parameters
	Example
	See Also

	GetVersion() Global Function
	Description
	Parameters
	Returns

	GotoAndPlay() Global Function
	Description
	Parameters
	See Also

	GotoAndStop() Global Function
	Description
	Parameters
	See Also

	Highquality Global Property
	Description
	See Also

	Infinity Global Property
	Description
	See Also

	-Infinity Global Property
	Description
	See Also

	IsFinite Global Function
	Description
	Parameters
	Returns
	See Also

	IsNan() Global Function
	Description
	Parameters
	Returns
	See Also

	Key Object
	Description
	Constants
	Methods

	Key.BACKSPACE Constant
	Description
	See Also

	Key.CAPSLOCK Constant
	Description
	See Also

	Key.CONTROL Constant
	Description
	See Also

	Key.DELETEKEY Constant
	Description
	See Also

	Key.DOWN Constant
	Description
	See Also

	Key.END Constant
	Description
	See Also

	Key.ENTER Constant
	Description
	See Also

	Key.ESCAPE Constant
	Description
	See Also

	Key.getAscii() Method
	Description
	Arguments
	Example
	See Also

	Key.getCode() Method
	Description
	Parameters
	Example
	See Also

	Key.HOME Constant
	Description
	See Also

	Key.INSERT Constant
	Description
	See Also

	Key.isDown() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Key.isToggled() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Key.LEFT Constant
	Description
	See Also

	Key.PGDN Constant
	Description
	See Also

	Key.PGUP Constant
	Description
	See Also

	Key.RIGHT Constant
	Description
	See Also

	Key.SHIFT Constant
	Description
	See Also

	Key.SPACE Constant
	Description
	See Also

	Key.TAB Constant
	Description
	See Also

	Key.UP Constant
	Description
	See Also

	Leveln Global Property
	Description
	Example
	See Also

	lmFrameOfLabel() Global Function
	Description
	Parameters
	Returns
	Example

	LoadMovie() Global Function
	Description
	Parameters
	Example
	See Also

	LoadMovieNum() Global Function
	Description
	Parameters
	See Also
	“LoadMovie() Global Function” on page�184, “UnloadMovie() Global Function” on page�271, “UnloadMo...

	LoadVariables() Global Function
	Description
	Parameters
	Example
	See Also

	LoadVariablesNum() Global Function
	Description
	Parameters
	See Also

	Math Object
	Description
	Constants
	Methods

	Math.abs() Method
	Description
	Parameters

	Math.acos() Method
	Description
	Parameters
	See Also

	Math.asin() Method
	Description
	Parameters
	See Also

	Math.atan() Method
	Description
	Parameters
	See Also

	Math.atan2() Method
	Description
	Parameters
	See Also

	Math.ceil() Method
	Description
	Parameters
	See Also

	Math.cos() Method
	Description
	Parameters
	See Also

	Math.E Constant
	Description

	Math.exp() Method
	Description
	Parameters
	See Also

	Math.floor() Method
	Description
	Parameters
	See Also

	Math.LN2 Constant
	Description

	Math.LN10 Constant
	Description

	Math.log() Method
	Description
	Parameters
	See Also

	Math.LOG2E Constant
	Description

	Math.LOG10E Constant
	Description

	Math.max() Method
	Description
	Parameters
	See Also

	Math.min() Method
	Description
	Parameters
	See Also

	Math.PI Constant
	Description

	Math.pow() Method
	Description
	Parameters
	See Also

	Math.random() Method
	Description
	Parameters

	Math.round() Method
	Description
	Parameters

	Math.sin() Method
	Description
	Parameters
	See Also

	Math.sqrt() Method
	Description
	Parameters

	Math.SQRT1_2 Constant
	Description

	Math.SQRT2 Constant
	Description

	Math.tan() Method
	Description
	Parameters
	See Also

	Maxscroll() Global Property
	Description
	See Also

	Mouse Object
	Description
	Properties
	Methods

	Mouse.hide() Method
	Description
	Parameters
	See Also

	Mouse.show() Method
	Description
	Parameters
	See Also

	MovieClip Object
	Description
	Constructor
	Properties
	Methods

	MovieClip._alpha Property
	Description

	MovieClip.attachMovie() Method
	Description
	Parameters
	See Also

	MovieClip._currentframe Property
	Description

	MovieClip._droptarget Property
	Description

	MovieClip.duplicateMovieClip() Method
	Description
	Parameters
	Example
	See Also

	MovieClip._framesloaded Property
	Description
	See Also

	MovieClip.getBounds() Method
	Description
	Parameters
	Returns
	Example
	See Also

	MovieClip.getBytesLoaded() Method
	Description
	Parameters
	Returns
	See Also

	MovieClip.getBytesTotal() Method
	Description
	Parameters
	Returns
	See Also

	MovieClip.getURL() Method
	Description
	Parameters
	See Also

	MovieClip.globalToLocal() Method
	Description
	Parameters
	Example
	See Also

	MovieClip.gotoAndPlay() Method
	Description
	Parameters
	See Also

	MovieClip.gotoAndStop() Method
	Description
	Parameters
	See Also

	MovieClip._height Property
	Description
	See Also

	MovieClip.hitTest() Method
	Description
	Parameters
	Returns
	Example
	See Also

	MovieClip.lmSetCurrentState() Method
	Description
	Parameters
	Example

	MovieClip.loadMovie() Method
	Description
	Parameters
	Example
	See Also

	MovieClip.loadVariables() Method
	Description
	Parameters
	See Also

	MovieClip.localToGlobal() Method
	Description
	Parameters
	See Also

	MovieClip._name Property
	Description

	MovieClip.nextFrame() Method
	Description
	Parameters
	See Also

	MovieClip._parent Property
	Description

	MovieClip.play() Method
	Description
	Parameters
	See Also

	MovieClip.prevFrame() Method
	Description
	Parameters
	See Also

	MovieClip.removeMovieClip() Method
	Description
	Parameters
	See Also

	MovieClip._rotation Property
	Description

	MovieClip.startDrag() Method
	Description
	Parameters
	Example
	See Also

	MovieClip.stop() Method
	Description
	Parameters

	MovieClip.stopDrag() Method
	Description
	Parameters
	Example
	See Also

	MovieClip.swapDepths() Method
	Description
	Parameters
	Example

	MovieClip._target Property
	Description
	Example
	See Also

	MovieClip._totalframes Property
	Description
	See Also

	MovieClip.unloadMovie() Method
	Description
	Parameters
	See Also

	MovieClip._url Property
	Description
	See Also

	MovieClip.valueOf() Method
	Description
	Parameters

	MovieClip._visible Property
	Description
	See Also

	MovieClip._width Property
	Description
	See Also

	MovieClip._x Property
	Description
	See Also

	MovieClip._xmouse Property
	Description
	See Also

	MovieClip._xscale Property
	Description
	See Also

	MovieClip._y Property
	Description
	See Also

	MovieClip._ymouse Property
	Description
	See Also

	MovieClip._yscale Property
	Description
	See Also

	NaN Global Property
	Description
	Example
	See Also

	Newline Constant
	Description

	NextFrame() Global Function
	Description
	Parameters
	See Also

	Number() Global Function
	Description
	Parameters
	Returns
	Example
	See Also

	Number Object
	Description
	Constructor
	Parameters
	Properties
	Methods

	Number.MAX_VALUE Property
	Description
	Example
	See Also

	Number.MIN_VALUE Property
	Description
	Example
	See Also

	Number.NaN Property
	Description
	Example

	Number.NEGATIVE_INFINITY Property
	Description
	Example
	See Also

	Number.POSITIVE_INFINITY Property
	Description
	Example
	See Also

	Number.toString() Method
	Description
	Parameters
	Returns
	Example
	See Also

	Number.valueOf() Method
	Description
	Parameters
	See Also

	Object Class
	Description
	Constructor
	Parameters
	Properties
	Methods

	Object.constructor Property
	Description
	Example

	Object.__proto__ Property
	Description
	Example

	Object.toString() Method
	Description
	Parameters
	Example
	See Also

	Object.valueOf() Method
	Description
	Parameters
	See Also

	ParseFloat() Global Function
	Description
	Parameters
	Returns
	Example
	See Also

	ParseInt() Global Function
	Description
	Parameters
	Returns
	Example
	See Also

	Play() Global Function
	Description
	Parameters
	See Also

	PrevFrame() Global Function
	Description
	Parameters
	See Also

	Quality Global Property
	Description
	See Also

	RemoveMovieClip() Global Function
	Description
	Parameters
	See Also

	Root Global Property
	Description
	See Also

	Scroll Global Property
	Description
	See Also

	Selection Object
	Description
	Properties
	Methods

	Selection.getBeginIndex() Method
	Description
	Parameters
	Returns
	See Also

	Selection.getCaretIndex() Method
	Description
	Parameters
	Returns

	Selection.getEndIndex() Method
	Description
	Parameters
	Returns
	See Also

	Selection.getFocus() Method
	Description
	Parameters
	Returns
	See Also

	Selection.setFocus() Method
	Description
	Parameters
	See Also

	Selection.setSelection() Method
	Description
	Parameters
	See Also

	Sound Object
	Description
	Constructor
	Parameters
	Methods

	Sound.attachSound() Method
	Description
	Parameters

	Sound.getPan() Method
	Description
	Parameters
	Returns
	See Also

	Sound.getTransform() Method
	Description
	Parameters
	Returns
	See Also

	Sound.getVolume() Method
	Description
	Parameters
	Returns
	See Also

	Sound.setPan() Method
	Description
	Parameters
	See Also

	Sound.setTransform() Method
	Description
	Parameters
	Example
	See Also

	Sound.setVolume() Method
	Description
	Parameters
	See Also

	Sound.start() Method
	Description
	Parameters
	See Also

	Sound.stop() Method
	Description
	Parameters
	See Also

	Soundbuftime Global Property
	Description

	StartDrag() Global Function
	Description
	Parameters
	See Also

	Stop() Global Function
	Description
	Parameters
	See Also

	StopAllSounds() Global Function
	Description
	Parameters

	StopDrag() Global Function
	Description
	Parameters
	See Also

	String() Global Function
	Description
	Parameters
	Returns
	See Also

	String Object
	Description
	Constructor
	Parameters
	Properties
	Methods

	String.charAt() Method
	Description
	Parameters
	Returns
	Example
	See Also

	String.charCodeAt() Method
	Description
	Parameters
	Returns
	Example

	String.concat() Method
	Description
	Parameters
	Returns
	Example

	String.fromCharCode() Method
	Description
	Parameters
	Returns
	Example

	String.indexOf() Method
	Description
	Parameters
	Returns
	Example
	See Also

	String.lastIndexOf() Method
	Description
	Parameters
	Returns
	Example
	See Also

	String.length Property
	Description
	Example

	String.slice() Method
	Description
	Parameters
	Returns
	Example
	See Also

	String.split() Method
	Description
	Parameters
	Returns
	Example
	See Also

	String.substr() Method
	Description
	Parameters
	Returns
	Example
	See Also

	String.substring() Method
	Description
	Parameters
	Returns
	Example
	See Also

	String.toLowerCase() Method
	Description
	Parameters
	Returns
	Example
	See Also

	String.toUpperCase() Method
	Description
	Parameters
	Returns
	Example
	See Also

	TargetPath() Global Function
	Description
	Parameters
	Returns
	See Also

	Trace() Global Function
	Description
	Parameters
	Example

	Unescape() Global Function
	Description
	Parameters
	Example
	See Also

	UnloadMovie() Global Function
	Description
	Parameters
	See Also

	UnloadMovieNum() Global Function
	Description
	Parameters
	See Also

	UpdateAfterEvent() Global Function
	Description
	Parameters

	XML Object
	Description
	Constructor
	Parameters
	Properties
	Methods
	Event Handlers

	XML.appendChild() Method
	Description
	Parameters
	Example
	See Also

	XML.attributes Property
	Description
	Example
	See Also

	XML.childNodes Property
	Description
	Example
	See Also

	XML.cloneNode() Method
	Description
	Parameters
	Returns
	Example
	See Also

	XML.contentType Property
	Description
	See Also

	XML.createElement() Method
	Description
	Parameters
	Returns
	Example
	See Also

	XML.createTextNode() Method
	Description
	Parameters
	Returns
	Example
	See Also

	XML.docTypeDecl Property
	Description
	Example
	See Also

	XML.firstChild Property
	Description
	Example
	See Also

	XML.hasChildNodes() Method
	Description
	Parameters
	Returns
	Example
	See Also

	XML.ignoreWhite Property
	Description

	XML.insertBefore() Method
	Description
	Parameters
	Example
	See Also

	XML.lastChild Property
	Description
	Example
	See Also

	XML.load() Method
	Description
	Parameters
	Returns
	See Also

	XML.loaded Property
	Description
	See Also

	XML.nextSibling Property
	Description
	Example
	See Also
	“XML.childNodes Property” on page�277, “XML.firstChild Property” on page�281, “XML.lastChild Prop...

	XML.nodeName Property
	Description
	See Also

	XML.nodeType Property
	Description
	See Also

	XML.nodeValue Property
	Description
	See Also

	XML.onData() Event Handler
	Description
	Parameters
	Example
	See Also

	XML.onLoad() Event Handler
	Description
	Parameters
	Example
	See Also

	XML.parentNode Property
	Description
	Example
	See Also

	XML.parseXML() Method
	Description
	Parameters
	See Also

	XML.previousSibling Property
	Description
	Example
	See Also

	XML.removeNode() Method
	Description
	Parameters
	See Also

	XML.send() Method
	Description
	Parameters
	See Also

	XML.sendAndLoad() Method
	Description
	Parameters
	See Also

	XML.status Property
	Description
	See Also

	XML.toString() Method
	Description
	Parameters
	Returns
	Example
	See Also

	XML.xmlDecl Property
	Description
	Example
	See Also

	XMLnode Object
	Description

	XMLSocket Object
	Description
	Constructor
	Parameters
	Methods
	Event Handlers

	XMLSocket.close() Method
	Description
	Parameters
	See Also

	XMLSocket.connect() Method
	Description
	Parameters
	Returns
	Example
	See Also

	XMLSocket.onClose() Event Handler
	Description
	Parameters
	Example
	See Also

	XMLSocket.onConnect() Event Handler
	Description
	Parameters
	Returns
	Example
	See Also

	XMLSocket.onData() Event Handler
	Description
	Parameters
	Example
	See Also

	XMLSocket.onXML() Event Handler
	Description
	Parameters
	Example
	See Also

	XMLSocket.send() Method
	Description
	Parameters
	See Also

