Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Introduction

Overview of thisguide coiiiiiiiiiii i 11
Whatyou shouldknow i 11
Organization of thisguidecoviiiiiiiiiiiieinenn.. 12
Hands-on examplesinthisguideol 13
Where to go for more information l 14
Overview

Scriptauthoring ... 15
LiveMotion objectsc.iniii e 15
Writing scriptsto objects ... i 15
Extending functionality —o i 16
Scriptlocations ... e 17
JavaScriptin LiveMotion i 17
Writing Scripts

Introduction to script writing ... 23
Script Editor overview ... 24
Using labels ... i 26
Using script keyframes —ooiiiii i 27
Usingeventhandlers i 32
Using state SCripts ...o.eiiiniii i 35
Behaviors

Introduction to behaviors 39
Working with scripts that replace behaviors 39

Creating LiveMotion 1.0 behaviors using LiveMotion 2.0 scripts 45

Movie Clips
Introduction to movieclipso 61
How to create a movie clip using LiveMotion 62

Movie clip hierarchy ... o 64

2| CONTENTS

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Movie clipaddressing c.iiiiii e 66
Movie clip properties and methodsl 69
Creating movie clips programmatically 77
Making shareable movie clips (and shareable sounds) 83
Levelsofthe Flash Playerccoiiiiiiiiiiiinininnn., 86

Movie Clip Events and Event Handlers

Introductiontoevents ...l 89
System-based events and eventhandlers 920
Key eventsand eventhandlers il 94
Mouse events and eventhandlersc.oaLl 97
Button eventsand eventhandlers l 98
State change eventsand handlers 102
Automatically generated button event handlers 103

Dynamic Data

Formsandtextfieldsoocoiiiiiiiiiiiiiiiiiin.. 105
loadVariables(), loadMovie(), and getURL() 108
How to create a form and send its data to a server 110
XML communicationscooiiiiiiiiiiiii i 11
XML socket communicationsc.oiiiiiiiiiiiin, 112
Script Editor

Introduction to the Script Editor l 115
Exploring the Script Editor ... 115
Script Editor buttons ... 116
Debugger

Introduction to the Debugger ...t 127
Exploring the Debugger 127
Using the Console window coiiiiiiiiiiiian., 138
Reference

Introduction ... 143
Keywords and Statement Syntaxcoiiiiiiiiiiian.. 143

(@7 07=1 - o] 3P 144

Reference for Objects, Methods, Properties, and Globals 147

Arguments Object ... oo 147
Arguments.callee Propertyo 148
Arguments.length Propertyo 148
Array ObjJECt o e 149
Array.concat() Method 150
Arrayjoin() Methodo 151
Arraylength Property ... 152
Array.pop() Methodo it 153
Array.push() Method 153
Array.reverse() Method 154
Array.shift() Method 155
Arrayslice() Method 156
Array.sort() Method ... 157
Array.splice() Method i 158
Array.toString() Method 160
Array.unshift() Method 160
Boolean() Global Function ...t 161
Boolean Object ...t 162
Boolean.toString() Method 163
Boolean.valueOf() Method c.ooiiiiiiiiiiiiiiinn.., 163
Color ObjJect .ot 164
Color.getRGB() Method ... 165
Color.getTransform() Method coviiiiiiininnn, 165
Color.setRGB() Method ... 166
Color.setTransform Method ccoooiiiiiiiiiiiin.... 167
Date() Global Function 168
Date Object ..ot e 169
Date.getDate() Methodo 173
Date.getDay() Methodo 174
Date.getFullYear() Method, 174
Date.getHours() Method ... 175
Date.getMilliseconds() Method coiiiiiiiiat. 175
Date.getMinutes() Methodo 176
Date.getMonth() Method, 176
Date.getSeconds() Method t 177

Date.getTime() Method ... oo 177

4| CONTENTS

Date.getTimezoneOffset() Methodccoveenn.. 178
Date.getUTCDate() Methodt 178
Date.getUTCDay() Methodot 179
Date.getUTCFullYear() Method c.coiiiiiiiiiia.. 179
Date.getUTCHours() Methodt 180
Date.getUTCMilliseconds() Method c.ooiiiat. 180
Date.getUTCMinutes() Method c.oiiiiiiiiiiiiat. 181
Date.getUTCMonth() Method c.coiiiiiiiiiiiia... 181
Date.getUTCSeconds() Method ..., 182
Date.getYear() Methodo 182
Date.setDate() Method 183
Date.setFullYear() Method cooiiiiiiiiiiiiiia.t, 184
Date.setHours() Method 185
Date.setMilliseconds() Method c.oooiiiia.t. 185
Date.setMinutes() Methodc.oiiiiiiiiiiiiiin... 186
Date.setMonth() Method ocoiiiiiiiiiiiiiiin.. 187
Date.setSeconds() Method ...t 187
Date.setTime() Method 188
Date.setUTCDate() Method coiiiiiiiiiiiininn.n. 189
Date.setUTCFullYear() Method coiiiiiiiiiia... 189
Date.setUTCHours() Method c..cooiiiiiiiiiinat.. 190
Date.setUTCMilliseconds() Method c..ooeentt. 191
Date.setUTCMinutes() Methodcoiiiiiiiiiat.. 192
Date.setUTCMonth() Method ...ttt 192
Date.setUTCSeconds() Method coooiiiiiiiintn. 193
Date.setYear()Methodo 194
Date.toString() Methodo 195
Date.UTC() Methodottt 195
Date.valueOf() Method coeiiiiiiiiiiii e 196
duplicateMovieClip() Global Function 197
escape() Global Function 198
eval() Global Function 199
_focusrect Global Property coiiiiiiiiiiiiiiiiiaan 199
fscommand() Global Functioncooiiiiiiiiiat 200
getTimer Global Function, 200
getURL Global Function o 201

getVersion() Global Function ..., 202

gotoAndPlay() Global Function ...l 203

gotoAndStop() Global Function oLl 204
Infinity Global Propertycooiiiiiiiiiiii i 204
-Infinity Global Propertyccoviiiiiiiiiii i 204
isFinite Global Function o il 205
IsNan() Global Function ..., 205
Key Object ..o e 206
Key.BACKSPACE Constant ooeviiiiiiiniiiinananen 208
Key.CAPSLOCK Constant c.oeiiiiiiiiiiiinenenennn 208
Key.CONTROL Constant oiiiiiiniiiniiinanenennn 208
Key.DELETEKEY Constant cooiiiiiiniiniiiinananen 209
Key.DOWN Constant iniiiiiiiiii i 209
Key.END Constantciuiniiiiniiiiiiii i 209
Key.ENTER Constantciuiiiniii it 210
Key.ESCAPE Constant c.ouiiiniiiiiiiii i 210
Key.getAscii() Method 211
Key.getCode() Methodo 211
Key.HOME Constantc.ooiuiniiiiii i 212
Key.INSERT Constant oiiiiiiiii e 212
Key.isDown() Method i 212
Key.isToggled() Method ... oo 213
Key.LEFT Constant ooinitii et 214
Key.PGDN Constant oiuiiiiiiiii i 214
Key.PGUP Constantciiiiiniiiiiiii i 215
Key.RIGHT Constant ciuiniiiii et 215
Key.SHIFT Constant o.iuiiii e 215
Key.SPACE Constant c.iiuiniiiiii it 216
Key. TAB Constant ooiuiiiiii it 216
Key.UP Constant o.iiuiiiiiii e 216
_leveln Global Propertyot 217
ImFrameOfLabel() Global Function coocin.t 217
loadMovie() Global Function ...t 218
loadMovieNum() Global Functioncoocoaee. 219
loadVariables() Global Functionoooiiiiil 220
loadVariablesNum() Global Function 221
Math Object ... o 222

Math.abs() Method ... 224

6 | CONTENTS

Math.acos() Methodot 224
Math.asin() Method 225
Math.atan() Method i 225
Math.atan2() Methodt 226
Math.ceil() Method 226
Math.cos() Method 227
Math.EConstant coiniiiiiiiii i 227
Math.exp() Method o i 228
Math.floor() Methodccoiiiiiiiiiiii 228
Math.LN2 Constant ouiiiiiiiiiiiiiii e 228
Math.LNT0 Constant c.iiiiiniiiiiiiiii e 229
Math.log() Method ovvviieeeeeiiie i iiiiiiiieeennn 229
Math.LOG2E Constant oouiiiiiriiiiiniiineninnennnn. 229
Math.LOGTOE Constant c.viiiniiiiiniiiiiniinennnn. 230
Math.max() Method ... 230
Math.min() Method 230
Math.PlConstantciiiiiiiiiii e 231
Math.pow() Method 231
Math.random() Method t 231
Math.round() Methodo 232
Math.sin() Method 232
Math.sqrt() Method ... i 233
Math.SQRT1_2 Constant c.coiviriiiiiniiiiininnenn.n. 233
Math.SQRT2 Constant oeuviiiiniiiiiiiiiiiiaeennn. 233
Math.tan() Method 233
Mouse ObjJect ... 234
Mouse.hide() Method 234
Mouse.show() Method ...t 235
MovieClip Object ... i 235
MovieClip._alpha Property coiiiiiiiiiiii e 239
MovieClip.attachMovie() Method oiiiiat. 239
MovieClip._currentframe Propertycccoovvivvnennn... 241
MovieClip._droptarget Propertyc.ociiiiiiian.. 241
MovieClip.duplicateMovieClip() Method 241
MovieClip._framesloaded Property cocovineen... 242
MovieClip.getBounds() Method ot 243

MovieClip.getBytesLoaded() Method 244

MovieClip.getBytesTotal() Method ccooiiat. 245

MovieClip.getURL() Method 245
MovieClip.globalToLocal() Method c.oiiiat. 246
MovieClip.gotoAndPlay() Methodcoiiiiiat. 247
MovieClip.gotoAndStop() Method coiiiiat. 247
MovieClip._height Propertyo 248
MovieClip.hitTest() Methodt 248
MovieClip.ImSetCurrentState() Method 249
MovieClip.loadMovie() Method , 250
MovieClip.loadVariables() Method cooiiiatt. 251
MovieClip.localToGlobal() Method oiiat. 251
MovieClip._name Property cooiiiiiiiiiiinannan.. 252
MovieClip.nextFrame() Methodt 252
MovieClip._parent Property —c.coiuiuiiiiiiiinennnennn. 252
MovieClip.play() Method 253
MovieClip.prevFrame() Method o, 253
MovieClip.removeMovieClip() Method 253
MovieClip._rotation Propertyc.coiiiiiiiiiiiiion.. 254
MovieClip.startDrag() Method oiiiiiiiat. 254
MovieClip.stop() Methodo 255
MovieClip.stopDrag() Method, 255
MovieClip.swapDepths() Method cooiiiiat. 256
MovieClip._target Propertycooiiiiiiiiiiiiiiiinan.. 257
MovieClip._totalframes Propertycccoviiviiiinenn... 257
MovieClip.unloadMovie() Method ooiiiiiit, 257
MovieClip._url Property ...ttt 258
MovieClip.valueOf() Method ccciviiiiiiiinaan... 258
MovieClip._visible Property ..., 258
MovieClip._width Propertyo 259
MovieClip._x Propertyciuiiiiiiiiiiiiii i 259
MovieClip._xmouse Property c.coiiiiiiiiinininnen.. 260
MovieClip._xscale Propertycooiiiiiiiiiiiiiiiinen.. 260
MovieClip._y Propertycoouiuiiii i 260
MovieClip._ymouse Property c.coiiiiiiiiinininnen.. 261
MovieClip._yscale Property coeiiiiiiiiiiiien.. 261
NaN Global Property ...t 262

newline Constant ooiiiiiiii i e 262

8| CONTENTS

nextFrame() Global Functionol 263
Number() Global Functionc.cooiiiiiiiiiiiiia... 263
Number Object ... 264
Number.MAX_VALUE Propertyc.cooiviiiiiinininnen.. 265
Number.MIN_VALUE Property —c.coiiiiiiiininanennen.. 265
Number.NaN Propertyoooiiii e 266
Number.NEGATIVE_INFINITY Property —ccoovninn... 266
Number.POSITIVE_INFINITY Property ccvvinininnn.. 267
Number.toString() Method i 268
Number.valueOf() Methodc.oooiiiiiiiiiiiiin.., 268
Object Class . o.inieit e e 269
Object.constructor Property cooiiiiiiiiiiiininn. 270
Object.__proto__ Propertycoeeiuiuiiiiiiiiiiiaaann 270
Object.toString() Method i 271
Object.valueOf() Method ccviiiiiii i 272
parseFloat() Global Functionciiiiiiiiiiiia.. 273
parselnt() Global Function il 273
play() Global Function i 274
prevFrame() Global Function it 275
_quality Global Property ... 275
removeMovieClip() Global Function 275
_root Global Propertyo 276
Selection Object ...t 276
Selection.getBeginindex() Method ...l 277
Selection.getCaretIndex() Method ...t 278
Selection.getEndIndex() Method o 278
Selection.getFocus() Method ...l 279
Selection.setFocus() Method ...l 279
Selection.setSelection() Method cooiiiiiil 280
Sound Object ..ot e 280
Sound.attachSound() Method ...l 281
Sound.getPan() Methodo 282
Sound.getTransform() Methodcoiiiiinnn, 282
Sound.getVolume() Method 283
Sound.setPan() Methodl 284
Sound.setTransform() Method coiiiiiiin.... 284

Sound.setVolume() Method ...t 285

Sound.start() Method 286

Sound.stop() Method o i 286
_soundbuftime Global Propertycccoviiiiiiiiiin.. 287
startDrag() Global Function, 287
stop() Global Function i 288
stopAllSounds() Global Function ...l 288
stopDrag() Global Function, 288
String() Global Function i 289
String Object .o 290
String.charAt() Methodo 291
String.charCodeAt() Method, 292
String.concat() Method 293
String.fromCharCode() Method coviiiiiinnaaat. 294
String.indexOf() Method coiiiiiiiiii i 294
String.lastindexOf() Method coiiiiiiiiiiinaaat, 295
String.length Propertyooiiiiiii i 296
String.slice() Method ... 297
String.split() Method 297
String.substr() Method 298
String.substring() Method i 299
String.toLowerCase() Method ..., 301
String.toUpperCase() Method, 301
targetPath() Global Functionl 302
Text Field Propertiest 302
trace() Global Function 303
unescape() Global Function i, 304
unloadMovie() Global Functionc.coiiiiiiiil, 304
unloadMovieNum() Global Function 305
updateAfterEvent() Global Function 306
XML ODJECt oot 306
XML.appendChild() Method coiiiiiiiiiii 309
XML.attributes Property oiiiii e 309
XML.childNodes Property —c.ciieiiiiiiiiiiiiiiianenn, 310
XML.cloneNode() Method ..., 3N
XML.contentType Property ccviiiiniiniiniinnananen. 311
XML.createElement() Method ...t 312

XML.createTextNode() Method ccviiiiiiiin., 313

10| CONTENTS

XML.docTypeDecl Propertycooieiniiiiiiiiiiinann, 314
XML firstChild Property coouveiiniieiieieiienennanns 314
XML.hasChildNodes() Method ...t 315
XML.ignoreWhite Propertycoieiuiniiiiiiiiiiiiaenn, 315
XML.insertBefore() Method ccooiiiiiiiiiiiiiie.., 316
XML.lastChild Propertyot 317
XMLload() Method oo 317
XML.loaded Propertyouiiiiiiii i 318
XML.nextSibling Propertyot 318
XML.nodeName Property ooiiriiiiiiiiiiiiiiiaaannn. 319
XML.nodeType Propertyceieiiiiiiiniiiiiiininenannn. 319
XML.nodeValue Property oiiiiiiiiiiiiiiiiaenn 320
XML.onData() EventHandler ...l 320
XML.onLoad() EventHandler ...l 321
XML.parentNode Propertycooiuiiiiiiiiiiiiiaann, 322
XML.parseXML() Methodt 322
XML.previousSibling Property —oooiiiiiiiiiiiin 323
XML.removeNode() Methodc.cooiiiiiiiiiiiiiit, 323
XMLsend() Method ...t 324
XML.sendAndLoad() Method ...t 324
XML.status Property o.oiiiiniiiiii i 325
XML.toString() Method vvvveeeee i iiiiiiiieeeenns 326
XMLxmIDecl Property ..o 326
XMLnode Object ...t 327
XMLSocket Object ...oiei e 327
XMLSocket.close() Method ... 328
XMLSocket.connect() Method ...l 329
XMLSocket.onClose() EventHandler 330
XMLSocket.onConnect() Event Handler 331
XMLSocket.onData() Event Handler 332
XMLSocket.onXML() EventHandler 332
XMLSocket.send() Method ..., 333
Glossary Termsottt 335

11

Introduction

Overview of this guide

The LiveMotion 2.0 Scripting Guide is your guide to enhancing compositions created with the
LiveMotion user interface. By incorporating JavaScript code into your compositions, you can
control animations and responses to user events in ways that would be impossible or extremely
tedious to do with the user interface tools and menus alone. If you have created behaviors in
LiveMotion 1.0, you will soon recognize the power of scripting in LiveMotion 2.0. With some
practice and working with scripting language, you are bound to be a convert.

Early sections of this guide start with some simple examples to get you started with scripting
right away. Just understanding how to create a simple composition that uses scripts may be all
you need to know. Later sections take you through more advanced examples and cover the
highlights of scripting LiveMotion 2.0 compositions.

What you should know

This guide assumes that you have an understanding of JavaScript syntax. If you do, the transition
to writing scripts should be easy. The scripts that you write are JavaScript with a few differences
to support exporting your .| i v file to the SWEF file format. “JavaScript in LiveMotion” on page 17
points out some of these differences.

If you need to learn JavaScript language fundamentals, such as what operators, variables, and
looping mechanisms are, you will find a wealth of publications available online and at your local
bookstore.“Where to go for more information” on page 14 lists several publications and some
helpful Web sites.

12

Introduction

Organization of this guide

This guide is organized as follows:

* “Introduction” on page 11 acquaints you with the LiveMotion 2.0 Scripting Guide, tells you
what you should know before you start reading, summarizes section contents and organization,
lists all the hands-on examples and where they are located in this guide, and provides references
for additional information.

*+ “Overview” on page 15 introduces LiveMotion’s authoring environment, provides a high-level
description of objects and movie clips, and points out the advantages of using scripting in
LiveMotion compositions. In addition, this section identifies the extensions to JavaScript plus
what is not supported in JavaScript when creating compositions that can be exported as SWF
files.

+ “Writing Scripts” on page 23 gets you up and running. It describes basic ways you can manip-
ulate objects through scripting. In the process, you learn where and how to add scripts to your
compositions. The chapter uses very simple scripting examples. It is meant to reach everyone
who will be writing scripts, including those who are very new to scripting.

* “Behaviors” on page 39 provides procedures for creating scripts for each of the LiveMotion 1.0
behaviors.

* “Movie Clips” on page 61 describes how create movie clips manually and programmatically,
how to use built-in movie clip methods and properties, how to create your own movie clip
methods and properties, how to reference movie clips in the object hierarchy, and finally how to
load and unload SWF files.

* “Movie Clip Events and Event Handlers” on page 89 describes how to write [system-based and
user-generated] event handlers. The section provides several hands-on examples showing ways
to create these handlers.

* “Dynamic Data” on page 105 describes how to create LiveMotion applications that dynami-
cally accept user input and respond with the results of user queries within the LiveMotion movie
clip or browser window.

* “Script Editor” on page 115 introduces and explains in detail how to use the Script Editor
features to help you with writing scripts

* “Debugger” on page 127 describes the Debugger and Console window in detail.

ADOBE LIVEMOTION 2.0 |13
Scripting Guide

* “Reference” on page 143 is the detailed reference to writing scripts. The chapter describes each
global variable and function, each object and its associated methods and properties in the JavaS-
cript extensions, and all the JavaScript core functions that are supported when writing scripts.

* “Glossary Terms” on page 335 defines terms used in this guide.

Hands-on examples in this guide

This guide provides hands-on examples to get you involved in writing scripts that exercise
pertinent concepts. You are encouraged to save your examples, but this is optional. A few of them
are used again, but in those cases, the examples let you know if you should save results.

Here is a list of all the hands-on examples and their locations in this guide:

“Writing Scripts”

+ “Hands-on example 2_1: Writing a keyframe script to the composition timeline” on page 27
+ “Hands-on example 2_2: Writing a keyframe script to a movie clip timeline” on page 30
 “Hands-on example 2_3: Creating a simple event handler” on page 33

+ “Hands-on example 2_4: Initializing a movie clip property” on page 34

+ “Hands-on example 2_5: Creating a bounds check” on page 35

+ “Hands-on example 2_6: Creating a state script” on page 36

“Behaviors”
+ “Hands-on example 3_1: Changing movie clip states” on page 47

+ “Hands-on example 3_2: Creating a preloader” on page 54

“Movie Clips”

+ “Hands-on example 4_1: Mouse trailer” on page 72

“Events and Event Handlers”
+ “Hands-on example 5_1: Using system-based event handlers to rotate a movie clip” on page 91
 “Hands-on example 5_2: Programmatic bounce” on page 92

+ “Hands-on example 5_3: Creating an onKeyDown event handler” on page 96

14

Introduction

+ “Hands-on example 5_4: Creating a simple button event handler” on page 100
* “Hands-on example 5_5: Creating a toggle button” on page 101

+ “Hands on example 5_6: Experimenting with automatically generated button handlers” on
page 103

Where to go for more information

For more information on LiveMotion

See the LiveMotion 2.0 User Guide for detailed information on using Adobe Online to access a
resources that will help you with using LiveMotion.

For information on JavaScript

Flanagan, David, JavaScript The Definitive Guide, Third Edition, O’Reilly & Associates, 1998
(ISBN: 1-56592-392-8)

Moncur, Michael, Teach Yourself JavaScript in 24 Hours, Second Edition, Sams, 2000
Goodman, Danny, JavaScript Bible, Fourth Edition, IDG Books, 2000
Smith, Dori and Tom Negrino, JavaScript For the World-Wide Web

Wyke, Gilliam, and Ting, Pure JavaScript, Sams, 1999

Web sites

Check http://www.adobe.com for updated lists of reference sites.

See http://www.moock.org for ActionScript help to assist you in learning about LiveMotion
scripting.

Chapter 1: Overview

Script authoring

LiveMotion 2.0 is a script authoring tool. It makes use of a JavaScript editor, interpreter, and
debugger, which enable you to create, preview, troubleshoot, and export the scripted contents of
your composition(.l i v file).

Through the Script Editor you can write scripts to the composition and movie clip timelines. In
addition, you can write scripts that respond to events such as pressing a key or loading a movie
clip. The Script Editor provides guidance in using the JavaScript core syntax and extensions. It

lists all the current movie clips, labels, and states defined in your composition, provides you with
the ability to set breakpoints, and assists you in locating all the scripts that are currently written.

LiveMotion 2.0 also includes aDebugger that you can use in Preview mode to troubleshoot your
compositions before they are exported. The Debugger not only locates and identifies errors but
provides you with a number of significant debugging features including the ability to view
variable values, set script breakpoints, and step through lines of a script as they are executed.
When you are satisfied with the way a composition is working, you can export it to the SWF file
format for viewing in the standalone Flash Player or in the Flash Player plug-in installed in your
Netscape or Microsoft Internet Explorer browser. Exporting the. | i v file causes the JavaScript it
contains to be converted to ActionScript and embedded in the exported SWE file.

LiveMotion objects

Asyou recall from the LiveMotion 2.0 User Guide, objects are the basic element of a composition,
and they have a hierarchical organization. Movie clips, the focus of this guide, are also objects.
And they can be manipulated manually in all the ways you have already learned about in the User
Guide, plus new ways.

Writing scripts to objects

You can manipulate objects through the JavaScript scripting language. This opens up all sorts of
new possibilities for handling objects. However, you can only write scripts to a certain type of
object, namely, the movie clip.

15

16| CHAPTER 1
Overview

A movie clip starts out as a “regular” (unscriptable) object. To access it through scripting, you
must convert the object into a movie clip. A movie clip has its own timeline so that it can play
independently of the composition timeline and independently of any parent timeline (in the case
of nested movie clips). When you add states to an object, LiveMotion automatically converts the
object into a movie clip for you. Movie clips are equivalent to the time-independent objects and
time-independent groups in LiveMotion 1.0.

Extending functionality

By writing scripts, you can perform many functions on a movie clip that are equivalent to those
you can perform without using scripting. You can, for example, set a movie clip’s vertical and
horizontal position properties. This capability is equivalent to setting the position stopwatch and
creating animation keyframes. By setting properties through scripts, you can perform functions
such as changing an object’s opacity, rotation, and scale—to name a few. However, this is just the
beginning of what you can do through scripting.

Scripting enables you to control how your composition responds to events when they occur, use
logic to compare values and make decisions based on those values, easily repeat long processes
using a variety of looping mechanisms, respond to user events such as mouse and keyboard
changes, and encapsulate tasks into functions that can be called by any number of movie clips
anywhere in a composition. Not only can you write scripts that interact with the user, you can
write scripts that interact with servers. Through scripting, you can get data from a server and
post data to the server. The information obtained from a server can be used to dynamically
update your composition. You will find it difficult, if not, impossible, to perform most these
tasks through the use of keyframes (and basic LiveMotion 1.0 behaviors). These programmatic
controls, available through the JavaScript language, extend what you can create with keyframes
and enable you to fine tune your composition.

ADOBE LIVEMOTION 2.0 |17
Scripting Guide

Script locations

You can attach scripts at different locations in your composition to achieve the result that you
are after, whether that be animation, user interaction, or interaction with a server. These
locations are:

* On keyframes
+ In event handlers
* In state change handlers

Although using labels is not a script writing technique in and of itself, you typically use labels in
combination with scripts to redirect the flow of execution of a timeline to a frame with the
identifying label. For example, this script takes the playhead of myCl i p’s timeline to the frame
labeled “start ”:

myCl i p. got oAndPl ay("Start");
For more information on writing scripts to various locations in your composition, see “Writing

Scripts” on page 23. That section introduces you to script writing and provides short exercises
that you can work through.

JavaScriptin LiveMotion

The LiveMotion scripting environment is based on JavaScript, but it also is compatible with
ActionScript and ECMA-standard JavaScript (with a few caveats). Table 1.1 describes these
caveats.

18| CHAPTER 1

Table 1.1

standard JavaScript

JavaScript as Implemented in LiveMotion, Compared to ActionScript and ECMA-

Characteristic

ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaSs-
cript vs. the JavaScript
implementation in Live-
Motion

Case

swi tch/ case
construct

States

eval () global
function

Support for
Unicode

Maximum
number of
nestedwi t h
statements.

Exception han-
dling

Functi on
constructor

In ActionScript, keywords are case sensitive, but vari-
ables and other identifiers are not. JavaScript as imple-
mented in LiveMotion behaves the same way.

ActionScript does not support the swi t ch/ case
construct. JavaScript and the LiveMotion scripting
environment do.

With thenovi e i p. | nBet Current St ate()
method, LiveMotion supports the setting of states of
movie clips using scripting code. ActionScript does
not support this.

The ActionScript and the LiveMotion scripting envi-
ronments implement the eval () global function in
the same way. (See “Reference” on page 143.)

ActionScript and JavaScript as implemented in Live-
Motion do not support Unicode.

ActionScript and JavaScript as implemented in Live-
Motion supportamaximum of 8 levels of nestedwi t h
statements.

ActionScript and LiveMotion do not support excep-
tion handling.

ActionScript and LiveMotion do not support the
Funct i on constructor. However, object-based func-
tions can be created. For example:

this. myFunction = function() {}

ECMA-standard JavaS-
cript is entirely case sen-
sitive.

ECMA-standard JavaS-
cript and JavaScript as
implemented in LiveMo-
tion both support the
Swi t ch/ case syntax.

ECMA-standard JavaS-
cript has no language
facilities to deal with
states of objects in this
sense.

ECMA-standard JavaS-
criptimplements an
expanded eval () func-
tion.

ECMA-standard JavaS-
cript supports Unicode.

ECMA-standard JavaS-
cript supports any num-
ber of levels of nested
Wi t h statements.

ECMA-standard JavaS-
cript supports error
objects and exception
classes.

ECMA-standard JavaS-
cript supports the
Functi on constructor.

ADOBE LIVEMOTION 2.0 |19
Scripting Guide

Characteristic

ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaSs-
cript vs. the JavaScript
implementation in Live-
Motion

Frame numbers

In ActionScript, the following global functions and
movie clip methods accept either frames or labels as
arguments. In LiveMotion, only labels are used.

got oAndPI ay() global function
got 0AndSt op() global function
novi eCl i p. got oAndPl ay() method
novi eCl i p. got oAndPl ay() method

In addition, the | nFr aneof Label () global function
is available in LiveMotion but not in ActionScript. In
LiveMotion, it is used to return the frame number of
the label that is passed in as an argument to the call.
| nFr aneof Label () on works for labels on the
_root timeline.

ECMA-standard JavaS-
cript has no language
facilities to deal with
frames or labels in this
sense.

20| CHAPTER 1
Overview

Characteristic

ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaSs-
cript vs. the JavaScript
implementation in Live-
Motion

Syntax

JavaScript as implemented in LiveMotion supports
most ActionScript syntax. For a complete listing, see
“Reference” on page 143. The following ActionScript
syntax is not supported, either because it was depre-
cated in Flash 5, or for other reasons.

cal I () function

chr () function

get Property() function

_hi ghqual i ty property

i f FrameLoaded() function

i nt () function

next Scene() function
prevScene() function

print () function

print AsBi t map() function
print AsBi t mapNun{) function
print Num() function
randon() function

set Property() function

set statement

set Vari abl e() function
substring() function

tel | Target () function

t oggl eHi ghQual i ty() function
$ver si on() function

Most common string operators (e.g., add and and)

Note that some deprecated Flash 5 calls can be dupli-
cated using JavaScript syntax. For example, the follow-
ing code shows how you can mimicget Property()
andset Property():

nmovi ecl i p. property = val ue;
var val ue = novieclip. property

ECMA-standard JavaS-
cript and JavaScript as
implemented in LiveMo-
tion share the same
basic objects, proper-
ties, and methods, as
describedin “Reference”
on page 143.

Note that in LiveMotion
aDat e() objectcannot
be constructed using a
text string to provide the
current date.

ADOBE LIVEMOTION 2.0 |21
Scripting Guide

Characteristic

ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaSs-
cript vs. the JavaScript
implementation in Live-
Motion

onCl i pE-
vent () movie
clip event han-
dlers

ActionScript supports the onCl i pEvent () movie
clip event handlers:

| oad

unl oad

ent er Frane
mouseMve
mouseDown
nmouseUp
keyDown
keyUp

data

LiveMotion supports the equivalents of the Action-
Scriptond i pEvent () movie clip event handlers:

onLoad
onUnload
onEnterFrame
onMouseMove
onMouseDown
onMouseUp
onKeyDown
onKeyUp
onData

Note that the onData event handler is not available
from _root.

ECMA-standard JavaS-
cript doesn’t support
movie clip events.

22| CHAPTER 1
Overview

Characteristic

ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaSs-
cript vs. the JavaScript
implementation in Live-
Motion

on() button
event handlers

Evaluating
undef i ned as
anumber

Evaluating
undef i ned as
astring

Boolean value
of non-empty
strings

ActionScript supports the on() button event han-
dlers for the button object:

press
rel ease

rel easeQut si de
rol | Over

rol | Qut
dragOver

dr agQut

LiveMotion supports the equivalents of the Action-
Scripton() button event handlers for all movie clips
(in LiveMotion, a button is simply another movie
clip—there is no separate button object):

onButtonPress
onButtonRelease
onButtonReleaseOutside
onButtonRollOver
onButtonRollOut
onButtonDragOver
onButtonDragOut

In ActionScript, evaluating undef i ned as a number
returns 0. LiveMotion does the same.

In ActionScript, evaluating undef i ned as a string
returns " " . LiveMotion does the same.

In ActionScript, only strings that can be converted to
valid non-zero numbers convert tot r ue.

ECMA-standard JavaS-
cript doesn’t support
movie clip events.

In ECMA-standard Java-
Script, evaluating unde-
fi ned asanumber
returns undef i ned.

In ECMA-standard Java-
Script, evaluating unde-
fined asa string
returns NaN.

In ECMA-standard Java-
Script, all non-empty
strings converttotr ue.

Chapter 2: Writing Scripts

Introduction to script writing

This section introduces you to some simple examples of writing movie clip scripts. It emphasizes
where you place scripts, as script placement determines when a script gets called. Scripts are
placed at three locations. These are:

* Script keyframes

+ Event handlers

* State change handlers

In addition, this section discusses labels, which are frequently used in conjunction with
scripting.

The section begins with a brief overview of the Script Editor user interface. To acquaint you with
the functionality provided by the Script Editor, each example is presented as an exercise that you
can work through yourself. You are also introduced to movie clip referencing and some basic
JavaScript syntax, although a tutorial on JavaScript basics is beyond the scope of this guide.
Understanding JavaScript is a prerequisite if you want to do any serious LiveMotion scripting.

23

24| CHAPTER 2
Writing Scripts

Script Editor overview

You will be using the Script Editor to write your scripts and to locate information. Figure 2.1
shows the Script Editor window. The callouts identify its main functionality.

" Seript Editor - \Composition\MouseT railer\

,_IP_ ,D_lwlil_ﬂ lEJ"Nlﬁ‘llonLoad j ﬂl?ﬁ

I+ LM 1.0 Behaviors

= ActionScript Syntax H..
#ctionScript Globals
Color -
Ky

Mouse

MovieClip Meathods
MovieClip Properties

Selection _'I

-

W W W W W W W

| I I

Figure 2.1 Script Editor main window

Table 2.1 briefly describes each of the control buttons and windows shown in the Script Editor

window.
Table 2.1 Script editor buttons and windows
Button or window Description
Movie clip navigator Lists all the movie clips in a composition in hierarchical order.
Selecting a movie clip in this window allows you to see and edit
scripts on that movie clip.
Scripting syntax helper Lists the LiveMotion 1.0 Behaviors, ActionScript syntax, and Java-

Script syntax. Selecting an item in the list displays a brief descrip-
tion of the argument in the Description window. Double-clicking
a syntax entry adds the item's syntax to the current script.

ADOBE LIVEMOTION 2.0 |25
Scripting Guide

Button or window Description

Composition browser Lists all the movie clips, labels, and states in the composition.
Selecting anitem in the list displays the reference text that will be
entered in the Script window. Double-clicking a movie clip, label,
or state adds the respective movie clip reference, label name, or
state name to the current script.

Automation syntax helper Lists and describes all the global objects and properties in the
JavaScript core that are supported by automation scripting and
all predefined objects, their methods, and properties in the Auto-
mation scripting DOM. This button is available when the export
format is Live Tab when you are editing an automation script. For
details on automation scripts and Live Tabs, see the
LiveMotion 2.0 SDK.

Go to previous script Switches the script view to the previously edited script. This but-
ton works like the Back button in a Web browser.

Go to next script Switches the script view to the more recently edited script. This
button works like the Forward button in a Web browser.

Handler scripts Lists all the event handlers in the drop-down menu for which you
can write scripts. This button, as well as the State scripts and Key-
frame scripts buttons (described below), display a blue triangle
when they contain scripts.

State scripts Lists all states in the drop-down menu that are defined for the
current movie clip (movie clip selected in the Movie clip naviga-
tor). The list contains the normal state, and it can include the pre-
defined states over, down, and out, plus any custom states
defined for the movie clip.

Keyframe scripts Lists all script keyframes in the drop-down menu for the current
movie clip.
Drop-down menu Displays the keyframes, event handlers, or states for the current

movie clip. The contents displayed depend on which of the previ-
ous three buttons is selected. Items in this menu will display an
asterisk if scripts exist on them.

Find Opens a dialog for finding and replacing text strings in the cur-
rent script.

Syntax highlighting Turns syntax highlighting on and off.

26 | CHAPTER 2
Writing Scripts

Button or window

Description

Script window

Description window

Scripting helper window

Displays existing scripts and new scripts that you write to the cur-
rent movie clip.

Displays brief descriptions of the syntax listed in the Scripting
syntax helper.

Displays contents of the Scripting Editor’s Movie clip navigator,
syntax helper, and browser buttons. The contents displayed are
dependant on which of the buttons is selected.

Using labels

What s a label?

A label is a string identifier, or name, that references a frame in a timeline. You can use labels as
arguments in scripts that you write. You could, for example, create a label called "right here" on
a particular frame. With the label in place, you can write a script that sets the current frame of a
timeline to the frame marked with the label "right here." Labels don't have to be used in scripts;
they can be used simply to annotate a timeline. For example, you could apply the label “Accel-
erate” to a frame to identify where an object appears to pick up speed.

Guidelines for creating label names

To create a label name, follow these guidelines:

* The first character of a label name must be in this set [a-z, A-Z, _, $]. It must not be a number.

* The remaining characters include the characters in the above set plus the numbers 0 through 9.

Note: Labels names that start with invalid characters will automatically have an underscore (_)
character added to the beginning of the name.

How to create labels

To create a label:

1 Display the timeline to which you want to add a label.

2 Move the current-time marker to the frame to which you want to add a label.

ADOBE LIVEMOTION 2.0 |27
Scripting Guide

3 Click the Labels button in the timeline. See Figure 2.2.
4 Enter a name for the label in the text box and click OK.

The label name and icon appear on the timeline at that frame.

You can duplicate, rename, move, or delete labels. See the LiveMotion 2.0 User Guide for details.

Using a label in a script

For examples of using labels in scripts, see “Hands-on example 2_1: Writing a keyframe script to
the composition timeline” on page 27 and “Hands-on example 2_2: Writing a keyframe script to
a movie clip timeline” on page 30.

Using script keyframes

What are script keyframes?
A script keyframe is a frame in a timeline to which a script is added. When the player head enters
that frame during playback, the script executes.

How to create script keyframes

To add a script to a keyframe:
1 Navigate to the timeline where you want to add the script keyframe.
2 In the Timeline window, move the current-time marker to the specified frame.

Note: Optionally, click the Labels button, and enter a name for the point in time where the script will
be added to the timeline.

3 Click the Scripts button to the left of the timeline to create a script keyframe at the current-
time marker. This also opens the Script Editor.

Hands-on example 2_1: Writing a keyframe script to the composition timeline
This example uses script keyframes and a label. A script written to the composition timeline
moves a movie clip horizontally across the Composition window.

28| CHAPTER 2
Writing Scripts

To use script keyframes on the composition timeline:
1 Create a new document in LiveMotion. Save the file as Ex2_1. i v.

2 Bring up the Timeline window by choosing Timeline > Composition Window from the main
menu. Alternately, you can use Ctrl+T (Windows) or Command+T (Mac OS).

3 Create an ellipse in the Composition window, and select it.

Note: By default, the object is selected after you create it.

4 Choose Object > Movie Clip from the main menu to convert the object into a movie clip.
Alternately, you can click the “Make selected objects movie clips” button located at the bottom
of the Timeline window.

A movie clip icon appears to the left of the object name in the Timeline window.
Note: To be scriptable, an object must be converted into a movie clip!

5 Select the object name in the timeline, press Enter, and enter in the new name “Ball” into the
text box. Press OK.

[oo:oo00:00 4|at] w [|mlo] =] |7
¢|Compositi0n 2 | [ops 03f 0&f 09f Dis
= Cornposition ;I
Labels @
Scripts E
b el @
=]
@iy] S =l PN BT | bl

Figure 2.2 Timeline window showing the movie clip icon to the left of Ball

6 In the Timeline window, be sure the current-time marker is set to frame 0.
7 Click the Scripts button to add a script keyframe at frame 0.

This also brings up the Script Editor. With the Script Editor window displayed, you can add
scripts to the script keyframe you just created.

8 Write a script to the script keyframe at frame 0 that will move Ball 5 pixels to the right. Here
is a script that does this:

_root.Ball._x += 5;

ADOBE LIVEMOTION 2.0 |29
Scripting Guide

In the script, _root . Bal | is the absolute reference to the movie clip named Bal | . _r oot repre-
sents the composition timeline. All movie clips placed on _r oot 's timeline can be accessed by
name as properties of _r oot . Thus we can access Bal | by saying _r oot . Bal | . (For details on
_root and absolute references, see “Movie clip addressing” on page 66.) _x is the horizontal
position property of Bal | . It is one of several built-in movie clip properties. (For details, see
“Movie clip properties and methods” on page 69.) The operator (+=) is just a shorthand way to
write the code:

_root.Ball._x = root.Ball._x + 5;
9 With the current-time marker still at frame 0, click the Labels button in composition timeline.
Enter Start in the text box, and click OK to create a label named Start at frame 0.

Note: When you create the label on the timeline frame, do not enclose the label name in quotation
marks. However, when you provide the value for label (which is of type string) as a method
argument, you must enclose the name in quotation marks to specify it as a string literal. This is done
in step 13 of this example.

10 Move the current-time marker to frame 1.
11 Drag the endpoint of the composition timeline so that it ends at frame 1.
This also extends the endpoint of Ball’s duration bar so that it ends at frame 1.

12 Click the Scripts button to create a script keyframe at frame 1. See Figure 2.3. This also opens
the Script Editor window (if it is not already open).

[oocoo:on:or | 4] 4] me [01]41] =]
4 [Composition Bo@(logs| o3 osr o o
< Cornposition [] _‘I
Labels A[E] @ Shart
Scripts 4 E o %
b ®Bal & | dED
|
@[l Gl I ==l] ol
Figure 2.3 Timeline window showing label and script keyframe at frame 1 and script keyframe at

frame 2

30| CHAPTER 2
Writing Scripts

13 Enter the following code in the Script window:

_root.got oAndPl ay("Start");

got 0AndPl ay() is a movie clip method that jumps a movie clip’s timeline to a specific label and
plays the timeline from the frame associated with the label. In this case, it jumps to the label
“Start” on the composition timeline (_r oot).

Note: When you created the label on the timeline (step 9), you did not enclose the label name in
quotation marks. However, when you provide the string value for label to got oAndP! ay (), you
must enclose the name in quotation marks.

14 Preview the movie clip by switching to Preview mode or by exporting your composition to
the Flash Player.

When the composition is previewed, the script you added at frame 0 moves Ball 5 pixels to the
right on the screen. When execution reaches frame 1, the got oAndPI ay() statement moves the
current-time marker to the frame labeled "Start" (in this case frame 0) and plays the timeline. At
this point the script on frame 0 executes again.

You can adjust the speed of Ball by changing the value added to _x in the script to a new value.

This concludes your first scripted composition!

Hands-on example 2_2: Writing a keyframe script to a movie clip timeline
This example writes a script to the movie clip’s own timeline rather than to the composition
timeline. The results are the same as before. The difference is that, in the previous example,
_root moved the Ball movie clip. In this example, the movie clip moves itself.

To write a keyframe script to the timeline:

1 Repeat steps 1 through 5 of “Hands-on example 2_1: Writing a keyframe script to the compo-
sition timeline” on page 27 to create a movie clip named Ball. Save this file as Ex2_2. | i v.

2 Double click Ball in the composition timeline to open its own timeline. In the movie clip’s
timeline, be sure the current-time marker is set to frame 0. See Figure 2.4.

3 Click the Scripts button in the Timeline window to insert a script keyframe at frame 0.

This also brings up the Script Editor.

ADOBE LIVEMOTION 2.0 |31
Scripting Guide

W] e mls] =]

4 [Ban]

= @Eal I fan] =
Labelz |E
Scripts E
Transform
[+ Object Attributes
[Layer 1
=]
O % J] = —="Teal{0] oy
Figure 2.4 Ball movie clip timeline

4 Write this script in the Script window to move Ball 5 pixels to the right.

this. _x += 5;

The following keyword in the above statement refers to the movie clip to which the script is
added—in this case, the movie clip Ball:

this

Thus, the statement is incrementing Ball's horizontal position property.

You can also use the absolute reference as you did in the previous example in “Hands-on example
2_1: Writing a keyframe script to the composition timeline” on page 27. The absolute reference
would appear as:

_root.Ball._x += 5;
If, however, the object hierarchy for Ball changes (that is, Ball is placed in a movie clip group),

the absolute reference would no longer be valid. (For details on how movie clip groups change
the object hierarchy, see “Effect of creating a movie clip and a movie clip group” on page 63.)

5 With the current-time marker still at frame 0 in the Timeline window, click the Labels button.
Enter Start in the text box, and click OK to add the label to frame 0.

6 Move the current-time marker to frame 1, and drag the end point of Ball’s timeline so that it
ends at frame 1.

7 Create a script keyframe at frame 1, and enter the following code in the Script window:

thi s. got oAndPl ay("Start");

32| CHAPTER 2

Writing Scripts

8 Preview the movie clip.

Ball moves across the screen just as it did in the previous example. The movie clip advances its
horizontal position with each successive execution of the script.

Using event handlers

What are event handlers?

An event handler is script that is run as a result of a user action or a system-based event. For
example, you can write an event handler that executes every time the user presses the mouse
button or passes the mouse cursor over the movie clip. System-based events such as onLoad and
onData occur as a result of composition playback or loading variables into a movie clip.

Table 2.2 lists all the event handlers and describes the events they handle.

Table 2.2 Movie clip events

Event handler Event

onload First appearance of a movie clip in the composition. You can write
scripts here to initialize and declare variables and functions.

onUnload The first frame after the movie clip is removed from the composition.

onEnterFrame Each time the playhead enters a frame, before the frame is rendered,
while the movie clip is in the composition.

onMouseMove Any movement of the mouse cursor while the movie clip is in the com-
position.

onMouseDown Pressing the mouse button while the movie clip is in the composition.

onMouseUp Releasing the mouse button while the movie clip is in the composition.

onKeyDown Pressing a key while the movie clip is in the composition.

onKeyUp Releasing a key while the movie clip is in the composition.

onData When the loading of variables into a movie clip is complete or a portion

of a loaded movie completes loading into a movie clip.

onButtonPress Clicking the mouse button while the mouse cursor is on the movie clip.

ADOBE LIVEMOTION 2.0 |33
Scripting Guide

Event handler Event
onButtonRelease Releasing the mouse button while the mouse cursor is on the
movie clip.

onButtonReleaseOutside After pressing the mouse button while the mouse cursor is on the movie
clip, moving the mouse cursor off the movie clip and releasing

the button.
onButtonRollOver Moving the mouse cursor on the movie clip.
onButtonRollOut Moving the mouse cursor off the movie clip.
onButtonDragOver After pressing the mouse button while the mouse cursor is on the movie

clip, moving the cursor off and then back on the movie clip.

onButtonDragOut After pressing the mouse button while the mouse cursor is on the movie
clip, moving the mouse cursor off the movie clip.

How to add a script to an event handler

To add a script to an event handler:
1 Select a movie clip in the timeline or in the composition.

2 Choose Scripts > Script Editor to open the Script Editor. Alternately, you can use Ctrl+]
(Windows) or Command+]J (Mac OS).

3 In the Script Editor, click the Handler scripts button to display the drop-down menu of events.
4 Select the handler name from the list for which you want to write a handler.

5 Write the script in the Script window.

Hands-on example 2_3: Creating a simple event handler

This hands-on example adds the same movement to the movie clip Ball as the previous keyframe
script examples did. See “Hands-on example 2_1: Writing a keyframe script to the composition
timeline” on page 27 and “Hands-on example 2_2: Writing a keyframe script to a movie clip
timeline” on page 30. However, it uses an event handler to call the script that moves Ball.

To create an event handler:

1 Repeat steps 1 through 5 of “Hands-on example 2_1: Writing a keyframe script to the compo-
sition timeline” on page 27 to create a movie clip named Ball. Save this file as Ex2_3. | i v.

34| CHAPTER 2
Writing Scripts

2 Choose Scripts > Script Editor to open the Script Editor.

3 In the Script Editor, click the Handler scripts button to display the drop-down menu of event
handler names.

4 Select the onEnterFrame handler, and enter this script to move Ball horizontally.
this. _x += 5;

This onEnterFrame event handler script causes Ball to move itself each time the playhead enters
a frame.

5 Preview the composition. The ball moves horizontally across the Composition window.

6 Save this file for the next two hands-on exercises.

Hands-on example 2_4: Initializing a movie clip property

This example builds on the previous one. It uses Ball's onLoad event handler to explicitly set the
horizontal starting position of Ball and to initialize a property containing the speed that Ball will
move. For this example, open Ex2_3. 1 i v.

To initialize a property:
1 Select Ball, and choose Scripts > Script Editor to open the Script Editor.
2 Click the Handler scripts button, and select the onLoad event. Enter this script:

this._x = 100; //sets the initial position of Ball
this.speed = 5;

The first statement in this onLoad event handler script sets the initial horizontal position of Ball

to 100. The second creates a new property of Ball called speed and assigns it the value 5.

3 With the Handler scripts button still toggled on, select the onEnterFrame handler from the
drop-down menu. This brings up the event handling script that moves Ball.

this. _x += 5;

Change the script to:

this._x += speed;

4 Preview the results.

5 Save this file as Ex2_3. | i v for use in the next hands-on exercise.

ADOBE LIVEMOTION 2.0 |35
Scripting Guide

Except for setting Ball’s initial position, the behavior is the same as in the previous exercise. Ball
moves horizontally across the Composition window.

Hands-on example 2_5: Creating a bounds check
As another variation on the previous example, you can modify the onEnterFrame event handler
to do a bounds check to be sure Ball doesn't move out of the Composition window.

To create a bounds check:
1 Open the file Ex2_3. | i v that you created in a previous exercise.

2 Select Ball in the Timeline window, and choose Scripts > Script Editor to open the Script
Editor.

3 Click the Handler scripts button, and select onEnterFrame from the drop-down menu of
event handlers. This brings up Ball’s event handling script:

this._x += speed;

4 To this script, add these i f statements.

if(this._x > 550)
this.speed = -5;

if(this._x < 0)
this.speed = 5;

5 Preview.

Ball moves back and forth horizontally across the Composition window. You should adjust the
value 550 to reflect your Composition window’s actual width. Check Composition Settings to
determine the width.

Using state scripts

What are state scripts?

Thus far, the examples in this section have illustrated adding scripts to:

 The composition timeline using its Labels and Scripts buttons

* Movie clip timelines using its Labels and Scripts buttons

36| CHAPTER 2
Writing Scripts

» Event handlers

From working with the LiveMotion 1.0 user interface, recall that you can create rollover states
for an object. Scripts also can be added to these states. The state script is executed each time the
object changes to the state to which the script is added.

How to add scripts to states

To add a script to a state:

1 Select the object.

2 Open the States palette to view the movie clip states.

3 In the States palette, select the movie clip state to which you want to add a script.
4 Click the Scripts button in the palette.

This opens the Script Editor with the correct state script displayed.

5 Write the script in the Script window.

Hands-on example 2_6: Creating a state script

This example is similar to the keyframe examples you have created so far. Using the States palette,
you create an over state, which, for effect, you can change to a different color. Then you write a
script that moves the Ball one direction in the normal state and another, in the over state.

To create the state script:

1 Repeat steps 1 through 5 of “Hands-on example 2_1: Writing a keyframe script to the compo-
sition timeline” on page 27 to create a movie clip named Ball.

2 Using the States palette, create an over state for the movie clip. Give it a different fill color, so
you can more easily recognize the movement in the over state during playback.

3 In the States palette, select the over state.

ADOBE LIVEMOTION 2.0 |37
Scripting Guide

Color Scheme | States “Object Layers] +

Inormal 'l

[> Changes

s|le|lw|B|a|a@]| |

Figure 2.5 States palette with over state selected

4 Click the Scripts button at the bottom of the palette.

This opens the Script Editor at the location where you can add a script for the over state.
5 Enter the following code to move the movie clip 5 pixels to the right:

this. _x += 5;

6 Select normal from the Script Editor’s drop-down menu of states, and enter the
following code:

this._y += 20;
This moves the movie clip vertically.

7 Preview the composition.

Ball first appears in its normal state. It does not move until you first pass the mouse over it. Try
this a few times. Each time the mouse is moved over Ball, it moves five pixels to the right. Moving
the mouse off Ball causes the movie clip to return to its normal state. Each time Ball enters its
normal state, it moves vertically downward 20 pixels.

38| CHAPTER 2
Writing Scripts

39

Chapter 3: Behaviors

Introduction to behaviors

This section describes how you can create LiveMotion 1.0 behaviors in LiveMotion 2.0. It is
meant to help you move on to a new way of looking at what behaviors really are.

In LiveMotion 1.0, behaviors did everything from playing and stopping compositions to enter-
taining the viewer with a looping movie clip while a lengthy, complex animation is loading.
Traditionally, behaviors executed when either a movie clip reached a certain point on its timeline
or when a movie clip entered a certain state. In LiveMotion 2.0, behaviors have evolved into
JavaScript code. To assist you in your transition to writing scripts, this section explains where you
can add scripts and the implications of adding the scripts in these locations. It provides an
overview of how to add, open, and remove scripts. Then for each LiveMotion 1.0 behavior, the
section provides a procedure for implementing that behavior in LiveMotion 2.0. As additional
help, you are provided guidance using the Scripting syntax helper to access the LiveMotion 1.0
behaviors and the LiveMotion 2.0 code to which each behavior maps.

Even if you are new to LiveMotion, it will benefit you to read this section to learn how
LiveMotion 1.0 behaviors are implemented in JavaScript, because you can incorporate their
functionality into any scripts that you write. You are not required to know anything about
LiveMotion 1.0 behaviors to create the examples in this chapter, which can instead serve as
simple examples to start you down the road to scripting.

Working with scripts that replace behaviors

This section provides procedures for adding, opening, and deleting scripts from keyframes and
states.

Note: In LiveMotion 2.0, you also can write scripts to handle events. Event handling is made possible
in LiveMotion 2.0 because of its support for scripting. For details on creating event handlers, see
“Movie Clip Events and Event Handlers” on page 89.

40| CHAPTER 3
Behaviors

The effect of writing scripts to movie clip timelines versus movie clip states
You can write scripts to movie clip timelines or to movie clip states, depending on the effect that
you are after. To prepare you for working with scripts, you should understand these concepts:

* Timelines have script keyframes (that is, script icons on timeline frames)
* States have timelines

When you write a script to a movie clip timeline, you write that script to a specific timeline
frame. The frame is called a script keyframe. During execution of the . | i v file in Preview mode
or on export of the SWF file, the script keyframe executes at a specific frame in the lifetime of the
movie clip—that is, when the playhead reaches that script keyframe. A timeline can have
multiple script keyframes.

All objects have a normal state by default. You also can add any of the predefined states (over,
down, or out) to amovie clip in the States palette, or you can define custom states with their own
names. Each movie clip state contains its own independent timeline, and each of these timelines
can contain keyframes scripts.

When you write a script to a state, the script executes only when the movie clip enters that state,
not at a preset point in the movie clip’s lifetime. Say, for example, the user presses the mouse
button on a movie clip for which you have defined a down state. This would execute any script
you may have written for that state. You can write scripts to any or all states that you define for
amovie clip. You also can write multiple scripts to the timeline of a single defined state by adding
script keyframes.

Accessing scripts

You can access scripts from:

* Script keyframes in a timeline. Clicking the script keyframe opens the Script Editor and
displays the script added to that frame on the timeline.

* The Scripts button towards the bottom of the States palette. Clicking the scripts button opens
the Script Editor on the state currently selected in the States palette.

In LiveMotion 1.0, the Scripts button was called the Behaviors button. For your general
reference, the following four figures show you the LiveMotion 1.0 and LiveMotion 2.0 Timeline
windows and States palettes.

ADOBE LIVEMOTION 2.0 |41
Scripting Guide

Figure 3.1 shows the LiveMotion 1.0 Timeline window with a behavior added to a keyframe in a

timeline. LiveMotion 1.0.

[oo:o0:oroz |4|4|| |] p1])]
L I Composition 065 Dlls Dés Dés
= Comnposition | [y L-]

Cornposition Attributes

Eehaviors 4 CAFa;

b Eall i D
=
| I == [==]H] Ll
Figure 3.1 LiveMotion 1.0 Timeline window

Figure 3.2 shows the LiveMotion 2.0 Timeline window. In place of the Behaviors button, the
Scripts button is used to create new scripts on timeline script keyframes. A separate Labels
button is used to create labels on a timeline. The figure shows a label on a script keyframe.

'+ Fig3_2:2
[ooon0z00 14]41] b (1M pi]48] =]
h I Composition % 5 | [o0s s 0Fs 03s 04s
= Compasition 1 4] L-]
Labels 4 I Flay
Scripts 4 @ %
I Bl =S i —)]
|
2 = m— [ans | oy

Figure 3.2 LiveMotion 2.0 Timeline window

42| CHAPTER 3
Behaviors

Figure 3.3 shows the LiveMotion 1.0 Rollovers palette. The Behaviors button adds behaviors to
object states and allows the user to access the behaviors. In the figure, the behaviors icon on the
over state indicates that a behavior has been added to that state.

Color Scll Photosho| Rellewe ™ Cbject L >I

B[co—
o/@ - 9 =

[» Changes

Elslol ol

Figure 3.3 LiveMotion 1.0 Rollovers palette

Figure 3.4 shows LiveMotion 2.0’s States palette. This is very similar to the LiveMotion 1.0
Rollovers palette. However, you use a Scripts button to add new scripts to, and to access existing
scripts on, object states. Like the LiveMotion 1.0 Rollovers palette, the script icon on the over
state in the figure indicates that a custom script has been added to that state.

Color Scherne | States “Cbject Layer: _PI

Iover 'l 1]

[Changes

(el n|a]| x|,

Figure 3.4 LiveMotion 2.0 States palette

ADOBE LIVEMOTION 2.0 |43
Scripting Guide

(Advanced users) You can access scripts by selecting Scripts > Script Editor from the main menu.
Alternately, you can use the keyboard shortcut Ctrl + J (Windows) or Command + J (Mac OS).
Then, select the movie clip whose script you want to access in the Script Editor’s Movie clip
navigator. This takes you to that movie clip's scripts, but not necessarily to the script that you
want. You must then navigate to the event handler, state, or script keyframe containing the script
you want to access.

Adding Scripts

To add a script to a movie clip state:

Note: The first three steps of this procedure also open a script on a state. Compare steps 1 to 3 below
to the procedure in “To open a script from a movie clip state:” on page 45.

1 In the Timeline window, select the movie clip to which you want to add a state script.
2 Open the States palette to view that movie clip’s states.

3 In the States palette, select the movie clip state to which you want to add a script.

4 Click on the Scripts button at the bottom of the States palette. See Figure 3.4.

This opens the Script Editor and displays the state’s Script window.

5 Click the Scripting syntax helper button to open the list of LM 1.0 behaviors. Select the desired
script by its LM 1.0 behavior name, and press Enter (or double click the name).

The script for the behavior is added to the Script window, as shown in Figure 3.5. For details on
the Scripting syntax helper, see “Script Editor” on page 115.

4| CHAPTER 3

Behaviors

6 Replace any parameters the script requires with their values.

"“ Seript Editor - Fig3_3.livAComposzition\Ball [over]\

ﬂ?a|m|i|i||ﬁcm|ﬁ|lv

= LM 1.0 Behaviors movieclip.play(l;
Change State
Go to Label {and play)
Go to Label {and stop)
G0 to Relative Time, Backward 1 F..

G0 to Relative Time, Forward 1 Fr.. =
Go to URL

Load Mowie

Run lawacowing =]

Starts playing the timeline of the specified movie clip

movieclip.play().‘

To use this code:
'mavieclip' must be replaced with a reference to the movie clip to act on.

Figure 3.5 Scripting syntax helper open to LM 1.0 behaviors with the play behavior selected

To add a script to a movie clip timeline:
1 Navigate to the timeline where you want to add the script keyframe.

2 In the Timeline window, move the current-time marker to the frame to which you want to
add a script. Optionally, click the Labels button (see Figure 3.2), and enter a name for the point
in time where the script will be added to the timeline.

3 Click the Scripts button on the timeline to create a script keyframe at the current-time marker.

This also opens the Script Editor.

Note: If a script keyframe already exists on the specified frame, clicking the Scripts button simply
opens the Script Editor and displays the scripts on that keyframe.

4 Click the Scripting syntax helper button to open the list of LM 1.0 behaviors. See Figure 3.5.
Select the desired behavior by its LM 1.0 name, and press Enter (or double click the name).

The script for the behavior is added to the Script window.

5 Replace any parameters the script requires with their values.

ADOBE LIVEMOTION 2.0 |45
Scripting Guide

Opening scripts

To open a script from a movie clip state:

1 Open the States palette to view movie clip states.

2 In the States palette, select the movie clip state with the script you want to open.
3 Click the Scripts button in the palette.

This brings up the Script Editor and displays the script for that movie clip state in the Script
window.

To open a script from the timeline:

1 Locate the script icon for the script you want to view, and double-click.

Deleting scripts

To delete a script from a movie clip state:

1 Open the States palette to view movie clip states.

2 In the States palette, select the movie clip state with the script you want to delete.
3 Click the Scripts button in the palette.

This brings up the Script Editor and displays the script for that movie clip state in the Script
window.

4 Select the script implementing the behavior you want to delete, and press Delete.

To delete a script from the timeline:
1 Locate the script icon for the script you want to view, and double-click.

2 Select the script implementing the behavior you want to delete, and press Delete.

Creating LiveMotion 1.0 behaviors using LiveMotion 2.0 scripts

This section provides details on how you create scripts that duplicate LiveMotion 1.0 behaviors.
For your reference, Table 3.1 lists the LiveMotion 1.0 behaviors supported and the LiveMotion
2.0 scripts to which they map.

46 | CHAPTER 3
Behaviors

Table 3.1

LiveMotion 1.0 Behaviors and their corresponding scripts

LM 1.0 Behavior

script

Description

Change State

Go to Relative
Time, Backward 1
Frame

Go to Relative
Time, Forward 1
Frame

Go to URL

Go to Label (and
stop)

Go to Label (and
play)

Load Movie
Run JavaScript

Stop All Sounds

Unload Movie

Wait For Down-
load

Play

Stop

nmovi eCl i p. | nSet Current State(state);

nmovi ed i p. prevFrane();

movi e i p. next Frane();

get URL(url, wi ndow);

nmovi eC i p. got oAndSt op(| abel) ;

nmovi ed i p. got oAndPl ay(| abel) ;

| oadMovi eNun{url, | evel Num;

get URL("] avascri pt: code")

st opAl | Sounds();

unl oadMovi eNun(| evel Num ;

if (this._framesl oaded <
| mFrameO Label (fini shLabel))

{
t hi s. got oAndPl ay(r epeat Label);

}
movi eCl i p. pl ay();

movi eCl i p. stop();

Change the state of the
specified movie

Go to the movie clip's rela-
tive time backward 1 frame

Go to the movie clip's rela-
tive time forward 1 frame

Open a URL in the specified
browser window or frame

Go to the specified label
and stop

Go to the specified label
and play

Load the specified URL into
the specified SWF file level

Run the javascript specified

Stop all sounds from play-
ing, but do not stop the
movie

Unload the specified movie

Loop the composition time-
line to a certain label until
all the frames up to a speci-
fied label on the composi-
tion timeline have loaded

Start playing the specified
movie

Stop playing the specified
movie

ADOBE LIVEMOTION 2.0 |47
Scripting Guide

Creating Change State scripts
The Change State script changes the state of the specified movie clip.

To change the state of a movie clip:

1 Navigate to the location where you want to add the state change. See “Adding Scripts” on
page 43.

2 Inthe Script Editor, click the Scripting syntax helper button. Select Change State from the LM
1.0 behaviors list, and press Enter (or double click the name).

The appropriate script appears in the Script window:

nmovi eCl i p. | nSet Current State(state);

3 Replace the arguments described below with the appropriate values.
movi eCl i p is a reference to the movie clip whose state you want to change.
st at e is a string containing the name of the state you want to set.

You can use the Script Editor’s Scripting syntax helper (Description window), to obtain brief
definitions of the script contents, and the Composition browser, to help fill in the values. For
details on using the Script Editor features, see “Script Editor” on page 115.

Hands-on example 3_1: Changing movie clip states
In this exercise, you will create two movie clip (buttons) that control the state of a third movie
clip.

To create this example:
1 Create a new composition. Save the file as Ex3_1.1i v.

2 In the Composition window, create two ellipses. Give one a red fill color and the other, a
blue fill.

3 Create a down state for each ellipse in the States palette.

This converts each ellipse to a movie clip.

48| CHAPTER 3
Behaviors

4 In the Composition window, create a rectangle. Give the rectangle a fill color, such as yellow
(not red or blue).

Figure 3.6 Composition window with two ellipses and a rectangle

5 In the States palette, give the rectangle two custom states: red and blue.

This converts the rectangle into a movie clip.

6 For each of the custom states, give the rectangle the appropriate fill color: provide a blue fill
for the blue state and red fill, for the red.

7 Open the Timeline window.
8 Select the rectangle, press Enter, and give it the new name Box. Press OK.
9 Select the red ellipse.

10 In the States palette, select the down state, and click the Scripts button to open the Script
Editor.

11 Click the Scripting syntax helper button, and expand the list of LiveMotion 1.0 behaviors.
12 Select the Change State behavior, and press Enter (or double click the behavior name).
The following script is generated in the Script window:

nmovi el i p. | nSet Current St at e(st at eNane) ;

ADOBE LIVEMOTION 2.0 |49
Scripting Guide

Replace novi ed i p with the absolute reference to Box, and replace st at eNane with the custom
state "r ed". You can use the Composition browser in the Script Editor to help fill in the values
for movi eCl i p. and st at eNane. For details on using the Script Editor features, see “Script
Editor” on page 115.

With these two parameters replaced, the script should appear as:

_root.Box.|nSetCurrentState("red");

13 Close the Script Editor.

14 In the Composition window, select the blue ellipse. Repeat steps 8 through 12, opening the
script for the down state of the blue ellipse, but set the state of Box to blue instead of to red. With
the parameters replaced, the script should appear as:

_root. Box. | nSet Current State("bl ue");

15 Preview.

Clicking the red ellipse changes the color of box to red. Clicking the blue ellipse changes the color
of box to blue.

Creating scripts to manipulate a movie clip timeline

These scripts can be used to manipulate a timeline:
* Play

* Stop

* Go To Relative Time, Backward 1 Frame

* Go To Relative Time, Forward 1 Frame

* Go To Label (and stop)

* Go to Label (and play)

The Play and Stop scripts play or stop a specified timeline. You can, for example, add scripts to
the first frame of a composition timeline to stop the timelines of all the movie clips it contains.
Although the movie clip timelines will be stopped, the composition timeline will continue
playing, enabling you to run individual movie clips as needed using the script for Play.

50| CHAPTER 3
Behaviors

In LiveMotion 2.0, the Go To Relative Time scripts only support going forward or backward one
frame; whereas, the LiveMotion 1.0 behavior supported going forward or backward a specified
number of frames. To achieve the same result as Go To Relative Time in LiveMotion 1.0, you can
use the Go To Label script.

The Go to Label (and stop) script moves the animation to a specific label in a timeline and stops
the timeline.

The Go to Label (and play) script sends the playhead of a movie clip’s timeline to the specified
frame or label to play the timeline at that frame.

To add a Play or Stop script:
1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 43.

2 In the Script Editor, click the Scripting syntax helper button. Select Stop or Play from the LM
1.0 behaviors list, and press Enter (or double click the behavior name).

The appropriate script appears in the Script window:

movi eCl i p. stop();

or
movi eCl i p. pl ay();
3 Replace the novi eCl i p argument described below with the appropriate value.

movi eCl i p is a reference to the movie clip you want to start or stop at it's current frame. If the
movie clip is stopping or playing itself, use t hi s for the movie clip, for example,

this.stop();
or
this.play();

pl ay() andst op() are movie clip methods that are equivalent in functionality to the respective
LiveMotion 1.0 Play and Stop behaviors.

You can use the Script Editor’s Scripting syntax helper (Description window), to obtain brief
definitions of the script contents, and the Composition browser, to help fill in the values. For
details on using the Script Editor features, see “Script Editor” on page 115.

ADOBE LIVEMOTION 2.0 |51
Scripting Guide

To add a Go to Relative Time script:
1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 43.

2 Click the Scripting syntax helper button. Select Go to Relative Time, Backward 1 Frame or Go
to Relative Time, Forward 1 Frame from the LM 1.0 behaviors list, and press Enter (or double
click the behavior name).

The appropriate script appears in the Script Editor Composition window:

nmovi ed i p. prevFrane();

or

movi ed i p. next Frane();

3 Replace the movi eCl i p argument described below with the appropriate value.

movi eCl i p is a reference to the movie clip you want to move backward or forward 1 frame.

You can use the Script Editor’s Scripting syntax helper (Description window), to obtain brief
definitions of the script contents, and the Composition browser, to help fill in the values. For
details on using the Script Editor features, see “Script Editor” on page 115.

To add a Go to Label (and stop) script:
1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 43.

2 Click the Scripting syntax helper button. Select Go to Label (and stop) from the LM 1.0
behaviors list, and press Enter (or double click the behavior name).

The script appears in the Script Editor Composition window:

nmovi ed i p. got oAndSt op(| abel) ;

Replace the novi eCl i p and | abel arguments described below with the appropriate values. You
can use the Scripting syntax helper and the Composition browser in the Script Editor to help fill
in these values. For details on using the Script Editor features, see “Scripting Tools” on page 95.

movi eCl i p is a string containing the label name associated with the frame on the movie clip’s
timeline to which the playhead will be sent and stopped.

| abel is a string associated with the frame on the movie clip’s timeline to which the playhead
will be sent and stopped.

Here is an example script with the values filled in:

_root. got oAndSt op("end");

52| CHAPTER 3
Behaviors

Note: When you create the label on a timeline frame, do not enclose the label name in quotation
marks. However, when you fill in the value for label (which is of type string) in the script, you must
enclose the label name in quotation marks, as shown in this example script.

To add a Go to Label (and play) script:
1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 43.

2 Click the Scripting syntax helper button. Select Go to Label (and play) from the LM 1.0
behaviors list, and press Enter (or double click the behavior name).

The script appears in the Script Editor Composition window:

nmovi ed i p. got oAndPl ay(| abel)

3 Replace the movi eCl i p and | abel arguments described below with the appropriate values.

movi el i p is the name of the movie clip that you want to go to | abel and play.

| abel isa string containing the label name associated with the frame on the movie clip’s timeline
to which the playhead will be sent and played.

You can use the Script Editor’s Scripting syntax helper (Description window), to obtain brief
definitions of the script contents, and the Composition browser, to help fill in the values. For
details on using the Script Editor features, see “Script Editor” on page 115.

Creating Wait For Download scripts

The Wait For Download script is a special case of timeline manipulation. It is used to loop part
of the composition timeline until all the items placed on the timeline up to a specified frame have
been downloaded. A Wait For Download script can be used to prevent poor performance for
compositions that include large objects, or for lengthy and complex movie clips.

The script only works in a script keyframe on the composition timeline and is useful only in
compositions that are later loaded with the | oadMovi e() movie clip method or global function.
The first SWF file in the Flash Player is always downloaded completely before playback begins.

Wait For Download consists of three items on the main timeline: two labels with a script in
between. These items work together to loop the timeline until all the content up to a certain
frame has been downloaded.

ADOBE LIVEMOTION 2.0 |53
Scripting Guide

The first label on the timeline identifies the first timeline frame that is part of the waiting loop.
The second label, and last item on the timeline, identifies the timeline frame that is being waited
upon to finish downloading. Situated in between the labels on the timeline is a script keyframe
to which the Wait For Download script is added. The script keyframe marks the last frame of the
waiting loop. Upon execution, the script tests to see if the frame on the timeline containing the
second label has loaded. If it has, the composition timeline plays forward; otherwise, the
playhead of the composition timeline is placed back at the location of the first label where it
repeats playing the frames between the first label and the script keyframe.

This looping pattern continues until all the content on the composition timeline—up to and
including the location of the second label—has been loaded. All the objects to download must
be placed on the timeline after the script keyframe containing the Wait For Download code and
before the second label.

To add a Wait For Download script:

1 Move the current-time marker to the location on the composition timeline where you want
your waiting loop to begin. Create the first label here.

2 Move the current-time marker to the location on the composition timeline after all the large
objects that you want to wait to download have appeared on the timeline. Create the second label
here.

3 Move the current-time marker to a location between the two labels where you want your
waiting loop to end.

This point must be before the large objects waiting to be downloaded have appeared on the
timeline.

4 Create a script keyframe here. This also opens the Script Editor.
5 In the Script Editor, click the Scripting syntax helper button.

6 Select Wait For Download from the LM 1.0 behaviors list, and press Enter (or double click the
behavior name).

This script appears in the Script Editor Composition window:

if (this._framesl oaded < | nFraneC Label (finishLabel))
{

}

t hi s. got oAndPl ay(r epeat Label) ;

54| CHAPTER 3
Behaviors

| nFrameCf Label () is a global function that converts a label on the composition timeline into
the corresponding frame number on export.

7 Replace the fini shLabel andrepeat Label arguments described below with the appro-
priate values.

repeat Label is a string containing the name of the first label, created in step 1.
fini shLabel is a string containing the name of the second label, created in step 2.

You can use the Composition browser in the Script Editor to help fill in the values for r epeat -
Label and fi ni shLabel . For details on using the Script Editor features, see “Script Editor” on
page 115.

Hands-on example 3_2: Creating a preloader
This example creates a preloader that loops a piece of the main timeline until sufficient frames
(containing large items) of the main timeline have loaded.

A preloader of this style consists of three parts:

* Two labels and a keyframe script that implement Wait for Download
* The large item to download
* The content that to be displayed during the waiting loop

This example uses an image from the Library palette as the large item to be downloaded and a

text object that reads "Loading" as the content displayed during the waiting loop. However, you
can do whatever you want during the wait for download "pause." For example, you could create
a small animation to entertain the viewer or a status bar showing the progress of the download.

To create the Wait for Download:
1 Create a new composition in LiveMotion, and save it as Ex3_2. | i v.
2 Open the Timeline window

3 Move the current-time marker to frame 0 on the composition timeline, and create a label.
Name it “loading.”

4 Drag the endpoint of the composition timeline to frame 10.

5 Move the current-time marker to frame 10, create a label, and name it “end.”

ADOBE LIVEMOTION 2.0 |55
Scripting Guide

6 Move the current-time marker to frame 5 on the composition timeline, and click the Scripts
button to create a script keyframe.

7 Inthe Script Editor, click the Scripting syntax helper button, and expand the LM 1.0 behaviors
list.

8 Double click the behavior, Wait for Download. The script for this behavior appears in the
Script Editor Composition window:

if (this._framesl oaded < | nFraneC Label (fini shLabel))

{
t hi s. got oAndPl ay(r epeat Label) ;

}

8) Replace fi ni shLabel with the string"end" as shown in Figure 3.7.

9) Replace r epeat Label with the string " | oadi ng" as shown in Figure 3.7.

" Script Editor - Ex3_2 livAComposition

F!IP_' F'_l‘.’?‘l illl o N -]

= LM 1.0 Behaviors o if (this._framesloaded ¢ LmFramelflabel(™end™) 1

Change State <
this.gotoAndPlay("loading™);

(G0 to Label {and play)
Go to Label {and sto..

3
e |

Moves the specified rovie clip's timeline playhead to the frame with the given label, and plays it.

movieclip.gotoandPlayilabel);
label: a string; a label on the timeline of rmovieclip.

To use this code:

'miovieclip' must be replaced with a reference to the movie clip to act on.
"label' must be replace with a string that is a label on movieclip's timeline.

I I

Figure 3.7 Script with label strings filled in

To place the rocket image:
1 Move the current-time marker to frame 6.
2 Open the Library palette, select the rocket image, and place it in the Composition window.

3 Adjust the duration bar of the rocket image so that it starts at frame 6 and ends at frame 10.

56| CHAPTER 3
Behaviors

To create the waiting content:
1 Move the current-time marker to frame 0.

2 Choose the text field tool from the Tools palette, and create a rectangle in the Composition
window.

3 Enter “Loading...” as the text.

4 Adjust the duration bar of the text object so that it starts at frame 0 and ends at frame 5.

[oo |a] ||| =]
+ [Composition og: o3 |oer o3 ofs
= Comnposition Jdl 4] =]
Labels @ loading B end
Scripts 4
I Black Loading... L]
P 17_Rocket.al il I
Figure 3.8 Timeline window showing text and rocket image duration bars
5 Preview.

Creating scripts to command the Flash Player

Three scripts create commands to the Flash Player. These are:
+ Load Movie

+ Unload Movie

* Stop All Sounds

Load Movie loads and plays a SWF file that can either replace the existing SWF file, or play in
another level of the Flash Player. Unload Movie removes an already-loaded SWF file from the
player. Stop All Sounds stops all sounds in the player, including event sounds.

To load a SWF file:

1 Navigate to the location where you want to add the script to load a SWEF file. See “Adding
Scripts” on page 43.

2 Click the Scripting syntax helper button. Select Load Movie from the LM 1.0 Behaviors list,
and press Enter (or double click the behavior name).

ADOBE LIVEMOTION 2.0 |57
Scripting Guide

The behavior script appears in the Script Editor Composition window:
| oadMovi eNun{ ur | ,nunmber) ;

3 Replace the arguments described below with the appropriate values.

url is a string containing an absolute or relative reference to the external SWF file.
These are examples:

"http://ww. mydonai n. con’ | oadedMovi e. swf "

or

"1 oadedMovi e. swf"

nunber isanon-negative integer specifying the player level into which the SWF file will be loaded.
Your default composition is considered to be level number 0. If the level already contains a SWF
file, it is replaced by the one being loaded. For details on document level, see “Levels of the Flash
Player” on page 86.

To unload a SWF file:

1 Navigate to the location where you want to add the script to unload a SWF file. See “Adding
Scripts” on page 43.

2 Click the Scripting syntax helper button. Select Unload Movie from the LM 1.0 Behaviors list,
and press Enter (or double click the behavior name).

The behavior script appears in the Script Editor Composition window:

unl oadMovi eNun(nunber) ;

3 Replace the argument described below with the appropriate value.

nunber is a non-negative integer specifying the document level of the SWF file to be unloaded.
For details on document levels, see “Levels of the Flash Player” on page 86.

To stop all sounds:

1 Navigate to the location where you want to add the script to stop all sounds. See “Adding
Scripts” on page 43.

2 Click the Scripting syntax helper button. Select Stop All Sounds from the LM 1.0 behaviors
list, and press Enter (or double click the behavior name).

58| CHAPTER 3
Behaviors

The script appears in the Script Editor Composition window:

st opAl | Sounds();

Creating scripts to control the Web browser

There are two browser command scripts. These are:
* Run JavaScript
* Goto URL

Run JavaScript executes JavaScript code in the user's browser. The Go to URL script opens a
specified URL in the user’s browser and loads it into the browser at the specified target.

To run JavaScript:

1 Navigate to the location where you want to add the script to execute JavaScript. See “Adding
Scripts” on page 43.

2 Click the Scripting syntax helper button. Select Run JavaScript from the LM 1.0 behaviors list,
and press Enter (or double click the behavior name).

The script appears in the Script Editor Composition window:

get URL("] avascri pt: code");

3 Replace the code argument with your code, as illustrated by the example below:
get URL("j avascript: w ndow. alert('hello world);");

This code displays the string ‘hello world” in the browser window.

To add a Go to URL script:

1 Navigate to the location where you want to add the Go to URL script. See “Adding Scripts” on
page 43.

2 Click the Scripting syntax helper button. Select Go to URL from the LM 1.0 behaviors list, and
press Enter (or double click the behavior name).

The script appears in the Script Editor Composition window:
get URL(url, wi ndow);
3 Replace the ur! and wi ndow arguments described below with the appropriate values.

url is a string containing the URL you want to load.

ADOBE LIVEMOTION 2.0 |59
Scripting Guide

wi ndowis a string specifying the browser location to load the URL into—either a custom frame
name or one of the four standard values: _bl ank, _parent,_sel f,or_t op.

Here is an example:

get URL("http://ww. adobe. cont', " _bl ank");

60| CHAPTER 3
Behaviors

61

Chapter 4: Movie Clips

Introduction to movie clips

A movie clip is a LiveMotion object that you can manipulate programmatically through
scripting. Movie clips are JavaScript objects. Like other JavaScript objects, movie clips have
properties and methods, and they can be assigned to variables and placed in arrays.

Movie clips have, in addition, a set of built-in properties and methods that are defined by the
Flash Player. A movie clip’s built-in properties describe the physical features of a movie clip, for
example its height, width, position, and the number of frames on its timeline. You can set the
values of these built-in properties to programmatically control the appearance and behavior of
a movie clip throughout its lifetime. A movie clip’s built-in methods include functionality that
you can perform on movie clips such as creating copies, loading and unloading movie clips, and
playing and stopping movie clips. In addition, you can use built-in methods to obtain infor-
mation about a movie clip such as its size, the number of bytes loaded, and whether it intersects
with other movie clips at specified points. You can also define your own methods and properties
for movie clips, as described in “Creating movie clip properties and methods” on page 76.

In addition to having the characteristics of standard JavaScript objects, movie clips have the
ability to handle user- and system-generated events such as pressing a key or loading a movie
clip. For a movie clip to respond to an event, you must write an event handler for that event on
that movie clip; the handler is then executed whenever the event occurs. For details on movie clip
event handling, see “Movie Clip Events and Event Handlers” on page 89.

Unlike other JavaScript objects, movie clip objects cannot be instantiated: that is, you cannot
create a new, original movie clip programatically. A movie clip has no constructor, and cannot
be instantiated using the newoperator.

So, you might ask, how do I create a movie clip instance? The simplest method, and the one to
work with first, is to create the movie clip manually in the Composition window. Later, this
section describes two other methods that programatically create copies of existing movie clips.

62| CHAPTER 4
Movie Clips

How to create a movie clip using LiveMotion

LiveMotion objects start out as “regular” (unscriptable) objects. To write scripts to an object, you
must convert the object into a movie clip or a movie clip group. The exception is objects for
which you have defined additional states (besides the normal state, which all objects have by
default). In such a case, LiveMotion automatically converts the object into a movie clip. As an
indication that an object or a group of objects has been turned into a movie clip, the movie clip
icon is displayed to the left of the movie clip or the movie clip group name on the timeline.
Conversion gives the movie clip its own timeline so that it can play independently of the main
composition timeline and independently of any parent timeline, if the movie clip is nested.
Movie clips are equivalent to the time-independent objects and time-independent groups in
LiveMotion 1.0.

Basic methods

You can manually create movie clips in two basic ways: by converting an object to a movie clip
and by creating movie clip groups. Movie clip groups differ from movie clip objects in that a
movie clip group contains one or more child objects (movie clips or regular objects). A movie
clip is not a group and, as such, cannot contain a child object.

To convert an object to a movie clip:

Select one object in the timeline, and click the “Make selected objects movie clips” button at the
bottom of the Timeline window, or choose Object > Movie Clip from LiveMotion’s main menu.

To create a movie clip group:

Select one or more objects in the timeline, and click the “Group objects and make movie clip”
button at the bottom of the Timeline window, or choose Object > Make Movie Clip Group from
LiveMotion’s main menu. Make Movie Clip Group first groups the selected objects. Then it turns
the group into a movie clip with its own independent timeline. Movie clip groups can contain
regular (unscriptable) objects, and movie clips, as well as other movie clip groups.

You also can create a movie clip group using this two-step approach:

1 Select one or more objects, and choose Select Object > Group from the main menu. Alter-
nately, you can press Ctrl+ G (Windows) or Command+G (Mac OS).

2 Click the “Make selected objects movie clips” button at the bottom of the timeline, or choose
Object > Make Movie Clip from LiveMotion’s main menu.

ADOBE LIVEMOTION 2.0 |63
Scripting Guide

Effect of creating a movie clip and a movie clip group

When you create a movie clip group, you add an extra timeline between the objects in the movie
clip group and the main composition timeline. This is the timeline of the movie clip group
object. Figure 4.1 compares what happens before and after making a movie clip to what happens
before and after making a movie clip group.

Immediately after creating a movie clip group, the movie clip group name is displayed in the
Timeline window. To view the group’s contents, you must expand the movie clip group’s
timeline.

Movie Clip

N,
>

Make Movie Clip Group

N,
>

movieClipGroup

Figure 4.1 Before and after creating a movie clip and creating a movie clip group

64| CHAPTER 4
Movie Clips

Movie clip hierarchy

All movie clips in a composition are arranged in a hierarchy. At the top of the hierarchy is the
composition timeline (also referred to as the _r oot movie clip or, simply, _r oot).

Note: The _r oot movie clip is a slightly special case of a movie clip, because you don’t create or name
it. It is there by default when you create a composition, and it functions like other movie clips with
the exception of a few built-in methods and properties, which do not apply. For details, see “Movie
clip properties and methods” on page 69.

In Figure 4.2, novi el i pGr oupAisachildof _root._root also hasasecond child, novi eCl i pE.
Because novi eCl i pGr oupA and novi eCl i pE share the same parent, they are referred to as
siblings. movi eCl i pB and novi ed i pCare children of novi eCl i pG oupA.

movieClipGroupA

[movieClipGroupA | | movieClipE | movieClipB
movieClipC
| movieClipB | | movieClipC | movieClipE
hierarchy s-order

Figure 4.2 Movie clip hierarchy and z-order

In LiveMotion, you create a parent-child relationship any time you place (or create) a movie clip
or movie clip group on the timeline of another movie clip group or _r oot . The movie clip group
becomes the parent of the movie clips it contains. For details on creating movie clip groups, see
“How to create a movie clip using LiveMotion” on page 62.

Relationship of movie clip hierarchy to z-order

In the movie clip hierarchy shown in Figure 4.2, a parent appears above its children. This
hierarchy fails to demonstrate the z-order that you see reflected in the Timeline window,
however. (Recall that z-order is the order in which objects overlap. For details, see the LiveMotion
2.0 User Guide.) To see the z-order of a movie clip group’s children, you open the group's
timeline.

ADOBE LIVEMOTION 2.0 |65
Scripting Guide

Ignoring programmatically generated movie clips for the moment, the visual result in the
Composition window of the Timeline z-order window is determined by the order of the movie
clip groups and the order of the movie clips within them. This is still true when programmati-
cally generated movie clips are added to a composition, as described in “What the programmatic
stack does to the movie clip hierarchy” on page 82. The order just takes on some more detail.

If, for example, you were to open the Timeline window for the composition shown in Figure 4.2,
z-order would show the composition timeline at the top and novi ed i pGr oupA, above

movi eCl i pE. But because novi eCl i pGr oupA is just a movie clip group containing novi eCl i pB
and novi ed i pC, the movie clips would appear from front to back in this order in the Compo-
sition window: movi eCl i pB, novi ed i pC, novi ed i pE.

Note: To be able to refer to child movie clips in scripting, siblings must have unique names.
Otherwise, you will only be able to access the redundant child name that is topmost in z-order.

How to access movie clips in the hierarchy
In scripting language, children are accessed as properties of their parent using dot (.) notation.
For example, novi eCl i pGr oupA can access its child movi eCl i pB as:

_this._noviedipB
A child can access its parent using the movie clip _par ent property. For example, this is how
nmovi eCl i pGr oupA can access _r oot :

this._parent

The keyword t hi s refers to the movie clip to which a script is added. The above script is inter-
preted to mean: “From this movie clip’s position in the object hierarchy, go up one level in the
hierarchy to access the parent of t hi s, which happens to be _r oot ”

In Figure 4.2 novi eCl i pBis a grandchild of _r oot . Here is how _r oot is accessed from
movi eCl i pB using the _par ent property:

this._parent._parent

66 | CHAPTER 4
Movie Clips

Movie clip addressing

You most likely will be changing the object hierarchy as you develop your composition. It is
important that you understand movie clip addressing, so you can make the appropriate changes
to movie clip references in your scripts as a result of object hierarchy changes. This section
describes movie clip addressing and makes suggestions on addressing choices, depending on
your situation.

There are two types of movie clip addresses:
« Absolute reference
* Relative reference

This section uses the movie clip object hierarchy shown in Figure 4.3 to illustrate the addressing
types.

movieClipGroupA movieClipGroupE

| movieClipB | |movieCIipC | |movieCIipD | |movieCIipGroupF |

movieClipG

Figure 4.3 Movie clip addressing

What is an absolute reference?

An absolute reference is a reference to a movie clip that begins at the top of the composition, and
walks down through the object hierarchy— parent to child—until reaching the movie clip of
interest. An absolute reference always starts with _r oot , and uses dot (.) notation to access the
children of _r oot , and the children's children, and so on until it obtains the movie clip being
referenced. The absolute reference is the same regardless of where in the movie clip hierarchy the
source movie clip (movie clip making the reference) is located.

ADOBE LIVEMOTION 2.0 |67
Scripting Guide

Absolute reference example

For example, the absolute reference to novi eCl i pBis:

_root. novi eCl i pG oupA. novi eCl i pB

_root is always at the top of the hierarchy and starts in the absolute reference. In this example,
movi eCl i pGr oupA s at the level just above movi eCl i pB. The reference ends with movi eCl i pB,
the movie clip being referenced.

What is a relative reference?

A relative reference is a reference that begins with the source movie clip (movie clip making the
reference) and walks through the movie clip hierarchy, each step being parent-to-child or
child-to-parent until it reaches the movie clip of interest. Relative references always start with

t hi s, and access the next movie clip in the reference—either as a child, or through the _par ent
property—until it obtains a reference to the desired movie clip. A relative reference is dependent
on the relationship between the source movie clip and the movie clip it is referencing and varies
from source to source.

Note: Although using "t hi s' is optional in the relative reference, this scripting guide begins all
relative references with 't hi s' so you can more easily distinguish between absolute references and
relative references.

Relative reference examples
Here is an example of the relative reference from novi eCl i pG oupA (shown in Figure 4.3) to
movi e i pG oupE:

this._parent. novi el i pG oupE

t hi s refers to movi eCl i pGr oupA.

_parent isnovi edl i pGr oupAs parent (in this case, _r oot) which is up one level in the object
hierarchy from novi edl i pGr oupA. From _r oot the reference leads down one level to
movi el i pG oupE.

This is the relative reference from novi ed i pCto _r oot :

this._parent._parent

In this example, _r oot is movi eCl i pC’s grandparent.

68| CHAPTER 4
Movie Clips

When to use an absolute or a relative reference
You can access all the movie clips in a composition using either type of reference for movie clip
addressing. However, in most cases one reference style makes more sense than the other.

Here are two rules of thumb:

* Choose the reference style that you believe is least likely to change during your editing process.
* The simpler reference is usually the better one.

If, for example, you know that the location of the movie clip that you want to access is not going
to change in the object hierarchy, but you are not sure where the source movie clip that is
accessing it is going to be, it is probably better to use an absolute reference. Then, regardless of
where the source movie clip is located in the hierarchy, the reference to the target will be correct.
If you know that the relationship between two movie clips in the hierarchy is not going to change,
but you are not sure where these movie clips will be located relative to _r oot , it is probably better
to use a relative reference. If you're still uncertain about the relationship of the movie clips,
choose the simpler reference. For example, it makes more sense for novi eCl i pGto refer to
movi eCl i pFasthis. _parent than as_root. novi ed i pGr oupE. novi eCl i pF.

More examples of movie clip addressing
This section provides additional examples of movie clip addresses. It identifies all the references
from the objects in Figure 4.4 to movie clip novi eCl i pD.

movieClipGroupA

| movieClipB | |movieC|ipC | |m0vieC|ipD |

movieClipGroupE

movieClipF
movieClipG

Figure 4.4 Object hierarchy for examples

There is only one absolute reference to novi eCl i pD:

_root. novi eCl i pG oupA. novi eC i pD

ADOBE LIVEMOTION 2.0 |69
Scripting Guide

Table 4.1 shows all the relative references to novi ed i pDfrom each of the other movie clips in
Figure 4.4.

Table 4.1 Relative references to movieClipD

Source Relative reference to movieClipD

nmovi eCl i pGoupA this.nmoviedipD

nmovi eCl i pB this._parent.noviedipD
nmovi ed i pC this._parent.novieCdipD
nmovi ed i pD this

movi ed i pGroupE this._parent. novieC ipG oupA novieCdipD
nmovi ed i pF this._parent._parent.novi el i pG oupA. novi eC ipD

movi ed i pG this._parent._parent._parent. novi eCl i pG oupA. novi eC i pD

Movie clip properties and methods

Built-in movie clip properties

As illustrated in the previous example, you can manipulate a movie clip’s properties to create
effects such as animation. Movie clips come with a large number of built-in properties. You can
use these properties to modify the physical features of a movie clip, such as changing its size or
opacity or changing its location.

Table 4.2 lists all the built-in movie clip properties. The built-in property names start with the
underscore (_) character to distinguish them from properties that you might define yourself.

Note: The _r oot movie clip works with all of these properties except _nane and _par ent.

Table 4.2 Movie clip built-in properties
Property Description
_al pha Opacity of the movie clip on a scale of O (transparent) to 100 (opaque).

_currentfrane Position of the playhead in the movie clip's timeline.

70| CHAPTER 4
Movie Clips

Property

Description

_droptarget

_franmesl oaded
_hei ght
nane

_parent

_rotation
_target
_total franes
—url
_visible
_width

_X

_Xnouse

_xscal e

_y

_ynouse

_yscale

Absolute reference (in slash notation) of a movie clip over which a
movie clip passes during drag operations performed by the user.

Number of the movie clip frames that have been loaded.
Height of the movie clip in pixels.
Name of the movie clip. This property does not work with _r oot .

Movie clip containing this movie clip. This property does not work
with _root.

Rotation angle of the movie clip in degrees.

Absolute reference of the movie clip in slash notation.
Number of frames in the movie clip.

URL of the SWF file that this movie clip is a part of.
Boolean indicating whether the movie clip is visible.
Width of the movie clip in pixels.

Horizontal location of the movie clip in pixels relative to the anchor
point of the movie clip's parent.

Horizontal location of mouse pointer in pixels relative to the anchor
point of the movie clip.

Horizontal percentage scale factor of the movie clip (100% is full size).

Vertical location of the movie clip in pixels relative to the anchor point
of the movie clip's parent.

Vertical location of mouse pointer in pixels relative to the anchor
point of the movie clip.

The vertical percentage scale factor of the movie clip (100% is full
size).

ADOBE LIVEMOTION 2.0 |71
Scripting Guide

Built-in movie clip methods

Movie clip methods are functions attached to the movie clip object and are called using () .
Scripting provides a set of built-in movie clip methods that you can use to control a movie clip
in various ways. Included are methods with which you can affect the behavior of a movie clip,
change or find out about a movie clip’s characteristics, load additional SWF files, and program-
matically create duplicates of a movie clip. (Programmatically creating movie clips is described
at length in “Creating movie clips programmatically” on page 77.)

Table 4.3 lists the built-in movie clip methods and describes their functions. See“Reference” on
page 143 for details on the arguments to each of these methods.

Note: The _r oot movie clip works with all of these methods except dupl i cat eMovi eCl i p(),
removeMovi ed i p(), and swapDept hs() .

Table 4.3 Movie clip built-in methods
Method Description
attachMovi e() Attach the named movie clip (passed in as an argument) to the movie

clip. For details see “Static and programmatic stacks” on page 78.

dupl i cat eMovi ed i p() Duplicate this movie clip. For details see “Movie clip global func-
tions that use _leveln as an argument” on page 87. This method
does not work with _r oot .

get Bounds() Return bounds of the movie clip. The returned object contains the
values in the properties xM n, XMax, yM n, and y Max.

get Byt esLoaded() Return the number of bytes already loaded if the movie clip is exter-
nal (loaded with Movi eCl i p. | oadMovi e()). If the movie clip is
internal, the number returned is always the same as that returned by
Movi eC i p. get BytesTotal ().

get Byt esTotal () Return the size of the movie clip in bytes. When running under the
preview tool in LiveMotion, this number is always 1000.

get URL() Load the URL into the browser.

gl obal ToLocal () Convert the given global point to the movie clip's coordinate space.
got oAndPl ay() Go to the specified label and play. Also a global movie clip method.
got oAndSt op() Go to the specified label and stop. Also a global movie clip method.
hit Test () Return a Boolean value indicating whether the movie clip intersects

with a given clip (passed in as an argument) or given x,y coordinates.

72| CHAPTER 4
Movie Clips

Method

Description

| mSet Current State()

| oadMovi e()

| oadVari abl es()

| ocal Tod obal ()

next Frame()

play()

prevFrame()

renmoveMovi eC i p()

startDrag()
stop()
st opDrag()

swapDept hs()

unl oadMVobvi e()

val ueOf ()

Change the state of the movie. The LiveMotion state of the movie
must already be defined and appear in the state browser.

Load an external SWF file into the movie clip. The contents of the
movie clip are replaced with the contents of the SWF file.

Load variables into the movie clip fetched from the specified URL. The
movie clip’s onDat a handler is called when the variables have been
loaded.

Convert a point in the movie's coordinate space to global coordi-
nates.

Go to the next frame and stop playing. Also a global movie clip
method.

Start playing.
Go to the previous frame and stop playing.

Delete a duplicated or attached instance. This method does not
work with _root.

Start dragging a movie clip. Also a global movie clip method.
Stop playing.
Stop any drag operation in progress.

Swap the movie clips’s depth with that of another movie clip. For
details on depth, see “Movie clip global functions that use _leveln
as an argument” on page 87.This method does not work with
_root.

Unload a movie that was previously loaded with | oadMbvi e() .

Returns the absolute reference to the movie in absolute terms using
dot (as opposed to slash) notation.

Hands-on example 4_1: Mouse trailer
This example creates a mouse trailer. It uses the following movie clip properties and methods:

X

_y
_Xnouse

_ynouse

ADOBE LIVEMOTION 2.0 |73
Scripting Guide

_xscal e

_yscale

dupl i cateMovi el i p()
got oAndPl ay()

The _xnmouse and _ynouse movie clip properties establish the position of the mouse relative to
the movie clip position. Each mouse movement causes the manually created movie clip and
several programmatically generated and scaled duplicates to follow the mouse. The _xscal e and
_yscal e movie clip properties progressively scale the duplicates from smallest to largest as they
are generated in the Composition window.

To create a mouse trailer:
1 Create a new composition. Save the file as Ex4_1.1i v.
2 Create an object in the Composition window.

The object will be the base of your mouse trailer. The size of this object will be the size of the
largest object in your trailer. After completing the code for this example, you can go back later
and edit the object to change the appearance of your mouse trailer.

3 Select the object in the Timeline window, convert it into a movie clip, and name it Base0.

4 Select Base0, and make it a movie clip group by choosing Object > Make Movie Clip Group
from the main menu.

With Base0 inside of a movie clip group, the timeline object hierarchy is:

_root
(Movie clip group) Goup of 1 objects
(Movie clip) BaseO

5 Select the newly created Group of 1 objects, and name it MouseTrailer. The timeline object
hierarchy changes to:

_root
(Movie clip group) MuseTrailer
(Movie clip) BaseO

6 Expand MouseTrailer’s timeline. Drag the end marker of MouseTrailer’s duration bar to
frame 2. Be sure that the endpoint of Base0’s duration bar also is at frame 2.

Both duration bars should be three frames long, as shown in Figure 4.5.

7 Place the current-time marker at frame 0.

74| CHAPTER 4
Movie Clips

8 Click the Scripts button to create a script keyframe at frame 0. This also opens the Script
Editor. In the Script window, enter the code:

this.trailers = new Array; //an array of objects that trail the npuse

//create 9 nore objects for the trailer

var i;

for (i =1; i <10 ; i++)

{
/1 create the new object, give it a unique nane, and
/1 place it at a unique depth
t hi s. BaseO. dupl i cateMovi el i p("Base" + i, i);
/1 put the new object in the array
this.trailers[i] = this["Base" + i];
/'l change the scale of the new object
this.trailers[i]._xscale = 100 - i*10;
this.trailers[i]._yscale = 100 - i*10;

}

/1 put the original in the array

this.trailers[0] = this.BaseO;

This code sets up the mouse trailer. It creates a series of duplicates of Base0, places each duplicate
in the array, and scales the objects such that the topmost is the smallest, and the bottommost is
the largest.

9 Close the Script Editor window.

10 In the Timeline window, move the current-time marker to frame 1, and create a label. Name
the label “repeat.”

This example uses labels so that, if you change the frame rate of the composition, the mouse
trailer still works.

11 At frame 1, create a script keyframe. In the Script Editor, enter the code:

/* update the position of the trailers
place the topnost trailer at the position of the nouse

ADOBE LIVEMOTION 2.0 |75
Scripting Guide

*/

this.trailers[9]._x
this.trailers[9]._y

this._xnmouse;
thi s._ynouse;

/*

update the position of the rest of the objects, placing the object
hal fway between its current position and the position of the object
in front of it.

*/
var i = 0;
for(i =0; i< 9 ; i++)
{
this.trailers[i]._x += (this.trailers[i+1]._x - this.trailers[i]._x)/2;
this.trailers[i]._y += (this.trailers[i+1]._y - this.trailers[i]._y)/2;
}

Each time this code is called, it updates the position of Base0 and each of the duplicates of BaseO.
12 Close the Script Editor window.

13 Move the current-time marker to frame 2, and click the Scripts button to create a script
keyframe.

This also opens the Script Editor. Figure 4.5 shows how the MouseTrailer timeline should appear
at this point.

14 In the Script window, enter the code:

t hi s. got oAndPl ay("repeat");

76| CHAPTER 4
Movie Clips

Each time this code is called, it resets the current-time marker to the frame labeled “repeat,”
which is where the code to update the positions is located.

4 | MouseTrailer

= B MaouseTrailar
Labelz
Scripts
Transform
[» Object Attributes

[®Easen = H}
=
[=l —= el] bla
Figure 4.5 Mouse trailer timeline with script keyframes and repeat label

15 Preview.

16 Export this file, and save it as Ex4_1. swf .

Creating movie clip properties and methods

You can create your own movie clip properties and methods. To do so, navigate to the timeline
of the movie clip for which you want to create a property or method, open the Script Editor. You
can enter the code for the definitions in the movie clip’s onLoad handler.

This example creates the movie clip property t oggl e, which returns a boolean value. The
example uses t oggl e in the bl i nk() method to change the movie clip’s opacity:

/1 define the toggle property
this.toggle = true;

/1 define the blink nethod
this.blink = function()

if(this.toggle == true)

{
this._alpha = 50; // change opacity value to 50
this.toggle = fal se;

}

el se

{

ADOBE LIVEMOTION 2.0 |77
Scripting Guide

this._alpha = 100; // change opacity value to 100
this.toggle = true;
}

}

You can call the methods that you created in the same way that you call a method on any object.
Provide the name of the movie clip and the method name. The call to bl i nk() appears as:

this.blink(); // calling the blink method

Creating movie clips programmatically

You can create movie clips manually or programmatically. As previously described, you can
manually create movie clips or movie clip groups by creating regular objects using LiveMotion’s
tools in the Composition window and then converting those objects to movie clips or to movie
clip groups. Besides creating a movie clip manually in the Composition window, you can create
a movie clip programmatically using the built-in movie clip methods: at t achMvi e() and
dupl i cateMviedip().

Note: Simple movie clips cannot have children: this includes static and programmatic children.

Using attachMovie() to create movie clip copies

The at t achMovi e() movie clip method creates a new copy of an attachable movie clip. The
movie clip copy is attached as a child of novi eCl i p at the specified dept h in movi eCl i p’s
programmatic stack. The syntax of this method is:

nmovi e i p. att achMovi e(export Nane, newNane, depth);

expor t Name Sharing name assigned to the movie clip in the Export palette. For details
on creating sharing names for use with the at t achMovi e() method, see
“Making shareable movie clips (and shareable sounds)” on page 83.

newNane New name given to the attached movie clip to differentiate it from other
movie clips in the SWF file.

depth Integer that tells where in movi eCl i p’s programmatic stack to place the
movie clip copy.

78| CHAPTER 4
Movie Clips

Using duplicateMovieClip() to create movie clip copies
The movie clip method dupl i cat eMovi eCl i p() instructs a movie clip to create a copy of itself.
The copy becomes a sibling of the original. The syntax of this method is:

nmovi ecl i p. dupl i cat eMovi eCl i p(newNane, depth);

newNane String indicating the name of the movie clip copy.

dept h Integer that tells where in the programmatic stack of the original's parent
to place the movie clip copy.

You can also call dupl i cat eMovi eCl i p() as a global function. Instead of copying itself, the
global function copies a movie clip passed as an argument. The syntax of this function is:

duplicateMovied ip(target, newNane, depth);

target Path or reference to a movie clip or a string indicating the location of the
movie clip to copy.

newNane String indicating the name of the movie clip copy.

dept h Integer that tells where in the programmatic stack of the original's parent
to place the movie clip copy.

Static and programmatic stacks

Note: Because the children of a movie clip group also can themselves be parents (that is, movie clip
groups) with their own children, this guide uses the term ‘movie clip’ for simplicity in most cases. If
the movie clip has children, by definition it really is a movie clip group.

Movie clips have two stacks: a static stack and a programmatic stack. A movie clip’s static stack
contains its manually created children. A manually created movie clip starts as a regular object

that you create in the Composition window and then convert into a movie clip. A movie clip has
a programmatic stack that contains its programmatically generated children.

Figure 4.6 illustrates the static and programmatic stacks of manually created movie clip A.

ADOBE LIVEMOTION 2.0 |79
Scripting Guide

A’s static stack contains its manually created children. Manually created movie clips become the
children of a manually created parent when you create a movie clip group that contains them. In
Figure 4.6, A is the name of the movie clip group that contains the manually created movie clips
X and Y in its static stack.

Immediately above A’s static stack is its programmatic stack. The programmatic stack is where
programmatically generated movie clips are placed. Although there can be many levels to the
programmatic stack, for simplicity Figure 4.6 depicts four, with depth values: 0, 1, 2, and 3. Each
level of movie clip A’s programmatic stack can contain a programmatically generated movie clip
that is a child of movie clip A. In the programmatic stack, the movie clip with the highest
numeric depth value is the topmost movie clip overlapping all others when the movie clip
executes in the Composition window in Preview mode or in the exported SWF file. The movie
clip with the next highest numeric depth value overlaps the movie clip with next highest numeric
depth value, and so on.

A| depth3
depth2 Programmatic stack
depth1
depth0
X Static stack
Y
Figure 4.6 A’s programmatic and stack stacks

Every movie clip—even those that are created programmatically—makes space for a program-
matic stack.

Manipulating the stack depth with attachMovie() and duplicateMovieClip()
When you create a movie clip programmatically with at t achMovi e() or dupl i cat eMov-

i eClip(),you assignita dept h value. dept h can be any integer value that is 0 or higher. You
are not required to assign the depth values to movie clips generated in any particular order.

Assume for this example that movie clip A has no programmatic children. You can attach movie
clip instances to movie clip A to create, say, movie clips E, B, and C by making calls to the
at t achMovi e() method as shown here:

A. attachMovi e(export Name, "E', 3);
A. attachMovi e(export Name, "B*, 0);

80| CHAPTER 4
Movie Clips

A. attachMovi e(export Name, "C', 1);

Figure 4.7 (1) depicts the placement of the programmatically generated movie clips in movie clip
A’s stack after these three calls.

A E A E
depth2 depth2

C N

B B

X X

Y Y

(1) (2)

Figure 4.7 Using attachMovie()

A subsequent call to at t achMovi e() specifying a dept h already occupied just replaces the
current movie clip with a new one. So if you call at t achMovi e() again as shown here:

A. attachMovi e(export Name, "N', 1);

Movie clip Nwill replace movie clip C, as shown in Figure 4.7 (2).

The dupl i cat eMovi eCl i p() method also creates movie clip copies. However the copies are
placed in the programmatic stack of the caller’s parent. The new movie becomes a sibling of the
movie from which it was duplicated.

Here is an example of the manually created movie clip X creating a duplicate movie clip D:

X. duplicateMviedip("D', 2);

ADOBE LIVEMOTION 2.0 |81
Scripting Guide

Movie clip Dis placed in movie clip As programmatic stack, because it is a sibling of movie clip
X, as shown in Figure 4.8

<|X|wm|(Z|[Olm

Figure 4.8 Using duplicateMovieClip()

Using swapDepths() to swap movie clip positions in the programmatic stack
You can use the swapDept hs() method to swap the positions of two movie clips. For this
method to work, both movie clips must be siblings. The syntax is either of two forms:

nmovi e i p. swapDept hs(target);
nmovi e i p. swapDept hs(dept h) ;

target Path or reference to a movie clip or a string indicating the name of the
movie clip to swap depths with novi ed i p..

depth Integer that tells where to place novi eCl i p.in the programmatic stack of
novi eCl i p's parent.

When called with the t ar get argument, the method swaps depths of novi eCl i p and t ar get,
provided that the movie clips share the same parent.

When called with the dept h argument, the method places novi eCl i p in a new position in the
programmatic stack of its parent. If that position is occupied, the movie clip occupying it is
moved to novi eCl i p’s old position.

82| CHAPTER 4
Movie Clips

What the programmatic stack does to the movie clip hierarchy

So far you have viewed a composition from the perspective of its movie clip hierarchy and its
relationship to z-order for movie clips that are created manually. For details, see “Relationship
of movie clip hierarchy to z-order” on page 64. Figure 4.9 illustrates what happens to the
hierarchy when you add programmatically generated movie clips. You can’t view this order in
the Composition window, however, unless you are in Preview mode or you export the compo-
sition to a SWF file. The programmatically generated movie clips appear during the course of
execution at the time they are generated.

Figure 4.9 represents the order of manually and programmatically created movie clips. The
dashed lines separate the parent and children movie clips. Movie clips A and B are manually
created. Movie clip A has two manually created children, W and X. Like A, movie clip B has two
manually created children, Y and Z. Figure 4.9 (left) shows the manually created movie clips.
Figure 4.9 (right) shows the location of the programmatic stack for _root, movie clip A, and
movie clip B.

h _root's programmatic stack
_root —
_root | | 9
A —
[Al \ |=—1] A's programmatic stack
[lw \ | W N
X ; s | i A's static stack
| B | | | —] B'sprogrammatic stack
Y \ | Y B's static stack
Z Z
| | [
L—— _root's static stack
Figure 4.9 Manually and programmatically created movie clips

Here are two examples that show how attaching and duplicating a movie clip compare. Say that
you create movie clip P with at t achMovi e() as shown here:

A. attachMovi e(export Name, "P*, depth);

Movie clip P is placed at the specified dept h in A’s programmatic stack. Movie clip P is a
programmatic child of movie clip A.

ADOBE LIVEMOTION 2.0 |83
Scripting Guide

Now, you create a movie clip L with dupl i cat eMovi ed i p(), as shown here:

A. duplicateMviedip("L", depth);

Movie clip L is placed at the specified dept h in _r oot ’s programmatic stack, because it is a
sibling of movie clip A.

Table 4.4 illustrates some more examples of programmatically generated movie clips and
indicates the stack in which the movie clips are placed.

Table 4.4 Placement of programmatically generated movie clips

Method call Stack and depth where movie clip is placed

A attachMovi e(export Name, "R', 1); Ris placed in A's programmatic stack at depth 1.

B. dupl i cat eMovi eCl i p("M', 0); M is placed in _r oot ‘s programmatic stack at
depth 0.

B. att achMovi e(export Nane, "“N', 4); N is placed in B's programmatic stack at depth 4.

Y. duplicateMviedip("P', 4); P is placed in B's programmatic stack at depth 4,
replacing movie clip N.

Z. attachMovi e(exportName, "Q', 2); Qis placedin Z's programmatic stack at depth 2 (not
shown in Figure 4.9);

In Table 4.4, Z’s programmatic stack would be represented as a fourth view of the composition
shown in Figure 4.9. If Z had manually created children, they would appear in Z’s manual stack
just below its programmatic stack.

Making shareable movie clips (and shareable sounds)

This section describes how to make movie clips available for use with at t achMovi e(), so they can
be shared in compositions that you create or in compositions created by other people. The procedures
for setting up the mechanism that makes movie clip sharing possible also applies to sharing sounds.

LiveMotion supports sharing movie clips (and sounds) that you and other users can reuse and
make copies of in external SWF files. You can share movie clips with LiveMotion and other appli-
cations that export to the SWF file format. This feature enables you to leverage content from the
vast number of existing SWF files. To make a movie clip shareable, you have to set them up in
your composition as described below.

84| CHAPTER 4
Movie Clips

Setting up shareable movie clips in your composition

To make a movie clip sharable in your composition:

1 Create any simple object in the Composition window, and convert it to a movie clip.
2 Select the movie clip’s name in the Timeline window.

3 Choose File > Export Settings... or Window > Export to bring up the Export palette.

4 In the Export palette menu, select Macromedia Flash (SWF) from the drop-down menu of file
types at the top of the palette.

5 Click the Animation tab (with the bouncing ball icon) shown in Figure 4.10.

6 To activate the fields and checkboxes beneath the Frame Rate drop-down menu in this tab,
click the Object export settings button at the bottom of the tab. See Figure 4.10.

Note: Do not click the Multiple selections button next to Object export settings. It may cause scripts
to execute abnormally.

7 Check the Attachable checkbox, and enter a sharing name for the movie clip in the text box
just below it, as shown in Figure 4.10.

[]
IMacromedia Flagh (SWF) LI
Do e =

glelT = |

Frarne Rate: IDocument Rate vl

[V attachable

Marne: ImyMovieCIip

l_ Use External Asset
Fath:

jim] f53 i

Figure 4.10 Export palette filled out to make myMovieClip shareable

With the Export palette set up as described, you can make more copies of the movie clip using
the at t achMovi e() method. Here is the syntax:

nmovi e i p. att achMovi e(export Nane, newNane, depth);

If you are attaching a sound instead, this is the syntax of the sound object method:

ADOBE LIVEMOTION 2.0 |85
Scripting Guide

soundQbj . at t achSound(export Nane) ;

To use either of these methods, fill in the shareable name for expor t Name, and provide a unique
name for the copy that you are going to make. The dept h argument to at t achMovi ed i p() is
described in detail in “Creating movie clips programmatically” on page 77.

Ifyou don’t want the shareable movie clip to appear (or sound to be heard) in your SWF file until
it is accessed by scripting code, you can hide it by turning off its eye icon (movie clip) or its
speaker icon (sound) in the timeline. The movie clip or sound will be included in the exported
SWE file but will not be visible (or audible) until it is accessed dynamically in a script.

4 [Compuosition TP . | "D = 0
= Carnposition
Labels E
Scripts @
» R T

Figure4.11 Timeline showing the eye icon toggled on for ellipse

Accessing movie clips and sounds in an external SWF file

To access a shareable movie clip (or sound) in an external SWF file, you first create a “place-
holder” movie clip in your own composition that you give a sharing name. Then when you
export your composition to SWF file format and play it in the Flash Player, your placeholder is
replaced by the movie clip in the external file that has the same sharing name.

What is important here is that you must know in advance the sharing name of the movie clip in
an external file that you want to use in place of your “placeholder” movie clip. This is a feature
from which you can really leverage, because if sophisticated movie clips exist that can be reused,
there is little reason to reconstruct them when they can be swapped into a SWF file during
playback. Here are the details of the procedure for accessing movie clips in external files.

To access a movie clip (or sound) in an external SWF:
1 Create a simple object such as an ellipse and convert it to a movie clip.

2 Give the movie clip a sharing name by repeating steps 1 through 6 in “To make a movie clip
sharable in your composition:” on page 84. This procedure uses the sharing name Bob.

3 In the Export palette Animation tab, check the Use external asset checkbox. See Figure 4.10.

4 In the Path: field, enter the absolute reference to the external SWF file containing a movie clip
that also has the sharing name Bob.

86 | CHAPTER 4
Movie Clips

When you export your SWF file to the Flash Player, your placeholder movie clip named Bob is

replaced with movie clip named Bob in the external SWF. If you want to create more copies of

Bob from the external SWF file, you can call at t achMovi e() and provide Bob as the value of the
first argument or, if you are working with sounds, call at t achSound() and provide the sharing
name of the sound from an external SWF file as the sole argument to this object method.

Levels of the Flash Player

In addition to a programmatic stacking order, there is a stacking order that determines the
overlapping of SWF files when multiple files are loaded into the Flash Player. The first file loaded
is placed in the lowest level of the stack (_I evel 0). If additional SWF files are loaded, you can
place them at any numeric player level above _| evel 0. You can also replace the current SWF file
at any level, including _| evel 0. The contents of the SWEF file at the highest level appears in front
of all other SWF files in the player. The contents of the SWF file in the next lower level appears
behind the highest, and so forth. A complete SWF file stack can consist of multiple SWF files,
each of which can contain multiple movie clips with movie clip duplicates and attached movie
clips, each with its own programmatic stack. Figure 4.12 illustrates SWF file stacking order.

ADOBE LIVEMOTION 2.0 |87
Scripting Guide

_level2
SWF

_levell
SWF

_level0
SWF

— _root's programmatic stack

— movieclip1's programmatic stack
| movieclip's static stack

— movieclip2's programmatic stack

| movieclip2's static stack

— _root's programmatic stack

— movieclip1's programmatic stack
] movieclip1's static stack

— movieclip2's programmatic stack

] movieclip2's static stack

— _root's programmatic stack

— movieclip1's programmatic stack
] movieclip1's static stack

— movieclip2's programmatic stack

] movieclip2's static stack

Figure 4.12

Stacking order of SWF files

_l'evel n (where n represents 0 or is a non-negative integer value) is a global property that you
can use to refer to a SWF file when multiple SWF files are loaded into the Flash Player. It is also
an argument to the global functions for loading and unloading SWF files described below. For

more information, see the description of this property in “Reference” on page 143.

Movie clip global functions that use _leveln as an argument

You can load SWF files into the Flash Player and unload them from the player using the respective
| oadMovi e() and unl oadMovi e() global functions.

88| CHAPTER 4
Movie Clips

Using loadMovie() to load a SWF file
You can use the | oadMovi e() global function to replace the contents of a movie clip or SWE file
level with the SWE file. It replaces an occupied SWF file level or fills an empty one. The syntax is:

| oadMovi e(url, target);

url String specifying the location of an external SWF file to load.

target Path or reference to a movie clip indicating the name of the movie clip or
Flash Player level into which the SWF file is loaded.

Using unloadMovie() to unload a SWF file
You can use the unl oadMovi e() global function, which removes a movie clip or a SWE file. The
function takes a t ar get parameter. The syntax is:

unl oadMovi e(t arget);

tar get Path or reference indicating the name of the movie clip or Flash Player
level to remove from the player.

89

Chapter 5: Movie Clip Events and
Event Handlers

Introduction to events

Events are actions that take place at indeterminate times during the playback of a composition.
They are said to occur asynchronously because they occur at any time, not as a result of reaching
a particular keyframe on a timeline. Events include such actions as pressing a key, clicking a
mouse, and loading a movie clip into the Composition window. For the purposes of this chapter,
a state change also is treated as a type of event.

Event types

LiveMotion supports two basic types of events: movie clip and state change events.

Movie clip events are associated with movie clips. They can be further broken down into system
key, mouse, and button events. System-based movie clip events occur as a result of composition
playback or loading variables into a movie clip. Key, mouse, and button events occur as a result
of a user action such as moving the mouse or pressing a key.

State change events are associated with states. A state change event occurs when a movie clip
enters a new state as the result of a call to | nSet Curr ent St at e() . The call could be part of a
remote rollover, part of some user-defined script, or part of the default button handler scripts
added to the movie clip's button handlers when predefined states (over, down or out) are added
to the movie clip.

Event handlers

Ifyou intend to have something occur in your composition as a result of an event that takes place,
you must write an event handler. An event handler contains the code that you want to execute in
response to the event. When the event occurs, the interpreter in the Flash Player checks if there
is a handler written for that event. If there is, the interpreter executes the event handler code.

90| CHAPTER 5

Movie Clip Events and Event Handlers

Each movie clip event handler has a unique name that describes the action to which that handler
responds. For example, onKeyPress, onMouseDown, and onLoad are the names of movie clip
event handlers that respond to the respective actions: key press, mouse down stroke, and movie
clip loading. The event handler names themselves do nothing until you write the code to
implement them. A user can click the mouse forever, and nothing special will happen if there is
no code written for onMouseDown events. The code you write causes the interpreter to execute
that code each time a mouse click is detected.

A state change handler responds to the action of changing to the state for which that handler is
written. The interpreter executes the handler code whenever the movie clip enters that state.

System-based events and event handlers

System-based events are actions that are generated by the Flash Player. Table 5.1 lists the names
of the system-based event handlers that LiveMotion supports.

Table 5.1 System-based event handlers and events
Event handler Event causing the handler to be called
onData Either of two unrelated situations: Completion of variables loading into
a movie clip or receipt of a portion of an external SWF file by a host
movie clip.
onload First appearance of a movie clip in the Composition window.
onEnterFrame Each time the playhead enters a frame, before the frame is rendered.
onUnload Removal of a movie clip from the Composition window.
onData

A data event can be caused by either of two unrelated situations. One occurs when all variables
are loaded into the movie clip that were sent by a server-side application as a result of a call to

| oadVari abl es() . The onData handler can notify the composition that the variables are
available for use.

ADOBE LIVEMOTION 2.0 |91
Scripting Guide

The second situation occurs when a SWF file, or a specific portion of one, is completely loaded
into a movie clip or a specified SWF file level with the | oadMovi e() function. For information
on SWE file levels, see “Levels of the Flash Player” on page 86.

Note: The following event handlers are mutually exclusive: only one handler can execute on any
given frame.

onLoad

A load event marks the first appearance of a movie clip in the composition. The onLoad event
handler executes only once in the lifetime of a movie clip. It occurs on the first frame of a movie
clip when the movie clip appears in the composition. If the movie clip executes in a loop that
causes its first frame to be replayed, this would not constitute a load event. If, however, a movie
clip is unloaded, reloading it again is a new lifetime, and a load event occurs on the movie clip’s
first frame.

onEnterFrame

An enter frame event occurs when the playhead enters a frame. The onEnterFrame handler
executes on every frame except the first frame, when the onLoad event handler of the movie clip
executes.

onUnload

An unload event occurs when a movie clip is removed from the Composition window. The
onUnload event handler executes on the first frame after the movie clip is removed.

Hands-on example 5_1: Using system-based event handlers to rotate a
movie clip

This hands-on example illustrates how to use the onLoad and onEnterFrame handlers to define
and call a movie clip method that causes a movie clip to rotate itself on every frame.

To rotate a movie clip:
1 Create a new composition, and save it as Ex5_1. 1 i v.
2 Create an object in the Composition window, and give it a fill color.

3 Select the object, and choose Object > Movie Clip from the main menu to convert it into a
movie clip.

92| CHAPTER 5

Movie Clip Events and Event Handlers

4 Open the Script Editor by choosing Scripts > Script Editor from the main menu.
5 Click the system-based even handler onLoad, in the drop-down menu of handlers.

6 Write an onLoad event handler that defines a function to rotate the movie clip when it is
called. Here is a script that does this:

function rotate(){
this. _rotation += 40;

}

7 Click the system-based event onEnterFrame, in the drop-down menu.
8 Write an onEnterFrame event handler that calls the r ot at e() function. Here is the call:

this.rotate();

This function is called to rotate the movie clip on every frame.

9 Preview.

Hands-on example 5_2: Programmatic bounce

This example creates a programmatic bouncing ball. Like the previous example, it uses onLoad
and onEnterFrame event handlers. This example uses onLoad, to initialize conditions, and
onEnterFrame, to update conditions as the playhead enters each frame. The example also
demonstrates the use of the hi t Test () and get Bounds() movie clip methods.

To create a programmatic bounce:
1 Create a new composition, and save it as Ex5_2. | i v.
2 Choose Edit > Composition Settings, and set the frames per second to 20.

3 To create the ground, create a rectangle in the Composition window, and position it where
you would like the ground to be.

4 Convert the rectangle into a movie clip, and name it Ground.

5 To create the ball, create an ellipse in the Composition window, and position it at the location
from which you would like it to fall.

6 Convert the ellipse into a movie clip, and name it Ball.

ADOBE LIVEMOTION 2.0 |93
Scripting Guide

The movie clips in the Composition should appear something like the ones that are shown in
Figure 5.1.

Figure 5.1 Composition window showing Ground and Ball

7 Move the anchor point of Ball to the bottom of the ellipse.

The anchor point is the position of the object in scripting. This example sets Ball’s position by
its bottom.

8 Double click Ball in the Timeline window, and open the Script Editor.

9 Click the Handler scripts button (if not already toggled on). Then select the onLoad event
handler, and enter this code:

this.dx = 0; // initial velocity in x direction pixels/frame

this.dy = 0; // initial velocity iny direction pixels/frame
this.gravity = 2000; //in pixels/frame”2

this.dt = 1/20; //the amount of tinme that passes between each frane

/1 with the frame rate is 20 fps.

This code initializes the velocity of Ball, the value of gr avi t y, and the time between frames. The
initial velocity of Bal | is 0 in the x and y directions. The value of gr avi t y is 2000
pixels/frame/frame. The time between frames is 1/20 of a second, because the composition is set
to 20 frames/second.

94| CHAPTER 5

Movie Clip Events and Event Handlers

10 Click onEnterFrame in the drop-down menu of event handlers, and enter this code for the
handler:

/1 nove the ball in the x direction
this._ x =this._x + this.dx * this.dt;

/1 move the ball in the y direction
this._y = this._y + this.dy * this.dt + .5*this.gravity*this.dt*this.dt;

/1 if it hits the ground
if(this.hitTest(_root.G ound))

{
//get the bounds of the ground
var bounds = _root. G ound. get Bounds(_root);
//set the ball at ground |evel
this._y = bounds.yM n;
/lreverse the direction of the y velocity
this.dy = -(this.dy + this.gravity * this.dt);
}
/] ot herwi se
el se
{
/lincrease the velocity
this.dy += this.gravity * this.dt;
}

This code updates the position and velocity of Ball on every frame. It also checks to see if Ball has
hit the ground. If the movie clip intersects the ground, it is moved to be on top of the ground,
and its y velocity reverse 'bounces' it.

11 Export and open in your browser.

Key events and event handlers

Key events are triggered by key actions that are performed by the user while the movie clip is in
the Composition window. Unlike button events, key events are not tied to the mouse cursor
being over an area of the movie clip for the key handlers to execute. See “Button events and event
handlers” on page 98. The only requirement is that the movie clip timeline to which the event
handler is added is in the Composition window. Table 5.2 lists the names of the key event
handlers supported by LiveMotion.

ADOBE LIVEMOTION 2.0 |95
Scripting Guide

Table 5.2 Key event handlers and events
Event handler Event causing the handler to be called
onKeyDown Pressing a key while the movie clip is in the Composition window.
onKeyUp Releasing a key while the movie clip is in the Composition window.
onKeyDown

The key down event is generated by pressing a key on the keyboard. The onKeyDown event
handler simply indicates that a key has been pressed.

onKeyUp
The key up event is generated by releasing a key on the keyboard. The onKeyUp event handler
simply indicates that a key has been released.

Using key event handlers
Because the key event handlers just tell you that a key has been pressed or released (but not which
key), you generally use a key event handler in combination with the Key object.

Key object
There is only one Key object. The Key object is a built-in object that provides four built-in

methods that, when used in combination with a key event handler, can be used to get infor-
mation about which keyboard keys were pressed, are held down, and are locked down.

Methods that handle the last key pressed

The get Asci i () and get Code() methods return information about the last key pressed
whether or not that key is still pressed. These are useful if you want to know the last key pressed
only. To ensure that you have captured the last key pressed, the methods are only useful when
called in an onKeyDown event handler.

The get Asci i () method returns the ASCII value of the last key pressed. Values exist for
uppercase (shifted state) and lowercase characters.

96 | CHAPTER 5

Movie Clip Events and Event Handlers

Each key on the keyboard has a numerical value assigned to it. This value is the keycode. The
get Code() method returns the keycode of the last key pressed. At the time this method is called,
the key may no longer be down.

Note: Using the ASCII value alone is less portable than using the keycode, as character codes may
differ across different keyboards. If you are writing scripts for international or cross-platform use, the
keycode may be more useful.

Methods that handle keys pressed at the time the method is called

The i sDown() andi sToggl ed() methods handle keys that are pressed when the methods are
called regardless of the key last pressed. If, for example, you press ‘@’ and then press ‘b’ the event
handler onKeyDown detects ‘D’ as the last key pressed. However calling i sDown() on ‘@’ still
returns true. These methods are useful in many places such as in onKeyDown, onKeyUp, and
onEnterFrame handlers.

The i sDown() method determines if a specific key is currently pressed. i sToggl ed() deter-
mines whether Caps Lock, Num Lock, or Scroll Lock is toggled on or off.

Hands-on example 5_3: Creating an onKeyDown event handler
The onKeyDown handler in this example uses the i sDown() method to determine which Arrow
key is being pressed and takes the appropriate action, depending on the key.

To create an onKeyDown event handler:
1 Create a new composition, and save it as Ex5_3. | i v.
2 Create a simple shape in the Composition window, and give it a fill color.

3 Select the object. Choose Object > Movie Clip from the main menu to convert it into a movie
clip, and name it Mover.

4 Select Mover in the Timeline window, and choose Scripts > Script Editor to open the Script
Editor.

5 Expand the drop-down menu of events, and click the onKeyDown event in the list.

ADOBE LIVEMOTION 2.0 |97
Scripting Guide

6 In the Script window, enter the following code for the onKeyDown handler:

i f (Key.isDown(Key.
_root. Mwver. _x

i f (Key.isDown(Key.
_root. Mwver. _x

i f (Key.isDown(Key.
_root. Mver. _y

i f (Key.isDown(Key.
_root. Mver. _y

7 Preview.

LEFT))
-= 10;

RI GHT))
+= 10;

Up))
-= 10;

DOMN))
+= 10;

Click your mouse cursor on the Composition window to make it the active window. Then, use
the arrow keys to move Mover around the window.

Mouse events and event handlers

Mouse events are triggered by mouse actions that are performed by the user while the movie clip
is in the Composition window. Unlike button events, mouse events are not tied to the mouse
cursor being over an area of the movie clip for the handlers to execute. See “Button events and
event handlers” on page 98. The only requirement is that the movie clip timeline to which the
event handler is added is in the Composition window. Table 5.3 lists the names of the mouse
event handlers supported by LiveMotion.

Table 5.3 Mouse event handlers and events

Event handler

Event causing the handler to be called

onMouseMove

onMouseDown

onMouseUp

Any movement of the mouse cursor while the movie clip is in the Com-
position window.

Pressing the mouse button while the movie clip is in the Composition
window.

Releasing the mouse button while the movie clip is in the Composition
window.

98| CHAPTER 5

Movie Clip Events and Event Handlers

onMouseMove

A mouse move event occurs when the mouse position changes. The onMouseMove event
handler detects mouse position changes by repeatedly issuing events while the mouse is being
moved. You can use the onMouseMove handler to display a mouse trailer. To create a mouse
trailer, see “Hands-on example 4_1: Mouse trailer” on page 72.

onMouseDown

The onMouseDown event handler is the mouse counterpart to onKeyDown. It detects pressing
the mouse button. Mouse down events can be detected only when the mouse cursor is in the
Composition window.

onMouseUp

The onMouseUp event handler is the mouse counterpart onKeyUp. It detects releasing the
mouse button. Mouse up events can be detected only when the mouse cursor is in the Compo-
sition window.

Button events and event handlers

Button event handlers execute only when the mouse cursor is on the movie clip in the Compo-
sition window. Table 5.4 lists the names of the button event handlers supported by LiveMotion.

Note: _r oot does not support button events, because the composition as a whole cannot not be
a button.

Table 5.4 Button event handlers and events
Event handler Event causing the handler to be called
onButtonPress Clicking the mouse button while the cursor is on the movie clip.
onButtonRelease Releasing the mouse button while the cursor is on the movie clip.

onButtonReleaseOutside After pressing the mouse button and holding the cursor on the movie
clip, moving the mouse cursor off the movie clip and releasing the but-
ton.

onButtonRollOver Moving the mouse cursor on the movie clip.

onButtonRollOut Moving the mouse cursor off the movie clip.

ADOBE LIVEMOTION 2.0 |99
Scripting Guide

Event handler Event causing the handler to be called

onButtonDragOver After pressing the mouse button while the mouse cursor is on the movie
clip, moving the cursor off and then back on the movie clip.

onButtonDragOut After pressing the mouse button while the mouse cursor is on the movie
clip, moving the mouse cursor off the movie clip.

onButtonPress

Button press events occur on the downstroke of a button click. The onButtonPress handler
should be used when the user must be decisive. As soon as the button is pressed, the onButton-
Press event handler executes.

An onMouseDown event also is triggered for a button press event if an onMouseDown handler
is defined.

onButtonRelease

Button release events occur on the upstroke of a button click. Use the onButtonRelease handler
when the user should be allowed to change his mind by keeping a button pressed until
completely off the button.

An onMouseUp event also is triggered for a button release event if an onMouseUp handler is
defined.

onButtonReleaseOutside

An event in which the button is released outside is one in which the button must initially be
pressed while the mouse cursor is on the movie clip. The event is then generated by holding the
mouse button down and moving off the movie clip before releasing the button. The onButton-
ReleaseOutside event handler detects this type of action.

An onMouseUp event also is triggered for a button release outside event if an onMouseUp
handler is defined.

onButtonRollOver

A button rollover event occurs when the mouse cursor is moved onto the movie clip (but not
pressed). This action is handled by the onButtonRollOver handler.

100

CHAPTER 5

Movie Clip Events and Event Handlers

An onMouseMove event also is triggered for a button rollover event if an onMouseMove handler
is defined.

onButtonRollOut

A button rollout event occurs when the mouse is moved off the movie clip (but not pressed).
This action is handled by the onButtonRollOut handler.

An onMouseMove event also is triggered for a button rollout event if an onMouseMove handler
is defined.

onButtonDragOut

A button drag out event is similar to a button rollout event except the mouse button is pressed
while the mouse is moved off the movie clip. An onButtonDragOut handler should be written
to handle this action.

An onMouseMove event also is triggered for a button drag out event if an onMouseMove handler
is defined.

onButtonDragOver

A button drag over event starts with the mouse button pressed while on the movie clip. Then the
mouse is moved off the movie clip (generating the onButtonDragOut event) and moved back on
again—all movement taking place while the mouse button is pressed. An onButtonDragOver
handler should be written to handle this action.

An onMouseMove event also is triggered for a button drag over event if an onMouseMove
handler is defined.

Hands-on example 5_4: Creating a simple button event handler

Itis important to understand that a button is simply a movie clip that has a button event handler
defined for it. This example creates a button.

To create a button event handler:
1 Create a new composition, and save it as Ex5_4. | i v.
2 Create an object in the Composition window, and give it a fill color.

3 Select the object, and choose Object > Movie Clip from the main menu to convert it into a
movie clip.

ADOBE LIVEMOTION 2.0
Scripting Guide

4 Name the movie clip Rotate_button.

5 Open the Script Editor by choosing Scripts > Script Editor from the main menu.

6 In the Script Editor, click the Handler scripts button if the button is not already toggled on.
7 Expand the drop-down menu of events, and click the onButtonPress event.

8 Enter this code for the onButtonPress event handler:

this. _rotation += 30;

The code causes Rotate_button to rotate itself 30 degrees each time the user presses the button.

9 Preview.

Hands-on example 5_5: Creating a toggle button

For LiveMotion 1.0 users, recall that you created a “button” by applying predefined or custom
states to an object in the Rollovers palette. This example creates a simple toggle button that has
two states: normal and on. By clicking the button, it switches between these states. This example
is very useful for creating user interface elements such as radio buttons and check boxes.

To create a toggle button:
1 Create a new composition, and save it as Ex5_5. | i v.
2 Create an ellipse in the Composition window.

3 Give the ellipse the color red.

Click on the circle to
toggle between red
and blue.

Figure 5.2 Composition with ellipse

4 In the States palette, give the object a custom state, and name the state “on.”

This automatically converts the object to a movie clip.

101

102

CHAPTER 5

Movie Clip Events and Event Handlers

5 Select the “on” state, and give it the color blue.
6 In the Timeline window, select your newly created movie clip, press Enter, and name it Toggle.

7 With Toggle still selected, open the Script Editor by choosing Scripts > Script Editor from the
main menu.

8 Click the Handler scripts button (if not already toggled on).
9 Click the onLoad event in the drop-down menu of events, and enter this script:

toggl eState = fal se;

This onLoad event handler code creates the variable t oggl eSt at e, and initializes it to false.
The variable will track the state and value of Toggle.
10 In the Handler scripts drop-down menu, click the onButtonPress event, and enter the
following script:
if (toggleState == fal se)

this.|lnmBetCurrentState("on");

toggl eState = true;
} else {

this.lnSetCurrentState("normal");
toggl eState = fal se;

}

This onButtonPress event handler code creates a simple toggle effect. It switches the current state
of Toggle between “normal” and “on,” depending on the value of t oggl eSt at e.

11 Preview.

12 Click on Toggle to switch between its normal state and on states.

State change events and handlers

State change events are triggered when the state of a movie clip changes. All state changes are the
result of a call to | nSet Cur r ent St at e() . However this call could be part of a remote rollover,
part of some user defined script, or part of the default button handler scripts associated with the
predefined button states (normal, over, down, and out) that give them their default button
behavior. For additional information on the default button handlers, see the next section.

ADOBE LIVEMOTION 2.0
Scripting Guide

Automatically generated button event handlers

LiveMotion automatically generates code in the movie clip's button handlers to implement the
default button behavior for the predefined states. These automatically generated button event
handlers are set up to change the state of the movie clip in responses to the appropriate button
event. The method used to change the state of the movie clip is | nSet Cur r ent St at e() . This is
the same method that you can use anywhere in your scripts to change state. If, for example, you
define the over state for an object, LiveMotion automatically generates this code to set the state
to the over state when the mouse cursor is over the movie clip. LiveMotion generates this code
to return the movie clip to the normal state when the mouse cursor is no longer over the
movie clip.

Hands on example 5_6: Experimenting with automatically generated button
handlers

This example creates a predefined state for a button, which causes LiveMotion to automatically
generate button handlers. Then it comments out the automatically generated code to demon-
strate that the state change will not occur.

To automatically generate a button handler:

1 Create a new composition, and save it as Ex5_6. | i v.

2 Create an ellipse in the Composition window.

3 Give the ellipse the color red.

4 In the States palette, add the over state to the ellipse.

This automatically converts the object to a movie clip.

5 Select the over state, and give it the color blue.

6 In the Timeline window, select your newly created movie clip, and name it Button.
7 Open the Script Editor by choosing Scripts > Script Editor from the main menu.

8 Click the Handler scripts button (if not already toggled on).

103

104 | CHAPTER 5
Movie Clip Events and Event Handlers

9 Click the arrow to the right in the drop-down menu to display all the event handlers. The
asterisk (*) to the left of these button handlers in the list indicates that code (shown here) has
automatically been generated.

button handler code generated

onButtonRollover this. | nmSetCurrentState("over");
onButtonRollOut this. | nmSetCurrentState("nornmal");
onButtonDragOut this.| nmSetCurrentState("nornmal");

10 Select the onButtonRollover event. The script associated with this event is:

this.|nBetCurrentState("over");

11 Preview the rollover to verify that it is working.

Button should turn blue when the mouse cursor is over it.

12 Exit Preview mode.

13 Open the Script Editor, and click the Handler scripts button.

14 Select the onButtonRollover event, and comment out the automatically generated code, as
shown here.

/1 this.|nBetCurrentState("over");

15 Preview.

When you pass the mouse cursor over Button, its color does not change from its normal state
color to the blue color you gave it for the over state, because you disabled the over state change.

The LiveMotion button behaviors of the predefined states are the default. You don’t need to
retain these behaviors. You can easily define a new button behavior style. Just comment out
LiveMotion’s button handler code as you did in this example and write your own. For example,
you could create a toggle behavior for the down state such that clicking the button places it in the
down state until such time that the button is clicked again to place it in the normal state.

Be aware that if you simply delete the LiveMotion state change script instead of commenting it
out, you may not recall why a behavior is not working as it was originally defined.

105

Chapter 6: Dynamic Data

In LiveMotion, dynamic data refers to the ability to dynamically take data input from a user to
set variables and to respond based on the user’s specific query. This usually involves communi-
cation with a remote Web server or a database. Communications occur over standard Web
browser protocols (HTTP or HTTPS) or over TCP/IP sockets. Responses are displayed within a
LiveMotion movie clip or within a browser window.

Forms and text fields

Dynamic data applications are usually based on forms. LiveMotion makes it easy to create
powerful forms. A well-designed form ensures that you are soliciting the right information from
the user. A form may consist of a single text field into which the user enters information, or it
may consist of dozens of text fields strategically laid out on the screen so that it’s crystal clear to
see how to fill out the form.

Dynamic data user input occurs via the mouse or the keyboard. Mouse input is handled by
LiveMotion’s onMouseMove, onMouseDown, and onMouseUp event handlers. Keyboard input
can also be handled entirely via the event system using the Key object, but for most dynamic data
applications it is handled using LiveMotion text fields in conjunction with on-screen buttons.

Text field properties

Text fields are used to create forms and to display information received from remote sources.
This information can be updated by the user and returned in the same—now updated—text
field variables.

LiveMotion allows you to set a variety of text field properties. This occurs through the Properties
palette. For example, dynamic text fields can have the Password flag set from the Properties
palette pop-up menu (shown in Figure 6.1), which prevents characters from being displayed
when the user types in his password.

106 | CHAPTER 6
Dynamic Data

Anti-dlizs None
v Antisdliaz Crisp

Anti-alias Strong

Anti-dlias Smoath

Show Border\Background

v Single Line
Multi-Line
Password

Faux Bold
Faux [talic

Agzian Text Options

Figure 6.1 Properties palette pop-up menu

Another important property that is set from the text field Properties palette is the variable name
assigned to the text field. The variable name is typed into the Var field (see Figure 6.2). For
example, in the following code, di spl ay is the name of the text field, and "My first text
field" is the string value associated with it.

_root.display = "My first text field";

eb | Transform Properties 3

|symmbol 7| [Reguiar _;I
T |::”48 j ﬁ [:”120 j
[C+T [eT> Yar: W
Limit:E? |l TS %El El

Figure 6.2 Properties palette

The contents of the di spl ay variable can be updated by the user, and/or sent to a remote appli-
cation, and/or modified and returned by a remote application. These tasks are usually accom-
plished using the | oadVari abl es(),! oadVari abl esNun(), | oadMovi e(), | oadMovi eNund(),
and get URL() global functions and the | oadVari abl es(), | oadMvi e(), and get URL()
MovieClip object methods to send and (in the case of the | oadVari abl es() calls) receive
variables over the network.

ADOBE LIVEMOTION 2.0
Scripting Guide

Two other important properties that are set from the text field properties palette are whether the
text field allows users to enter text when it is exported as a SWF file, and whether the text in the
text field is interpreted as HTML code. Both of these properties are important to keep in mind
when creating text fields for dynamic data applications.

To create a text field:

1 Select the text field tool.

Click and drag to create the bounding box of the text field.

Type into the text field to add default text (initialize the text field with a value).
In the Timeline window, select the text field (named Dynamic Text by default).

Choose Object >Edit Name from the main menu, and enter a new name for the text field.

A U A W N

Choose Window >Properties. In the Properties palette, enter a variable name in the Var field
as shown in Figure 6.2. Then set any other properties of the text field you wish to specify.

Once you assign a variable name to a text field, the text in that text field becomes the value of the
variable. The text field is of type string. Even if there are only numbers in the text field, it is still
considered a string. If you want to work with the data as numbers, use the par sel nt () global
function. After the text field has been initialized with a string, any value that you enter into the
text field—or any modification that you make to the text in the text field—causes the value of
the variable to change. In addition, through the scripting language, text field variables can be
manipulated like any other variables. Note that when the text field is exported or when it is
previewed, any changes to it are automatically saved. Also, there is no real need for a form’s
“enter” or “submit” button other than to move the user to the next text field or to submit the text
field variables to the server.

You will probably want to set the Show Border\Background option in the pop-up menu of the
Properties palette (see Figure 6.1). This places borders around your text fields so that they are
easy to see. In addition, the Properties palette allows you to set the text font and size, and to
indicate which fonts to embed.

107

108

CHAPTER 6
Dynamic Data

loadVariables(), loadMovie(), and getURL()

Taking user input is one way of using dynamic data variables. Other ways include using the

| oadVari abl es(),| oadVari abl esNun(), | oadMovi e(), | oadMovi eNun() , and get URL()
global functions and the | oadVari abl es(),| oadMovi e(), and get URL() movie clip methods.
These functions and methods allow you to interact with an external data source, usually an appli-
cation running on a Web server. The | oadVari abl es() and | oadVari abl esNun() global
functionsand the novi ed i p. | oadVari abl es() method allow you to send and receive variable
values. The other global functions and movie clip methods only allow you to send variables and
their values—the results may then be sent back by the application as a SWF file (I oadMovi e())
or an HTML page (get URL()).

Note: The | oadVari abl es() global function, the| oadVar i abl esNun() global function, and the
movi eCl i p. | oadVari abl es() method are asynchronous in nature—the variables aren’t loaded
immediately. The timeline continues progressing while data is being retrieved and loaded, at the end
of which the onDat a event is raised. The _r oot movie clip, however, has no onDat a event, so an
immediate child of _r oot is usually used.

To send variables, you must specify whether the GET or POST HTTP method is used. For example,
the last argument of the | oadVari abl es() global function is used to specify the HTTP method:

| oadVari abl es("http://ww. nmyServer.con cgi - bi n/ stockdata. pl",this,"GET");

For all of the | oadVari abl es(), | oadMovi e() , and get URL() calls, the HTTP method
argument is always the last argument and is optional; in each case this argument also indicates
that you want to send the variables. If provided, the argument causes LiveMotion to send all of
the movie clip’s user-defined variables, including the text field variables, according to the
method indicated. The Flash Player automatically URL-encodes the outgoing variable strings.
The GET method has a 1024-character limit and sends the variables tacked onto the URL that is
used to contact the remote application (see the | oadVari abl es() invocation above). The POST
method is used for larger amounts of data; this data is sent separately from the URL, and thus
data sent via POST is not visible to the user of the application, so is more secure. For more infor-
mation regarding the syntax used to send and receive variables, see “Reference” on page 143.

Note: Repeated use of GET with the same variables and their values might cause the Web browser to
cache the data that’s supposed to be returned. To avoid this, use POST.

ADOBE LIVEMOTION 2.0 {109
Scripting Guide

In addition to encoding outgoing variable strings, the player decodes incoming variable strings.
To encode and decode, the Flash Player uses the application/x-www-form-urlencoded MIME

format. During encoding, this format:

* Replaces spaces with a plus (+) sign;

* Replaces non-alphanumeric characters by %-H where HH are two hexadecimal digits repre-
senting the ASCII code of the character;

* Represents line breaks (for multi-line text fields) as CR LF pairs—%DV®A;

* Lists fields in the order that they appear with the variable name separated from the value by an
equal sign (=) and from each other by an ampersand (&) .

Table 6.1 summarizes how variables are sent and received using LiveMotion.

Table 6.1 Calls for Remote Transmission and Reception of Variables

Global Function or Movie Clip
Method

Use

| oadVari abl es() global
function

| oadVari abl esNun{) glo-
bal function

| oadMovi e() global func-
tion

| oadMovi eNun() global

function

get URL() global function

nmovi ed i p. | oadVari -
abl es() method

nmovi eC i p. | oadMovi e()
method

nmovi eC i p. get URL()
method

Sends and receives variables. Loads received variable values into a
movie clip identified by player level, path, or movie clip reference.

Same as | oadVar i abl es() global function except that variable
values can only be loaded into a movie clip identified by player
level.

Sends variable values. Receives a SWF file, possibly generated
based on the values supplied. This file can then be loaded into
either a player level or a movie clip, replacing existing contents.

Same as | oadMovi e() global function except that the SWF file
can only be loaded into a player level.

Sends variable values. Receives results as an HTML file for display
in a browser window. Also allows you to execute JavaScript and
VBScript code and to execute the f scommand global function.

Same as | oadVari abl es() global function except that variable
values can only be sent from and loaded into movi ed i p.

Same as | oadMovi e() global function except that the variables
can only be sent from and the SWF file can only be loaded into
nmovi ed i p.

Sameas get URL() global function except that variable values can
only be sent from novi ed i p.

110

CHAPTER 6
Dynamic Data

On the server side, the application that receives and sends variables and values can be written in
any of a variety of server side scripting languages. The SWF file format is not dependent upon
server technology. Some of the more common scripting languages are Perl, Microsoft Active
Server Pages (ASP), and PHP. The scripting languages used to create server-side applications that
send and receive data have built-in facilities for handling the types of communications described
above. The exception is an application that can generate SWF files “on the fly.” Typically, such an
application is highly customized.

How to create a form and send its data to a server

Use the following steps as a guideline for developing a form that takes user input, sends the input
to a server, and receives data back. The steps can be modified to create and populate a form that
is updated by the user; the contents of the updated text field variables would then be sent to the
server.

To create a dynamic data form in LiveMotion:

1 Start a new composition.

Create a text field.

Give the text field the variable name i nput and set the Allow Input option.
Create a button with three predefined states—normal, over, and down.

Select the text field and the button and make them into a movie clip group.

O U1 A W N

Give the movie clip group the name f or NG oup.

To create a form to receive data from a server:
1 Create a text field.
2 Give the text field the variable name out put .

3 Select the text field, and make it a movie clip group with the name out put G oup.

To send data to a server:
1 Double click on f or nGr oup in the Timeline window.

2 Select the button.

ADOBE LIVEMOTION 2.0
Scripting Guide

3 In the States palette, select the down state.

4 In the Timeline window, double click on the down state for the button to open the Timeline
window for the down state. Then click on the Scripts button.

5 Enter the following:

| oadVari abl es("http://ww. myserver.com processForm asp",
" _root. out put G oup", " POST") ;

The final step adds the down state button code that will load variables from the f or nGr oup
movie clip and post them to the ASP page on www. nyser ver . com This code also causes the
loading of the variables from pr ocessFor m asp. Those variables are then placed into the movie
clip out put Gr oup. If those variables already exist in out put Gr oup, then they are updated.
Otherwise, new variables are created that are actually properties of the out put G oup movie clip
(to be accessed in the same way as any other movie clip properties or movie clip variables).

The ASP file can specify any number of variable-value pairs. Each pair must be separated with
an ampersand and spaces must be URL-encoded so they are replaced with a + sign, as described

above where the rules for the application/x-www-form-urlencoded MIME format are outlined.

For example:

out put =t he+f or mrsubmi t t ed+correct| y&addi ti onal Dat a=val i d&eof =1

XML communications

LiveMotion also supports transmission and reception of eXtensible Markup Language (XML)
files. Using XML, a LiveMotion application can take input from the user, generate an XML file,
and send the file to a server application that parses the XML and stores the data. The application
then responds with either an XML file for processing by a movie clip or with an HTML file for
display in a Web browser window.

The LiveMotion XM class enables you to load, parse, send, build, and manipulate XML
document trees. Unlike HTML, which uses a defined set of tags, XML allows you to define your
own document tags. For example, the following code shows a simple XML document:

<?xm version='1.0"?>

<doc>

<p>Text </ p>

<p><enpMor e<enp text </ p>

<p>See al so <xref doc="bestDoc.xm "/></p>

111

112

CHAPTER 6
Dynamic Data

</ doc>

LiveMotion allows you to either build an XML document from scratch or read in and modify an
existing XML document.

Only version r41 and above of the Flash 5.0 Player support XML (r41 was released in December,
2000). Use the get Ver si on() global function to get the version of the Flash Player that you
currently have installed. Use of XML with the Flash Player is not dependent on the browser; your
browser does not need to support XML to use this capability.

The LiveMotion XM. class’s send() , | oad(), and sendAndLoad() methods are used to send and
retrieve XML documents to/from URLs. Table 6.2 provides a brief description of each method.
The difference between send() and sendAndLoad() is that the Web server’s response to send()
is an HTML file, whereas the response to sendAndLoad() is an XML document. Since they tend
to be too large for the GET method, the POST HT TP method is usually used for sending and
receiving XML documents. To support parsing of the data returned from the XML methods, the
methods also work in Preview mode. The table below summarizes the XML class’s methods used
to send and retrieve XML documents. See “Reference” on page 143 for further details.

Table 6.2 XML Class Methods for Sending and Receiving XML Data

Method Description
| oad() Get an XML file from a URL.
send() Send an XML file to a URL; expects the server to respond with an HTML

page for display in a browser window.

sendAndLoad() Send an XML file to a remote URL; expects the server to respond with an
XML file for processing and display in a LiveMotion movie clip.

XML socket communications

LiveMotion also supports XML socket-based communications. Communications using XML
sockets are implemented using the XM_Socket class.

The XM.Socket class implements a client socket that allows the Flash Player to communicate
with a server using an “open” connection. A connection using a socket is useful because it
remains open—that is, an IP connection doesn’t have to be made between the client and the
server each time communications occur between the Flash Player and a server, as is required
when the HTTP protocol is used. A “permanent,” two-way, TCP/IP link is set up instead. This

ADOBE LIVEMOTION 2.0
Scripting Guide

enables the Flash Player to listen for incoming messages and process them as they come in. On
the server side, this creates a connection where the server can push data directly down to the
Flash Player. Real-time communications are enabled.

Only the XM_Socket object uses a full-duplex, continuous, TCP/IP connection. The get URL(),
| oadVari abl es(), | oadMovi e(), XM.. send(), XM_. | oad(), and XM.. sendAndLoad() calls
use the HTTP or HTTPS protocol.

The primary characteristics of an XML socket-based application between a Flash Player movie
clip and a server are the following:

* There must be a server-side application to wait for the socket connection request and respond
to the Flash Player.

+ XML messages are sent over a full-duplex TCP/IP connection.

» Each XML message is a complete XML document, terminated by a zero byte (ASCII null
character).

* An unlimited number of XML messages can be sent and received over a single connection.

If these are not requirements of your application, use LiveMotion’s other dynamic data
functions, objects, and methods, already discussed in this chapter.

The XM.Socket implementation in LiveMotion is event-based. These events are coded
separately (and do not use) the built-in event handlers in the LiveMotion scripting environment.
The implementation uses four event handlers that use user-defined callback functions to
respond to activity on the socket-based connection. The implementation’s three core methods
are used to set up a connection and to send XML files. The XM_Socket methods are summarized
in Table 6.3. The XM_Socket event handlers are summarized in Table 6.4. See “Reference” on
page 143 for further details.

Table 6.3 XMLSocket Class methods

Method Description
cl ose() method Close an open socket connection.
connect () method Create a socket connection to a specified server.

send() method Send an XML object to the server.

113

114

CHAPTER 6
Dynamic Data

Table 6.4 XMLSocket event handlers

Event Handler Description

onCl ose() event handler Callback function that is called when a connection is closed
by the server.

onConnect () eventhandler Callback function that is called when a connection is cre-
ated.
onDat a() event handler Callback function that is called when data is received but has

not yet been parsed as XML.

onXM.() event handler Callback function thatis called when data has been received
and parsed into an XML object hierarchy.

The application on the server side of an XML connection is more sophisticated than a standard
Perl or ASP application. These tend to be applications that work well over UNIX sockets connec-
tions on TCP/IP networks and they are often written in Java. They usually host custom-written
front ends tuned to handle stringent XML translation and generation.

Processing incoming data

The following is an example of XM.Socket code used to process incoming data.

functi on showbDat a(dat aXM.) {
/1 act on the XML fromthe socket
trace(dataXM. first Child. nodeVal ue);
}
/1 define the socket
dat aSocket = new XM.Socket ();
/1 connect to the server at a specified port
dat aSocket . connect (" http://ww. adobeSer ver Or Sonet hi ng. com ", 1024) ;
dat aSocket. onXM. = showDat a;

115

Chapter 7: Script Editor

Introduction to the Script Editor

This section provides details on LiveMotion’s Script Editor. It describes the capabilities of each
physical component and explains how you can use the functionality to assist you in developing
your scripts. Every hands-on example in this guide uses the Script Editor at a very high level. You
learned how to open the Editor to write scripts to timelines and to movie clip states. This section
takes you through all the Script Editor functionality. As you start to create more advanced scripts,
you can refer to this section to take advantage of the Script Editor’s features.

Exploring the Script Editor

The Script Editor enables you to write and maintain scripts for your composition while you are
in the LiveMotion application. To access the Script Editor you must have a new or an existing
composition open in LiveMotion.

Script Editor window
Figure 7.1 shows the Script Editor window.

" Script E ditor - \Compositiony

[e 2lo|=] ¢|][05| oo 3 alz|
[

@ Composition

| I

Figure 7.1 Script Editor window

116

CHAPTER 7
Script Editor

The title bar of the Script Editor window displays a reference to the movie clip whose scripts you
are currently editing.

The Script Editor main window is further divided into three main informational views.
Clockwise starting with the top left in Figure 7.1, these are:

* Scripting helper window
* Script window
* Description window

The Scripting helper window displays the tools that can assist you in developing scripting code.
These are: Movie clip navigator, Scripting syntax helper, and Composition browser. The
Automation syntax helper is not available for creating scripts to be exported to the Flash Player.

The Script window is where you write JavaScript code clip, or view existing scripts, for the
current movie clip. To enter code, you can select code from the Scripting syntax helper, or you
can simply insert the cursor in this window and start writing code.

The Description window displays descriptions of syntax that you select using the Scripting
syntax helper button (described below).

You can adjust the size of the Script Editor’s windows. By placing your mouse cursor on the
vertical frame between the upper windows, you can drag the frame left or right to expand or
contract window width. By placing your mouse cursor on the horizontal frame separating the
upper windows from the lower and dragging the mouse up or down, you can expand or contract
window height.

Script Editor buttons

The Script Editor displays a row of buttons just beneath the title bar. Table 7.1 summarizes the
functionality of each of these buttons. Details on these buttons follow the table summary.

Table 7.1 Script editor buttons and windows
Button or window Description
Movie clip navigator Lists all the movie clips in a composition in hierarchical order.

Selecting a movie clip in this window allows you to see and edit
scripts on that movie clip.

ADOBE LIVEMOTION 2.0
Scripting Guide

Button or window

Description

Scripting syntax helper

Composition browser

Automation syntax helper

Go to previous script

Go to next script

Handler scripts

State scripts

Keyframe scripts

Lists the LiveMotion 1.0 Behaviors, ActionScript syntax, and Java-
Script syntax. Selecting an item in the list displays a brief descrip-
tion of the argument in the Description window. Double-clicking
a syntax entry adds the item's syntax to the current script.

Lists all the movie clips, labels, and states in the composition.
Selecting anitem in the list displays the reference text that will be
entered in the Script window. Double-clicking a movie clip, label,
or state adds the respective movie clip reference, label name, or
state name to the current script.

Lists and describes all the global objects and properties in the
JavaScript core that are supported by automation scripting and
all predefined objects, their methods, and properties in the Auto-
mation scripting DOM. For details on automation scripts, see the
LiveMotion 2.0 SDK. This button is available when the export for-
mat is Live Tab when you are editing an automation script.

Switches the script view to the previously edited script. This but-
ton works like the Back button in a Web browser.

Switches the script view to the more recently edited script. This
button works like the Forward button in a Web browser.

Lists all the event handlers in the drop-down menu for which you
can write scripts.

This button, as well as the State scripts and Keyframe scripts but-
tons described below, display a blue triangle when they contain
scripts. The contents displayed in the drop-down menu (handler
or state names, or keyframe numbers) depend on which of the
three buttons is selected. Items in this menu display an asterisk if
scripts exist on them.

Lists all states in the drop-down menu that are defined for the
current movie clip. The list contains the normal state, and it can
include the predefined states over, down, and out, plus any cus-
tom states defined for the movie clip.

Lists all script keyframes in the drop-down menu for the current
movie clip.

117

118

CHAPTER 7
Script Editor

Button or window

Description

Drop-down menu

Find

Syntax highlighting

Script window

Description window

Scripting helper window

Displays the keyframes, event handlers, or states for the current
movie clip. The contents displayed depend on which of the previ-
ous three buttons is selected. Items in this menu will display an
asterisk if scripts exist on them.

Opens a dialog for finding and replacing text strings in the cur-
rent script.

Turns syntax highlighting on and off.

Displays existing scripts and new scripts that you write to the cur-
rent movie clip.

Displays brief descriptions of the syntax listed in the Scripting
syntax helper.

Displays contents of the Scripting Editor’s Movie clip navigator,
syntax helper, and browser buttons. The contents displayed
depend on which of the buttons is selected.

Movie clip navigator

The Movie clip navigator indicates which movie clip timeline you are on. When you first open
the Script Editor, the Movie clip navigator button is toggled on, and its contents are displayed to

the Scripting helper window. Initially, the window displays an expanded list of all the manually

created movie clips in hierarchal order.

Note: If any movie clip names in your composition contain invalid JavaScript characters such as
spaces or punctuation, they are displayed in red in the Movie clip navigator window.

In the Movie clip navigator, the movie clips on the composition timeline are one indent from the
left margin. Any movie clips on the timelines of these movie clips are two indents from the left
margin, and so on. Figure 7.2 shows the movie clip hierarchy for the mouse trailer that you

created in“Levels of the Flash Player” on page 86. The movie clip icon is displayed to the left of

each movie clip name.

ADOBE LIVEMOTION 2.0
Scripting Guide

% Script Editor - \Compositiony

Fklglwlﬂﬂlﬁ&hlﬁllonmad jﬂli-cl

= & Composition
= (B MouzeTrailer
B Basel

Figure 7.2 Movie clip navigator

Expanding and collapsing movie clips

By clicking the triangle to the left of a movie clip group name in the Movie clip navigator, you
can expand or collapse the movie clip children in that group. For example, if you were to click
the triangle next to MouseTrailer shown in Figure 7.2, BaseO0 is no longer displayed. Clicking

Composition collapses everything in the movie clip hierarchy below the composition timeline.

Navigating the hierarchy

The Movie clip navigator can assist you in locating the correct movie clip to add new scripts to
or to locate existing scripts. To access a movie clip’s scripts, for example, select the movie clip
name in the hierarchy. This takes you to the movie clip’s timeline and also updates the contents
of the Script Editor’s title bar to display the absolute reference to that movie clip. If a movie clip
has states defined for it, and a state other than normal is selected when the Script Editor is open,
that state appears in parentheses to the right of the movie clip reference. To access the children
of movie clip groups, just click the triangle next to the group to expand it as necessary, until you
locate the child whose scripts you want to access. Once you have accessed the movie clip that you
want, you can either select the type of script you want to write, or you can open an existing script
you want to access by using the Handler scripts, State scripts, or Keyframe scripts buttons.

Scripting syntax helper

The Scripting syntax helper assists you with creating the syntax for the LiveMotion 1.0 behaviors,
the ActionScript syntax (that s, the extensions to JavaScript that enable you to manipulate movie
clips), and the JavaScript core syntax. With the Scripting syntax helper button toggled on, the
window displays these syntax groups. By clicking the triangle to the left of a group name, the
contents of that group are expanded and displayed to the Scripting helper window. The LM 1.0
Behaviors group lists all the LiveMotion 1.0 behaviors by behavior name. The ActionScript
Syntax Helpers group lists the names of all JavaScript extensions for writing movie clip scripts.
The JavaScript Syntax Helpers group lists the JavaScript core utilities.

119

120

CHAPTER 7
Script Editor

Syntax helper group entries

The ActionScript and JavaScript groups contain entries with of their own with triangles next to
them that you can click to expand to another level of entries. Clicking the triangle next to the
Movie Clip Methods entry in the ActionScript Syntax Helpers group, for example, expands the
entry to show an alphabetical list of all the movie clip methods. See the Scripting helper window
in Figure 7.3.

Selecting a movie clip method name causes a brief description of that movie clip method to be
displayed in the Description window, as shown in Figure 7.3. The information briefly describes
what that method does, what the syntax of the method is, and what each argument to the method
is. This is helpful when you want quick access information about how to use the method. For
detailed descriptions of all the scripting interfaces that LiveMotion supports, see “Reference” on
page 143.

Selecting the method name and pressing Enter (or double clicking the method) generates the
syntax for the method in the Script window, as shown in Figure 7.3.

" Secript Editor - \Composition

._IP_' Ql“‘?l ilil lEJ"‘!lﬁllonLoad -l ¥

P LM 1.0 Behaviors
= ActionScript Syntax Helpers

duplicatetovieClipinewtame, depth)

ActionScript Globals

Color

Eey

Mouse

MovieClip Methods
attachievie(}

{ vw v

Creates a duplicate of the specified movie clip, names it newMarne, and places the duplicate at the given
depth in the programmatic stack of the original movie clip's parent.

rmovieclip.duplicateMo vieCliplnewNarme, depth}

newMarne: a string; the narne for the copy. This should be a unique narne.
depth: The depth placement in the programmatic stack of movieclip's parent.
returns: nothing

| T

Figure 7.3 Generating the syntax for the duplicateMovieClip() method

ADOBE LIVEMOTION 2.0 | 121
Scripting Guide

The Scripting syntax helper generates the syntax, but it is up to you to fill in the necessary
argument values and anything else that would make the script complete. In the example shown
in Figure 7.3, you would need to provide values for the arguments, newName and dept h. Use the
descriptions displayed to help you determine what these arguments represent. If you know the
reference to the movie clip making the call, you can fill that in. Otherwise, you can use the
Composition browser, described next.

Composition browser

The Composition browser assists you with generating the correct reference to a movie clip, state,
or label. At any time, you can click the Composition browser button to open the browser in the
Scripting helper window. The window displays all the movie clips in a composition in hierar-
chical order. The movie clips on the composition timeline are one indent from the left margin.
Any movie clips on the timelines of these movie clips are two indents from the left margin, and
so on. Just below the movie clip name, the browser displays the movie clip’s states and any label
names on its timeline. At the bottom of the Scripting helper window, two radio buttons allow
you to choose between generating the absolute or relative reference for a movie clip.

Clicking once on a movie clip name, on a label, or on a state generates the respective movie clip
reference (in the style specified by the radio button), label name, or state name in the Description
window. This information is generated in this window for your information only. You do not
need to delete it. Clicking once on another movie clip name, label, or state removes the current
information and generates information for the movie clip, label, or state that you just clicked.
This feature enables you to use the Composition browser to examine for possible use the movie
clip references, labels, and states at any time as you write scripts.

Double clicking a movie clip name, label, or state generates the respective the reference to that
movie clip (in the style specified by the radio button), label name, or state name in the Script
window at the position of the cursor. If you decide not to use the syntax elements you generated,
you must select and delete them from the window.

Using the Composition browser with the Scripting syntax helper

You also can use the Composition browser in combination with the Scripting syntax helper to
fill in placeholders or arguments requiring a movie clip reference, label name, or state name.

When you double click an item from the Scripting syntax helper, the code that gets passed into
the editing area (Script window) may not be complete. You may be required to fill in argument
values and movie clip references. The procedure below uses the dupl i cat eMovi ed i p() movie
clip method as an example.

122

CHAPTER 7
Script Editor

To complete a call to the duplicateMovieClip() method:

1 Click the Scripting syntax helper to display the ActionScript syntax helpers in the Scripting
helper window.

2 Expand the Movie Clip Methods list, and double click the movie clip method dupl i cat eMov-
i edip(). (Do not double click the global method by the same name for this example.)

The code that gets displayed in the Script window appears as:

. dupl i cat eMovi eC i p(newNane, dept h)

If you check the Description window, you will see that the complete syntax for using the dupl i -
cat eMovi ed i p() method requires that you provide a reference to the movie clip that you want

to duplicate. This is indicated by the novi ecl i p “placeholder” in the complete syntax, which is
shown here:

nmovi ecl i p. dupl i cat eMovi ed i p(newNane, depth)
3 To correctly form the reference, click the Composition browser button to display its contents
in the Scripting helper window.

4 Click the radio button at the bottom of the Scripting helper window to select the absolute or
relative reference to the movie clip. (This procedure uses the absolute reference.)

5 Place the mouse cursor in the Script window to the left of the dot (.) in the syntax.

6 In the Composition browser, select the movie clip that you want to reference. Then press
Return.

The correct reference to the movie clip is inserted before the dot, for example:

_root.nyMvieC ip.duplicateMviedip(newNane, depth)

To complete this script, you would provide the appropriate values for the arguments (newNane
and dept h), and add a semicolon to the end of the statement. You can use the Description
window to help you with the meanings of arguments. Here is an example of a completed
statement:

_root.nyMyvieC ip.duplicateMviedip("noviedipA", 3);

ADOBE LIVEMOTION 2.0
Scripting Guide

Go to previous script and Go to next script buttons

These buttons take you to the previous and next scripts. Go to previous script behaves like the
Back button in a browser. It traces the history of where you have been. Each time you press the
button, it displays the script that was displayed just before the script that currently is being
displayed. The Go to next script button does just the opposite: pressing the button displays the
script after the current script, and so on. If either of these buttons is active, that means there is
another script to go to in that direction. When a button dims, you have reached the last script in
the direction you are going. Using these buttons enables you to navigate back and forth through
the scripts you have displayed.

Handler scripts button

The Handler scripts button is used to write event handler scripts to a movie clip and to access
existing handlers that have been written. To quickly check if the current movie clip has any event
handlers written to it, see if the Handler scripts button has a blue triangle in the top right corner
(as shown in Figure 7.4). If it does, that means event handlers are present.

To quickly see which event handlers have code written for them, see if an asterisk appears in front
of the handler’s name in the Handler drop-down menu. This indicates that scripts have been
written for that handler. Figure 7.4 shows the Handler scripts button activated. The asterisk
indicates that an event handler is written for onLoad. Event handler scripts may be written for
any number of the handlers listed in the drop-down menu.

To edit an existing handler, or to write a new handler for current movie clip:

1 Click the Handler scripts button to display the current movie clip's handlers in the drop-down
menu.

2 Expand the drop-down menu, and select the event handler name from the list.
3 Write or edit the handler code in the Script window.

You can use the Scripting syntax helper and the Composition browser to help you.

’E | | |* onLoad j

Figure 7.4 Handler scripts button activated

123

124

CHAPTER 7
Script Editor

State scripts button

The State scripts button is used to write scripts to movie clip states and to access existing state
scripts. If the State script button has a blue triangle in the top right corner (as shown in
Figure 7.5), one or more states has scripts written for them.

To quickly see which states have code written for them, see if an asterisk appears in front of the
state’s name in the state script drop-down menu. This indicates that scripts have been written for
that state. The Script Editor window in Figure 7.5 shows the States scripts button activated and
an asterisk indicating that a script is written to the down state.

To edit an existing state script or to write a new script to a state to the current movie clip:

1 Click the State scripts button to display the current movie clip's states as the contents of the
drop-down menu.

Note: States must be defined for a movie clip before they can be edited in the Script Editor.
2 Select the state name in the drop-down menu.
3 Write or edit the script in the Script window.

You can use the Scripting syntax helper and the Composition browser to help you.

5 cript Editor - ACompositiontellipse [down]\

this._n += 5; normal
aver

& Cornposition

il elipse |

Figure 7.5 States scripts button activated

Keyframe scripts button

The Keyframe scripts button is used to write scripts to script keyframes in a movie clip’s timeline
and to access existing keyframe scripts. A quick way to tell if a movie clip's timeline contains
script keyframes is to look for a blue triangle in the top right corner of the keyframe scripts
button (as shown in Figure 7.6). If present, this means script keyframes with custom scripts exist
on the timeline.

ADOBE LIVEMOTION 2.0
Scripting Guide

To quickly see which frames have code written for them, see if an asterisk appears in front of the
frame number in the in the drop-down menu of frame numbers. This indicates that scripts have
been written for that frame. The Script Editor window in Figure 7.6 shows the keyframe scripts

button toggled on and an asterisk indicating that a keyframe script is written to frame number 2.

To edit a keyframe script:

1 Click the Keyframes scripts button to display the current movie clip's script keyframes as the
contents of the drop-down menu.

Note: Script keyframes must be added on the movie clip's timeline before they can be edited in the
Script Editor.

2 Select the script keyframe from in the drop-down menu.
3 Write or edit the script in the Script window.

You can use the Scripting syntax helper and the Composition browser to help you.

'Z"-"Scripl Editor - \Composilion\ellipse\

this._u += &

IV @ Composition ’

Figure 7.6 Keyframe scripts button activated

125

126

CHAPTER 7
Script Editor

Find button

The Find button enables you to find and replace text in a script. Clicking the Find button displays
a text box in which you can enter the text you are looking for. You have several options for
performing your search, including the direction of the search and whether the search should be
case sensitive. You can replace the text with text you enter in the Replace with: text box. Click the
Close button to end a search.

Note: Only the currently displayed script is searched, not all scripts in the composition.

Find
Find
-
§ Feplace |
Replace with:
I Feplace Nextl
- - Feplace &l |
Search Up Case Sensitive
Cloze |
% Search Down - Wirap Around

Figure 7.7 Find text box

Syntax highlighting button

The Syntax highlighting button is for your coding convenience. If, for example, you want to see
all reserved words and values in your code, you can toggle the button to turn on or off the blue
font for reserved words and the red font for values.

In addition to these buttons, keyboard shortcuts in the online Help file can assist you in making
selections and navigating through code.

127

Chapter 8: Debugger

Introduction to the Debugger

LiveMotion has an integrated JavaScript source Debugger that enables you to troubleshoot
scripts while you are in the LiveMotion application. This section describes the capabilities of the
Debugger’s physical components. It explains how you can use the functionality to assist you in
troubleshooting your scripts, and it includes short examples illustrating its features. It also
describes how the Debugger can be used in combination with the Script Editor and the Script
Console window to check output at various points during the execution of the scripts. As you
start to create more advanced scripts, you can refer to this section to review ways to take
advantage of the Debugger’s powerful features.

Exploring the Debugger

Bringing up the Debugger

To bring up the Debugger, you must have a composition open. You can choose if and when to
activate the Debugger by selecting the appropriate menu item from the Script Editor menu (in
LiveMotion’s main menu). The Script menu provides three options:

Scripts > Don't Debug Disables the Debugger.

Scripts > Debug on Errors Brings up the Debugger when it detects an error during exe-
cution of your composition.

Scripts > Debug at Start Brings up the Debugger when you start Preview mode.

These Debugger modes also are available from a drop-down menu in the Debugger window
Figure 8.3 so that you can change modes during a debugging session.

128

CHAPTER 8
Debugger

Debugger window

Main informational views

The main Debugger window is further divided into three main informational views. Clockwise

starting with the top left in Figure 8.1, these are:

* Call stack window
* Variable window

» Source window

You can adjust the size of the windows by dragging your mouse on the window frames. By

dragging your mouse on the vertical frame between the Call stack and Variable windows, you can
move the frame left or right to expand or contract window width. Dragging your mouse up or
down on the horizontal frame separating the upper windows from the Source window expands

or contracts window height.

[=]] 0 ®]]

ball: :onEnterFramel)
reset{100,100)
newdir(101,101}

1 | 7|

Arguments

this object _root ball
Local Yariables

User Expressions

Debugger Message:

var flag = 1;

this._u = #Reset;
this._» = yReset;

i

dird = newdird;
dirY = newdir#;
callTracel);

i

iterator++;
tracel iterator);
3

function resetiuReset, wReset) {

newd irf++d e, ++dicd)s

function newdirinewdird, newdiry)

g function callTraceinewdici, newdiryl £

Ll 1=

Figure 8.1 Debugger window

ADOBE LIVEMOTION 2.0
Scripting Guide

The Call Stack window contains a list of functions that are in the process of being executed. The
call stack gets deeper as functions call other functions. As functions complete, they are no longer
displayed.

The Variable window displays the following types of information:

+ Arguments to functions

* Current movie clip object and detailed information about this object’s properties
* Local variables

* User expressions

* Debugger messages

3 Arguments

[this object _root.ball
Local Yariables
newditk undefined
nevedie't undefined
xRezet nurnber 100
yReset nurnber 100

User Expressions
Debugger Message:

Figure 8.2 Variable window

By expanding the triangles next to entries in this window, you can view additional window
content. Figure 8.2 shows the types and values of arguments and local variables in the Source
code shown in Figure 8.1.

The Source window displays the JavaScript source when a script is stopped. The position
indicator (red arrow in the column on the left side of the window in Figure 8.1) indicates where
execution has most recently stopped. For example, Figure 8.1 shows the position indicator just
before a call to the t race() function.

129

130 | CHAPTER 8
Debugger

Debugger buttons
Just beneath the Debugger window title bar, there is a row of Debugger buttons. These buttons
are shown in Figure 8.3.

ﬂﬂﬂﬂﬂl{_ﬁ'll |ﬂ IDebug on Start j

Figure 8.3 Debugger buttons

Table 8.1 summarizes the functionality of each of the Debugger buttons. Details on these buttons
follow the table.

Table 8.1 Debugger buttons

Button Description

Run Plays a script.

Stop Halts execution.

Kill Terminates script execution and the Debugger.

Step Single-steps through instructions.

Step Into Single-steps through instructions, and enters each function

call that is encountered.

Step Out Executes the code out of a function call, and stops on the
instruction immediately following the call to the function in
the calling script.

(+) Adds variables and calculations entered in the Variable field to
the User Expressions list.

Run

The Run button plays a composition until it reaches one of the following:
* The next script to execute

* The next breakpoint

¢ The next error encountered

You can halt execution by clicking the Stop button or exiting Preview mode.

ADOBE LIVEMOTION 2.0
Scripting Guide

Stop

The Stop button halts execution of the current script. When the button is active, it displays in red.

Kill

The Kill button terminates the debugging session, closes the Debugger, and returns to your
normal editing session. Terminating a debugging session clears all variable values that may have
been set during the session. However, it does not clear breakpoints you may have set in the
Editor. For details, see “Setting breakpoints” on page 133.

Step

The Step button single-steps through instructions. Clicking Step at a method call executes the
entire method rather than executing one instruction at a time with each click of the button. Say,
for example, the Source window shows the position indicator arrow to the left of the bl i nk()
method, as shown here:

-> _root.Ellipse.blink();

This location is immediately before the call to bl i nk() . Assuming that there are no errors or
breakpoints in bl i nk() , clicking Step executes the entire bl i nk() method, and moves the
position indicator arrow to the next script instruction following the method call.

Step Into

The Step Into button single-steps through instructions in the code, and enters each function call
that is encountered. The bl i nk() method definition shown below illustrates how this button
works:

_root.Ellipse.ctr = 0; // make ctr an Ellipse novie clip property

/1 Define the blink nethod
->_root.Ellipse.blink = function(){
this.ctr++;
/1 _alpha is a built-in nmovie clip property
if(this.ctr %2 == 0)
this._al pha = 50;
el se
this._al pha = 100;

131

132

CHAPTER 8
Debugger

When the position pointer is to the left of the function call, as shown here, clicking Step Into
takes you to the first statement inside the bl i nk() method:

-> _root.Ellipse.blink();

The first statement in bl i nk() is:

/1 Define the blink nethod
_root.Ellipse.blink = function(){
-> this.ctr++

Each additional click of the Step Into button executes the next instruction in bl i nk() .

Step Out

The Step Out button executes the code out of a function call, and stops on the instruction
immediately following the call to the function. Using this button, you can quickly finish
executing the current function after determining that a bug is not present. Say, for example, that
you are clicking Step Into to execute each line of code in bl i nk() to monitor the value of ct r
(as described in “Watching variables” on page 133). If you find that the value is correct, you can
click Step Out. Doing so executes the remainder of the code in bl i nk() , and places the position
pointer at the beginning of the next instruction to execute.

(+) button

The (+) button accepts the names of variables and expressions that you enter into the Variable
field to the immediate left of this button. It displays the current values in the Variable window.
If an expression has not yet been defined, the Variable window displays “undefined.”

ADOBE LIVEMOTION 2.0
Scripting Guide

Watching variables

While executing code in the Debugger, you can enter the names of variables and expressions
whose values you want to monitor in the Variable window.

Arguments
[+ this object _rootEllipse
[Local Yariables
i User Expressions
ctr number a
Debugger Message:

4 |

|-

Figure 8.4 Variable window with ctr variable

To watch a variable:
1 Click your cursor in the expression entry field to the immediate left of the (+) button
2 Enter the name of a variable or an expression whose value you want to monitor.

3 Click the (+) button (or press Enter) to display the variable and its current value in User
Expressions in the Variable window.

To save multiple variables in the Variable window, click the (+) button instead of pressing Enter.
Pressing Enter does not save a variable in the window. The variable is replaced by the next one
that you enter.

See Figure 8.4. As long as a variable exists inside the scope of the currently executing function,
its value is updated and displayed in the Variable window. If execution takes the Debugger
outside of the function, the variable goes out of scope and is no longer displayed.

Setting breakpoints

A breakpoint is a signal to the interpreter to stop execution at that location, and to enter the
Debugger. You can set breakpoints to verify that the values of variables, the current display in
your composition, and so forth are what you expect at that point during execution. Breakpoints
can be set in two locations: in the Script Editor and in the Debugger.

133

134

CHAPTER 8
Debugger

To set a breakpoint in the Script Editor:

1 Open the Script Editor, and navigate to the script where you want to set a breakpoint.

2 Click your cursor in the gray column to the left of the code line at which you want execution
to halt.

A breakpoint appears as a red dot in the column. Figure 8.5 shows a breakpoint to the immediate
left of the call to got oAndPI ay() .

5 -'St:lipl Editor - \Eomposilion\MouseT railerk

#<go back to the frame labeled repeat, and update the positions again.
this.gotoAndFlay (Mrepeat™);

&

- 0 MouzeTr...
B Bazel ;I

| I I

Figure 8.5 Setting a breakpoint in the Script Editor

Executing to the breakpoint set in the Script Editor

To execute to the breakpoint just set in the previous section, begin Preview mode. Execution
halts at the breakpoint, bringing up the Debugger.

ADOBE LIVEMOTION 2.0
Scripting Guide

Figure 8.6 shows the Debugger display after execution has stopped as a result of the breakpoint
set in the Script Editor. After executing code to a breakpoint, you can perform whatever checks
you need such as noting the values of variables you entered into the Variable window or
observing changes in the Composition window.

> =] x| &] 5
MouseTr al: 0

Arguments
[this object _rootMouseTrailer

Local Yariables
User Expressions
Debugger Message:

L] Kl | 7|
|//go back to the frame labeled repeat, and update the positions again.
@8 this.gotoAndP lay i "repsat™l;

Figure 8.6 Debugger display after setting a breakpoint in the Script Editor

To set a breakpoint in the Debugger:

1 Click your cursor in the column to the immediate left of the code line where you want
execution to halt.

2 Optionally, enter into the Variable window the names of any variables or expressions whose
values you would like to examine after executing to the breakpoint.

Clearing breakpoints

To clear a breakpoint, click the red dot again. You can clear a break point from either the Script
Editor or the Debugger regardless of where it was set.You can also disable breakpoints by Alt
clicking them (Windows) or Opt clicking them (Mac OS). This changes them from red to grey.

Setting a breakpoint in the MouseTrailer onLoad script
This example leverages on the MouseTrailer hands-on example that you created in“Levels of the
Flash Player” on page 86. The code for executing the MouseTrailer is given in that section.

135

136 | CHAPTER 8
Debugger

To set a breakpoint in MouseTrailer:

1 Open your MouseTrailer composition in LiveMotion (Ex4_1.1i v).
2 From the Scripts menu, select the Debugger mode, Debug on Start.
3 Preview.

When the Debugger first opens, it displays the MouseTrailer’s onLoad() handler code in the
Source window.

4 Click in the gray column to the left of this statement in the onLoad handler:

this.trailers[i]._xscale = 100 - i * 10;

This sets a breakpoint just before the statement, as shown in Figure 8.7.

i
! :lﬂllﬁlﬂ{_r}.“ |ﬂIDebuq0nStart j
™

Arguments

[this object oot MouseTrailer
Local Yariables
User Expressions
Debugger Message:

K Kl | I
B[rhiz. trailers = new Arraw; </an arcay full of the objects trailing the mouse. =
ssoreate 9 more objects for the trailer.
uar i
for (1 =1 L <18 ¢ i++)
L

“screate the new object, give it 2 unigue name, and place it 2t a unigue depth
this.Baze@.duplicateMovietlipi"Baze" + 1, il:

<<put the new object in the array
this.trailerslil = this["Baz=" + i1; —

<#schange the scale of the new object
- thiz.trailerslil._nscale = 188 - i#18;
thiz.trailerslil._wscale = 1688 - i#l1@; ;I

Figure 8.7 Setting a breakpoint in the Debugger

To examine variable values in the Mouse Trailer example:

1 After setting the break point in the previous steps, click the Run button to execute to the

breakpoint.

Figure 8.8 shows the result of executing to the breakpoint.

i

B,

B

ADOBE LIVEMOTION 2.0

1| sl

Arguments

this

Local Yariables

User Expressions
this.trailers[i]

Debugger Message:

abject _roothouse Trailer

object _root MouseTrailer Bazel

o]

var i
for (1= 1; i < 18 ; i++]
i

Ly thiz.trailers[il._uscale
thiz.trailers[il._vscale

S<oreate ? more objects for the trailer.

<<put the new object in the array
this.trailersfil = this["Base™ + i1:

#schange the scale of the new object

18 - iwi@;
18 - iwi@;

this.trailers = new Array; ~<an array full of the obiects trailing the mouse.

<soreate the new object, give it a unigue name, and plage it at & wnique depth
thiz.BaseB.duplicatetovieClip("Baze™ + 1, il;

Figure 8.8 Checking results up to the breakpoint

2 Click the cursor in the expression entry field, and enter this expression:

this.trailers[1]

Scripting Guide

3 Click the (+) button to insert the expression into the User Expressions in the Variable window.

4 By clicking the triangle next tot hi s. trail ers[1] in the Variable window, you find the

values for all of Basel’s properties.

137

138

CHAPTER 8
Debugger

Figure 8.9 shows just some of the information about a movie clip that you can track in the
Debugger.

e |
e
| =] %] 5| & 5] [pevs s]
Tl 1 o Arguments =
[this object _root MouseTrailer
Local Yariables
= User Expressions
= thistrailers[i] object _rootMouseTrailer Bazel
_xzcale nurnber 29.99939761581421
= number a
-y nurnber a
_width nurnbet =] -
_height number =)
_y=scale nurnber 100
_alpha number 100
_rotation number a
_wizible boolean true
_name string Basel
A | | B |

thiz.trailers[i] = this["Base™ + 11;

<<change the scale of the new objsct

E N I;I;I‘_

this.trailerslil._xscale = 188 - i#l@;
LS this.trailerslil._yscale = 188 - i#l@;
Figure 8.9 Variable window showing values of Basel’s properties

Using the Console window

The Console window displays script output and the results of t r ace() statements. The types of
output displayed include string values, numeric values, and object types. You can keep the
window open to monitor results as you preview your composition or execute it in the Debugger.

ADOBE LIVEMOTION 2.0
Scripting Guide

Exploring the Console window

To open the Console window, choose Window > Script Console from LiveMotion’s main menu.

[console
i -
2
3
4
S
&

7
t=]
El -

K| _'l_I

P

Figure 8.10 Console window

To write to the Console window using a trace() statement:

1 Open the Script Editor, and navigate to the location where you want to insertatrace()
statement.

2 Insertatrace() statementin your script for each variable value that you want to be displayed
to the Console window.

For example, to view the values of a counter variable in a f or loop, you would insertatrace()
statement as shown here:

var i;

for (i =1; i <10 ; i++)

{

trace (i);

By playing back your composition in Preview mode or executing through the code in the
Debugger, each argument toatrace() statement is printed to the Console window followed by
anew line character. Each time that you display values to the Console window, the results are
appended to the previous output.

3 To clear the display, click the trash icon at the bottom of the window.

139

140

CHAPTER 8
Debugger

Using the Console window with the Debugger

You can use the Console window along with the Debugger to watch your variable values. Say for
example, you set a breakpoint in your code. Up to that point, you can insertt race() statements
to monitor the values of certain variables until you want to see a more detailed view of the
variable values in the Debugger. t r ace() statements to the Console also can be used to record
multiple values that a variable takes on during the course of a script execution.

Comparing Console window output to Debugger output

Although the Console window displays a continuous stream of output fort r ace() statements
that are evaluated, it provides less detailed output than you can obtain by watching the evalu-
ation of expressions in the Debugger’s Variable window. You can choose which type of output
that you want to examine, depending on your needs.

This section looks at the f or loop code in MouseTrailer’s onLoad handler. For details on Mouse-
Trailer, see “Levels of the Flash Player” on page 86.

The code below creates the t r ai | er s array and fills the array elements with duplicated movie
clips. Two trace() statements have been added to the code shown here. One will display the
value of the counter i , and the other, the value of the array elementthis. trailers[i]:
for (i =1; i <10 ; i++)
{

trace (i);

/1 create the new object, give it a unique nane, and

/1 place it at a unique depth

t hi s. BaseO. dupl i cateMovi el i p("Base" + i, i);
/1 put the new object in the array

this.trailers[i] = this["Base" + i];
trace (this.trailers[i]);

/'l change the scale of the new object

this.trailers[i]._xscale = 100 - i*10;
this.trailers[i]._yscale = 100 - i*10;

}

The Console window shown in Figure 8.11 displays the t race() statement output after five
iterations of the f or loop.

——

Figure 8.11 Console output

This is less information than you would get had you entered the counter i and

ADOBE LIVEMOTION 2.0
Scripting Guide

this.trailers[i] into the Debugger Variable window and stepped through the f or loop five
times. When you expand the triangle next to t hi s. trail ers[i], the Debugger displays

detailed information about the current movie clip, some of which is shown in Figure 8.12.

|ﬂ IDebug|on Start

|
[Arguments

[this object
Local Yariables
= User Expressi...

i number
= thistrailers[i] object
= number
=¥ nurnber
_width nurnbet
_height nurnber
_xscale number

_raotMouseTrailer

5
_rootMouseTrailer BazeS
a
a
58
cg
100

Figure 8.12 Variable window showing the results of evaluating i and this.trailers[i]

141

142 | CHAPTER 8
Debugger

Chapter 9: Reference

Introduction

This chapter lists and describes all syntax (keywords, statements, operators, objects, methods,

properties, and globals) recognized by the LiveMotion scripting engine.

Keywords and Statement Syntax

Table 9.1 lists and describes all keywords and statements recognized by the LiveMotion scripting

engine.
Table 9.1 Keywords and Statement Syntax
Keyword/Statement Description
br eak Standard JavaScript construct. Exit the currently executing loop.
conti nue Standard JavaScript construct. Cease execution of the current loop iteration.
do -while Standard JavaScript construct. Similar to the whi | e loop, except loop condi-
tion evaluation occurs at the end of the loop.
fal se Literal representing boolean false.
for Standard JavaScript loop construct.
for-in Standard JavaScript construct. Provides a way to easily loop through the
properties of an object.
function Used to define a function.
iflif-else Standard JavaScript conditional constructs.
#i ncl ude Standard JavaScript directive used to import files located elsewhere.
nul | Assigned to a variable, array element, or object property to indicate that it
does not contain a legal value.
return Standard JavaScript way of returning a value from a function or exiting a

function.

143

144

CHAPTER 9
Reference

Keyword/Statement Description

switch Standard JavaScript way of evaluating an expression and attempting to
match the expression's value to a case label.

this Standard JavaScript method of indicating the current object.

true Literal representing boolean true.

undef i ned Indicates that the variable, array element, or object property has not yet been
assigned a value.

var Standard JavaScript syntax used to declare a local variable.

whi | e Standard JavaScript construct. Similar to thedo - whi | e loop, except loop
condition evaluation occurs at the beginning of the loop.

with Standard JavaScript construct used to specify an object to use in ensuing
statements.

Operators

Table 9.2 lists and describes all operators recognized by the LiveMotion scripting engine.
Table 9.3 shows the precedence and associativity for all operators.

Table 9.2 Description of Operators

Operators Description

new Allocate object.

del ete Deallocate object.

t ypeof Data type.

voi d Returns undefined value.
Structure member.

[1 Array element.

O Function call.

++ Pre- or post-increment.

Pre- or post-decrement.

ADOBE LIVEMOTION 2.0 | 145
Scripting Guide

Operators Description

- Unary negation or subtraction.

~ Bitwise NOT.

! Logical NOT.

* Multiply.

/ Divide.

% Modulo division.

+ Add.

<< Bitwise left shift.

>> Bitwise right shift.
>>> Unsigned bitwise right shift.
< Less than.

<= Less than or equal.

> Greater than.

>= Greater than or equal.
== Equal.

= Not equal.

& Bitwise AND.

n Bitwise XOR.

| Bitwise OR.

&& Logical AND.

| Logical OR.

?: Conditional (ternary).
= Assignment.

+= Assignment with add operation.

-= Assignment with subtract operation.

146 | CHAPTER 9
Reference

Operators Description

* = Assignment with multiply operation.

/= Assignment with divide operation.

% Assignment with modulo operation.

<<= Assignment with bitwise left shift operation.

>>= Assignment with bitwise right shift operation.

>>>= Assignment with bitwise right shift unsigned operation.
&= Assignment with bitwise AND operation.

A= Assignment with bitwise XOR operation.

= Assignment with bitwise OR operation.

, Multiple evaluation.

Table 9.3 Operator Precedence
Operators (Listed from highest precedence —top row—to lowest) Associativity
[1,0,. left to right
new del et e, - (unary negation), ~, ! ,t ypeof,voi d, ++, -- right to left
* 1, % left to right
+, - (subtraction) left to right
<<, >>,>>> left to right
<, <=, >,>= left to right
==, 1= left to right
& left to right
n left to right
| left to right
&& left to right
| left to right

?: right to left

ADOBE LIVEMOTION 2.0
Scripting Guide

Operators (Listed from highest precedence —top row—to lowest) Associativity
=, =, %, <<=,>>=,>>>=,&=,M=,| =, 45, -=5,*%= right to left
, left to right

Reference for Objects, Methods, Properties, and Globals

The remainder of this chapter lists and describes all predefined identifiers recognized by
LiveMotion.

Arguments Object

Description

The Arguments object provides two types of information about an executing function:
« the name of the function itself, and

* the arguments that were passed to the function.

The Arguments object is a static object—to use the object, do not create an instance using a
constructor. With square bracket notation, the object can be used as an array to access the values
of the arguments passed to the function.

Properties
call ee See “Arguments.callee Name of the currently executing function.
Property” on page 148.
I ength See “Arguments.length Number of parameters passed to the currently executing func-
Property” on page 148. tion. This value can be used to access the individual parameters
themselves.
Methods

None.

147

148

CHAPTER 9
Reference

Arguments.callee Property

argunents. cal |l ee

Description

The cal | ee property holds a reference to the currently executing function. This property can
only be read.

Example

function sel f ReferenceTest ()

{

if (arguments.callee == sel fReferenceTest)
trace("true");

el se
trace("fal se");

}s

sel f Ref erenceTest ();//prints "true"

Arguments.length Property

argunents. | ength

Description

The | engt h property stores an integer specifying the number of parameters passed to the
currently executing function. The property can be used to access the names of the individual
arguments themselves, using the ar gument s object as an array. The | engt h property, however,
is not zero-based, so always has a value of one greater than the largest index into the array. This
property can only be read.

Example

function basebal | (gl ove, bat)
{
trace(arguments. | ength);
trace(arguments[0]);
trace(arguments[1]);

}s

ADOBE LIVEMOTION 2.0
Scripting Guide

basebal | ("cat chers", "wooden");
[lprints

/12

/Il catchers

/ I wooden

Array Object

Description

The Ar r ay object provides the ability to create and manipulate arrays of data. If the Arr ay
constructor is invoked with a single integer value, the value sets the array length. If two or more
values are used, they become the initial values of the array elements, and the array length is deter-
mined by the number of values provided. Similarly, a single non-numeric value can be used to
initialize the array with a single element with that value.

To call the Ar r ay object’s methods, you must create a new object using the constructor. Alterna-
tively, you may use the square bracket syntax (e.g., var x = [a, b] populates the first two
elements of the array with the values a and b). If the Ar r ay constructor is invoked without
passing arguments to Ar r ay, then an empty array is created with zero elements.

Constructor

new Array()
new Array(l ength)

new Array(element0O, ...elenmentn)

Parameters

| ength A non-negative integer indicating the number of elements in the
array.

el ement0, ...elenentn One or more values that are assigned as array elements.

Properties

I ength See “Array.length Prop- Number of elements in the array.

erty” on page 152.

149

150

CHAPTER 9
Reference

Methods

concat () See “Array.concat() Concatenate elements to an existing array to create a new
Method"” on page 150. array.

join() See “Array.join() Join all elements of the array into a string.
Method” on page 151.

pop() See “Array.pop!) Pop the last element in the array (return the value and
Method” on page 153. remove from the array).

push() See “Array.push() Push an array element onto the end of the array (add an ele-
Method” on page 153. ment).

reverse() See “Array.reverse() Reverse the order of the elements in the array in place (last
Method” on page 154. element becomes first; first element becomes last).

shift() See “Array.shift() Same as pop() except the first element is returned and
Method” on page 155. removed from the array.

slice() See “Array.slice() Copy a subset of an existing array to create a new array con-
Method” on page 156. sisting of just those elements.

sort () See “Array.sort() Sort the elements of the array in place.
Method"” on page 157.

splice() See “Array.splice() Add or delete array elements.
Method"” on page 158.

toString() See “Array.toString() Convert an array to a string of comma-delimited values (can
Method"” on page 160. also be achieved usingj oi n() without a parameter).

unshi ft () See “Array.unshift() Add one or more elements to the beginning of the array and
Method” on page 160. return the new length of the array.

Array.concat() Method

arrayQbj . concat (val uel,

Description

...val uen)

The concat () method concatenates elements to an existing array to create a new array. The

original array is left unmodified. If an array is provided as a parameter to concat (), each of its

elements are appended as separate array elements to the end of the new array.

ADOBE LIVEMOTION 2.0
Scripting Guide

Parameters

val uel, ...valuen Any number of values to be added to the end of the array. Can also be
arrays to be concatenated to the current array.

Returns

A new array formed by the concatenation of the specified values or arrays to the current array.

Example

var a=[1, 2, 3];

b = a.concat (4,5);
¢ = b.concat([5,6]);
d = c.concat([7,8],[9, 10]);
e = 0;
for(i=0; i<d.length;i++)
{
e - e + d[l],
b

trace(e);//prints 60

See also

“Array.push() Method” on page 153, “Array.pop() Method” on page 153, “Array.shift() Method”
on page 155, “Array.unshift() Method” on page 160

Array.join() Method
arrayQbj . join()

arrayQbj .join(delinmter)
Description

The j oi n() method joins all elements of the array into a string; each element is separated by
delinmter.

151

152

CHAPTER 9
Reference

Parameters

delimter (Optional) A string to separate each element of the array. If omitted, the array ele-
ments are separated with a comma and results are the same as those achieved with
arrayQbj .toString().

Returns

The string containing the joined elements and delimiters.

Example

basebal | = new Array("bat","ball");

basebal | String = baseball.join();
trace(basebal | String);// prints "bat,ball"
newString = baseball.join(" + ");
trace(newString);// prints "bat + ball"

See also

“Array.toString() Method” on page 160, “String.split() Method” on page 297, “Array.sort()
Method” on page 157, “Array.reverse() Method” on page 154

Array.length Property

arrayQj .l ength

Description

The | engt h property is a positive integer that represents the length of the array. Since array
indices start with 0 (zero-based indexing), | engt h is one greater than the last index value of the
array. | engt h is initialized when the array is created. This property can be read or written.

Example

basebal | = new Array();

trace(basebal | .l ength);// prints O

nor eBasebal | = new Array("bat", "ball");
trace(noreBasebal | .l ength);// prints 2
nor eBasebal I [2] = "gl ove";

trace(noreBasebal | .l ength);// prints 3

ADOBE LIVEMOTION 2.0
Scripting Guide

Array.pop() Method
arrayQObj . pop()

Description

The pop() method pops the last element of the array, returns the value of the element, removes
the element from the array, and decreases | engt h by 1.

Returns

The value of the deleted array element.

Example

var stack =[1,2,3];
trace(stack. pop());//stack is now [1,2] and pop prints 3

See also

“Array.push() Method” on page 153, “Array.shift() Method” on page 155, “Array.unshift()
Method” on page 160, “Array.concat() Method” on page 150

Array.push() Method

arrayQbj . push(val uel, ...valuen)

Description

The push() method appends one or more values onto the end of the array and increases | engt h
by n.

Parameters

val uel, ...valuen Any number of values to be pushed onto the end of the array.

Returns

The new | engt h of the array.

153

154 | CHAPTER 9
Reference

Example

var stack =[1,2,3];
trace(stack. push(4,5));//stack is now [1,2,3,4,5] and push() prints 5
for(i=0; i<stack.length;i++)

{

b
[lprints
/11

/12

/13
/14
/15

trace(stack[i]);

See also

“Array.pop() Method” on page 153, “Array.shift() Method” on page 155, “Array.unshift()
Method” on page 160, “Array.concat() Method” on page 150

Array.reverse() Method

arrayQj . reverse()

Description

The rever se() method reverses the order of the elements in the array in place (last element
becomes first; first element becomes last).

Example

var basebal | [
for(i=0; (i !=4)
{
trace(basebal I [i]);

s

[/lprints

/I bat

/1 bal

/gl ove

/I base
basebal | . reverse();
for(i=0; (i !=4); ++i)
{

bat", "ball", "glove", "base"];
;oHH)

trace(basebal I [i]);
s

[/lprints

/I base

/19l ove

/I bat

/1 ball

See also

“Array.sort() Method” on page 157

ADOBE LIVEMOTION 2.0
Scripting Guide

Array.shift() Method

arrayQj . shift()

Description

The shi ft () method is the same as pop() except the first elementis returned and removed from
the array. As a result, the array | engt h is reduced by 1.

Returns

The value of the deleted array element.

Example

fish = ["shark", "guppy", "red fish",
trace(fish.shift()); //prints "shark"
i =0;

while (fish[i] !'= "blue fish")

{

trace(fish[i]);

++i ;
b
trace(fish[i]);
[lprints

/1 guppy

/lred fish
//blue fish

"blue fish"];

155

156

CHAPTER 9
Reference

See also

“Array.push() Method” on page 153, “Array.pop() Method” on page 153, “Array.unshift()
Method” on page 160, “Array.concat() Method” on page 150

Array.slice() Method

arrayQbj . slice(start)
arrayQbj . slice(start, end)

Description

The sl i ce() method copies a subset of an existing array to create a new array consisting of just
those elements. st art and end are indices into the array (zero-based indexing). The slice begins
with st art and continues up to, but not including, end. If start orend is a negative number,
the index is equal to the total number of elements in the array minus the number.

Parameters

start The array index at which to begin the slice. Can also be a negative number.

end (Optional) The array index at which to end the slice. The slice does not include this
element. If this argument is not present, the slice extends all the way to the end of
the array. Can also be a negative number.

Returns

A new array that begins with array element st ar t and contains all array elements between st ar t
up to, but not including, array element end of the original array.

Example

function printArray(arrayld)
{
for(i=0; i<arrayld.length; i++)

{

}
b
var a = [1,2,3,4,5];
b = a.slice(0,3);
printArray(b);//prints 1,2,3

trace(arrayld[i]);

ADOBE LIVEMOTION 2.0
Scripting Guide

b = a.slice(3);
printArray(b);//prints 4,5
b = a.slice(l,-1);
printArray(b);//prints 2,3,4
b = a.slice(-3,-2);
printArray(b);//prints 3

See also

“Array.splice() Method” on page 158

Array.sort() Method

arrayQbj .sort ()
arrayQbj . sort (user Function)

Description

The sort () method sorts the elements of ar r ayObj in place. If no argument is provided, the
elements are sorted in alphabetical order. To sort the array in any other order, you have to supply
a function that compares two array elements and returns a value indicating how they should be
sorted. For user Functi on(a, b), if the return value is:

* less than 0, then b is sorted to a lower index than a;

* 0,thena and b are left unchanged with respect to each other, but are sorted with respect to
all different elements;

« greater than 0, then b is sorted to a higher index than a.

Parameters

user Function (Optional) A user-supplied function that dictates sort order. If omitted, the array is
sorted lexicographically (in dictionary order) according to the string conversion of
each element.

Example

fish = new Array("shark", "guppy", "red fish", "blue fish");
fish.sort();

for(i=0; (i !=fish.length); ++i)

{

157

158

CHAPTER 9
Reference

trace(fish[i]);
b
[lprints
/1blue fish
'/ guppy
/lred fish
/I shar k

function nunberOrder(a,b) { return a - b; }

a = new Array(33,4, 1111, 222);

a.sort();

for (i=0;i<a.length;i++) {
trace(alil]);

}

a.sort (nunber Order);

for (i=0;i<a.length;i++) {
trace(alil]);

}

[lprints

/11111

/1222

/133

/14

/14

/133

/1222

/11111

See also

“Array.join() Method” on page 151, “Array.reverse() Method” on page 154

Array.splice() Method

arrayQbj . splice(start)
arrayQbj . splice(start, num
arrayQbj . splice(start, num valuel, ...valuen)

Description

The spl i ce() method removes num elements from an array beginning at start.spli ce()
optionally inserts new elements starting at zero-based index st ar t . To ensure element conti-
guity, spl i ce() moves elements up to fill in any gaps.

ADOBE LIVEMOTION 2.0
Scripting Guide

The (zero-based) index of the first array element to remove. If st ar t is a neg-

ative value, st ar t is relative to the end of the array (the index is the number

(Optional) The number of array elements to remove, including st ar t . If 0, no

elements are removed. If numis omitted, all elements from array index st ar t

(Optional) Any number of values to be added to the array starting at index

Parameters
start
of elements in the array minus the value).
num
to the end of the array are removed.
val uel, ...valuen
start.
Returns

An array consisting of any elements that were spliced from the array.

Example

fishAndNunmbers = new Array(1, 2,

for(i=0; (i
{

b
[lprints
/11

/12

/116

[l redfish

/1 guppy

I'= fishAndNunbers. | ength);

trace(fi shAndNunbers[i]);

fishAndNunmbers = new Array(1, 2,
for(i=0; (i
{

b
[lprints
/11

/12

/116

/lred fish

/1 guppy

I'= fishAndNunbers. | ength);

trace(fi shAndNunbers[i]);

"shark",
fi shAndNunbers. splice(2,2,6,"red fish");
++i)

"shark",
fishAndNunmbers. splice(-3,2,6,"red fish");//negative start
++i)

3,

3,

" guppy”);

"guppy”);
i ndex

159

160 | CHAPTER 9
Reference

See also

“Array.slice() Method” on page 156

Array.toString() Method

arrayQbj . toString()

Description

Thet oSt ri ng() method converts an array to a string and returns the string. Yields the same
result as the ar rayQoj . j oi n() method when that method is used without a parameter.

Returns

A comma-separated list of all the elements of the array.

Example

fi shAndNunmbers = new Array(1,2, "shark", 3, "guppy");
trace(fishAndNunbers.toString());//prints "1, 2,shark, 3, guppy”
See also

“Array.join() Method” on page 151, “Array.reverse() Method” on page 154, “Array.sort()
Method” on page 157, “Object.toString() Method” on page 271

Array.unshift() Method

arrayQbj . unshi ft(valuel, ...valuen)

Description

The unshi ft () method adds elements to the beginning of the array.

Parameters

val uel, ...valuen Thevaluesof one or more elements to be added to the beginning of the
array, starting at index 0.

ADOBE LIVEMOTION 2.0 {161
Scripting Guide

Returns

The new array length.

Example

fi shAndNunmbers = new Array(1,2, "shark", 3, "guppy");
trace(fishAndNunbers. unshift(2,6,"red fish")); //prints return value of 8

for(i=0; (i != fishAndNunmbers.|ength); ++i)
{
trace(fishAndNunbers[i]);
b

[lprints

/12

/16

/lred fish

/11

/12

/I shark

/13

/1 guppy

See also

“Array.push() Method” on page 153, “Array.pop() Method” on page 153, “Array.shift() Method”
on page 155, “Array.concat() Method” on page 150

Boolean() Global Function

Bool ean(val ue)

Description

The Bool ean() global function converts its parameter to a primitive boolean value and returns
the value. Do not confuse this global function with the Bool ean object.

Parameters

val ue The value to convert to primitive boolean.

162

CHAPTER 9
Reference

Returns

The primitive boolean value of val ue (true or f al se).

Example

var testFalse = O;

var testTrue = true;

trace(Bool ean(0));//prints "fal se"

trace(Bool ean(1));//prints "true"

trace(Bool ean(true));//prints "true"

trace(Bool ean("true"));//prints "false" - not a valid non-zero nunber
trace(Bool ean(false));//prints "fal se"

trace(Bool ean(testFalse));//prints "fal se"

trace(Bool ean(testTrue));//prints "true"

See also

“Boolean Object” on page 162, “String() Global Function” on page 289, “Number () Global
Function” on page 263

Boolean Object

Description

The Bool ean object provides support for boolean values. The Bool ean() constructor with the
new operator converts its parameter to a boolean value and returns a Bool ean object wrapper
containing the value. This allows the object to inherit the methods of the Obj ect class (see
“Object Class” on page 269).

Constructor

new Bool ean()
new Bool ean(val ue)

Parameters

val ue (Optional) The value that is converted to a boolean—can be a number, string, bool-
ean, or object. The values 0, NaN, nul | , the empty string ("), and undef i ned all
return f al se. All other values returnt r ue. If this parameter is omitted, the Bool ean
object is initialized with a value of f al se.

ADOBE LIVEMOTION 2.0
Scripting Guide

Properties

None.

Methods

toString() See “Boolean.toString() Convert the value of the Bool ean object to a string.
Method"” on page 163.

val ueOf () See “Boolean.valueOf() Return the primitive boolean value of the object.

Method"” on page 163.

Boolean.toString() Method

bool . toString()

Description

The t oSt ri ng() method returns the string representation of the value of bool . The method
returns the string t r ue if the primitive value of bool is true; otherwise it returns the string
fal se.

Example

bool = new Bool ean(1);
trace(bool .toString()); // displays "true"

Boolean.valueOf() Method

bool . val ued ()

Description

The val ueOf () method returns the primitive value of bool . The method returns t r ue if the
primitive value of bool is true; otherwise it returns f al se.

Example

bool = new Bool ean("");
trace(bool .valueO& ()); // displays "false" to the output w ndow

163

164

CHAPTER 9
Reference

Color Object

Description

The Col or object supports access to and control of the color of a movie clip. It allows you to get
and set the red, green, and blue (RGB) color values and transformation information. You must
create an instance of the Col or object for a specific target before using any of the Col or methods.

Constructor

new Col or (target)

Parameters
target A path or a reference to the movie clip for which the Col or object is created.
Properties
None.
Methods
get RGB() See “Color.getRGB() Return the RGB offset values for the object.
Method” on
page 165.

get Transforn() See“ColorgetTrans- Return the current offset and percentage values as an object
form() Method” on of type Obj ect . For more information on the Obj ect class,

page 165. see “Object Class” on page 269.

set RGB() See “Color.setRGB() Set the RGB offset values for the object.
Method"” on
page 166.

set Transforn() See“ColorsetTrans- Set the offset and/or percentage values using an object of
form Method” on type Obj ect . For moreinformation on the type Obj ect , see
page 167. “Object Class” on page 269.

ADOBE LIVEMOTION 2.0
Scripting Guide

Color.getRGB() Method

col or vj ect . get RGB()

Description

The get RGB() method returns the RGB color offset values for col or Obj ect as one number.
These are the values that were set by a call to set RGB() . If the offsets have never been set (via
set RGB()) then the default values for the RGB offsets are 0, 0, 0.

Returns

A number indicating the RGB color offsets of col or Qbj ect in the form
red<<16| gr een<<8| bl ue.

Example

redBasebal | = new Col or (_root. basebal |');
redBasebal | . set RGB(0xFF0000) ;
trace(redBasebal | . getRGB());//prints "16711680"

See also

“Color.setRGB() Method” on page 166.

Color.getTransform() Method

col or Obj ect . get Transf orn()

Description

The get Transf or n{) method returns an object of type Obj ect whose properties are the trans-
formation values of col or Qbj ect .

The properties are the following:

* rais the red transformation percentage (-100 to 100)

* r b is the red offset (- 255 to 255)

* ga is the green transformation percentage (- 100 to 100)

* gb is the green offset (- 255 to 255)

165

166

CHAPTER 9
Reference

ba is the blue transformation percentage (- 100 to 100)
* bb is the blue offset (- 255 to 255)

* aa is the alpha transformation percentage (- 100 to 100)
* ab is the alpha offset (- 255 to 255)

The final value for each color is computed as: value = original * (transformation percentage) +
offset.

Returns

An object of type Obj ect whose properties contain the transformation values of the movie clip
col or vj ect .

Example

redFi sh= new Col or(_root.fish);

fishChanger = new Qbject();

fishChanger.ra = 100;//Red percent age

fishChanger.rb 200;// Red of fset

fi shChanger. ga 0;// Green percentage

fi shChanger. gb 0;//Geen offset

fi shChanger. ba 100;// Bl ue percent age

fi shChanger. bb 50;//Bl ue of fset

fishChanger.aa = 40;//Al pha percent age

fi shChanger. ab -10;// Al pha of f set

redFi sh. set Transf orn{fi shChanger);

fi shChanger = redFish.getTransforn();

fishChanger.rb = 300;//set the Red offset

fishChanger.ga = 20;//set the Green transformation percentage
redFi sh. set Transf orn(fi shChanger);//changes the transformation val ues

See also

“Color.setTransform Method” on page 167, “Object Class” on page 269

Color.setRGB() Method

col or vj ect . set RGB(of f set Val ue)

ADOBE LIVEMOTION 2.0
Scripting Guide

Description

The set RGB() method sets the RGB color offsets for col or Obj ect . It also sets all the transfor-
mation percentages to 0, which results in the ignoring of the movie clip’s original color and the
setting of its color to the values of the offsets. The following are suggestions for creating
of f set Val ue:

« of f set Val ue = r ed<<16| gr een<<8| bl ue where r ed, gr een, and bl ue are values from 0 to
255;

« of f set Val ue = 0XRRGGBB, where RR, GG, and BB are hexadecimal values for each color and are
in the range from 00 to FF.

Parameters

of fset Val ue Anintegerin the range of 0 to 16777215 (OxFFFFFF), can be a hexadecimal num-
ber (0x) indicating the offsets for each of the color offset values.

Example

redBasebal | = new Col or (" _root. baseball");
redBasebal | . set RGB(0xFF0000) ;
trace(redBasebal | . getRGB());//prints "16711680"

See also

“Color.getRGB() Method” on page 165.

Color.setTransform Method
col or vj ect . set Transforn(transformbj)

Description

The set Transf or n{) method sets the color transform information for col or Qbj ect . To use
set Transf or n() , you first must create an object of type obj ect (for more information on the
type Obj ect, see “Object Class” on page 269) with a series of properties, and pass the object as
the parameter to set Tr ansf or n() . set Transf or n() uses the values as the new offsets and
percentages of col or Obj ect . The properties are the following:

* rais the red transformation percentage (-100 to 100)

167

168

CHAPTER 9
Reference

* r b is the red offset (- 255 to 255)

* ga is the green transformation percentage (- 100 to 100)

* gb is the green offset (- 255 to 255)

* ba is the blue transformation percentage (- 100 to 100)

* bb is the blue offset (- 255 to 255)

* aa is the alpha transformation percentage (- 100 to 100)

* ab is the alpha offset (- 255 to 255)

The final value for each color is computed as: value = original * (transformation percentage) +

offset.

Parameters

transf or nObj

Example

An object created using the constructor of the generic Obj ect class whose proper-
ties specify color transformation percentages and color offsets.

redFi sh= new Col or(_root.fish);
new Cbj ect();

fi shChanger

fi shChanger.
fi shChanger.
fi shChanger.
fi shChanger.
fi shChanger.
fi shChanger.
fi shChanger.
fi shChanger.

See also

ra
rb
ga
gb
ba
bb
aa

ab =
redFi sh. set Transforn(fi shChanger);//sets the new transformation val ues

100; // Red percent age
200; // Red of f set
0;// G een percentage
0;// G een offset
100;// Bl ue percent age
50;//Bl ue of fset

40; /1 Al pha percent age
-10;// Al pha of f set

“Color.getTransform() Method” on page 165.

Date() Global Function

Dat e()

ADOBE LIVEMOTION 2.0
Scripting Guide

Description

The Dat e() global function returns a string containing the current date, the current time in the
local time zone, and the offset in hours between Coordinated Universal Time (UTC—formerly
called the Greenwich Mean Time, or GMT) and the local time. Do not confuse this global
function with the Dat e object.

For example:

Mon Sep 10, 16:30:29 GMT-0700 2001

Example

var now = Date();
trace(now);//prints string

Date Object

Description

The Dat e object allows you to get and set the local date and time or the Coordinated Universal
Time (UTC—formerly called the Greenwich Mean Time, or GMT). To call the Dat e object’s
methods, you must create a new object using the constructor.

System-supplied dates and times are based on (and are as accurate as) the clock settings of the
operating system upon which the Flash Player is running.

Constructor

new Dat e()
new Dat e(rs)
new Dat e(year, nonth, date, hour, mn, sec, ns)

Description

You can create a Dat e object in three ways:

» With no arguments. This creates a new Dat e object holding the current date and time based
on the local system clock. For example:

var now = new Date();
trace(now. getDate());//prints the day of the nonth

169

170

CHAPTER 9
Reference

» With one argument representing milliseconds. This creates a Dat e object holding the number
of milliseconds relative to midnight January 1, 1970. For example:

var now = new Dat e(999901885456) ;
trace(now. getTinme());//prints 999901885456

 With three or more arguments. This creates a Dat e object indicating the year (required),
month (required), day (required), hour, minute, second, and millisecond. To use an optional
argument, all the arguments previous to it in the function call must be present.

var now = new Date(99, 11, 31, 9, 52, 54, 999);
trace(now. getFul |l Year());//prints 1999
trace(now. getMonth());//prints 11

trace(now. getDate());//prints 31

trace(now. getHours());//prints 9

trace(now. getMnutes());//prints 52

trace(now. get Seconds());//prints 54

trace(now. getM I liseconds());//prints 999

Parameters

ns (Optional) An integer value representing the number of milliseconds since 1 Janu-
ary 1970 00:00:00.

year The year expressed in four digits—for example, 2001. Alternatively, if you need to
indicate a year from 1900 to 1999, specify a value from 0 to 99.

nont h An integer value from 0 (Jan.) to 11 (Dec.).

date An integer value from 1 to 31. If this argument is not supplied, its value is set to 0.

hour (Optional) An integer value from 0 (midnight) to 23 (11 PM). If this argument is not
supplied, its value is set to 0.

mn (Optional) An integer value from 0 to 59. If this argument is not supplied, its value
is set to 0.

sec (Optional) An integer value from 0 to 59. If this argument is not supplied, its value
is set to 0.

ns (Optional) An integer value from 0 to 999. If this argument in not supplied, its value

is set to 0.

Properties

None.

Methods

get Dat e()

get Day()

get Ful | Year ()

get Hour s()

getM I liseconds()

get M nutes()

get Mont h()

get Seconds()

get Ti me()

get Ti mezoneOf f set ()

get UTCDat e()

get UTCDay()

get UTCFul | Year ()

get UTCHour s()

ADOBE LIVEMOTION 2.0
Scripting Guide

See “Date.getDate() Method” on Return the day of the month.
page 173.

See “Date.getDay() Method” on Return the day of the week.
page 174.

See “Date.getFullYear() Method” Return the year expressed in four-digit
on page 174. format.

See “Date.getHours() Method” on Return the hour.
page 175.

See “Date.getMilliseconds() Return the milliseconds.

Method” on page 175.

See “Date.getMinutes() Method” Return the minutes.
on page 176.

See “Date.getMonth() Method” Return the month.
on page 176.

See “Date.getSeconds() Method” Return the seconds.
on page 177.

See “Date.getTime() Method” on Return the number of milliseconds that
page 177. have passed since January 1, 1970.

See “Date.getTimezoneOffset() Returnthe number of minutes between
Method” on page 178. UTC and local time.

See “Date.getUTCDate() Method” Return the day of the month in UTC.
on page 178.

See “Date.getUTCDay() Method” Return the day of the week in UTC.
on page 179.

See “Date.getUTCFullYear()
Method” on page 179.

Return the year as four-digits in UTC.

See “Date.getUTCHours()
Method” on page 180.

Return the hour in UTC.

171

172

CHAPTER 9
Reference

get UTCM | i seconds()

get UTCM nut es()

get UTCMont h()

get UTCSeconds()

get Year ()

set Dat e()

set Ful | Year ()

set Hour s()

setM I liseconds()

set M nutes()

set Mont h()

set Seconds()

set Ti me()

set UTCDat e()

set UTCFul | Year ()

set UTCHour s()

See “Date.getUTCMilliseconds() Return the milliseconds in UTC.

Method” on page 180.

See “Date.getUTCMinutes() Return the minutes in UTC.

Method” on page 181.

See “Date.getUTCMonth()
Method” on page 181.

Return the month in UTC.

See “Date.getUTCSeconds() Return the seconds in UTC.

Method” on page 182.

See “Date.getYear() Method” on Return the year relative to 1900.
page 182.

See “Date.setDate() Method” on Set the day of the month.
page 183.

See “Date.setFullYear() Method” Set the year in four-digit format.
on page 184.

See “Date.setHours() Method” on Set the hour of the day.
page 185.

See “Date.setMilliseconds() Set the milliseconds.

Method” on page 185.

See “Date.setMinutes() Method” Set the minutes.
on page 186.

See “Date.setMonth() Method”
on page 187.

Set the month.

See “Date.setSeconds() Method” Set the seconds.
on page 187.

See “Date.setTime() Method” on Set the date in number of milliseconds
that have passed since January 1, 1970.

page 188.

See “Date.setUTCDate() Method” Set the day of the month in UTC.
on page 189.

See “Date.setUTCFullYear()
Method” on page 189.

See “Date.setUTCHours() Set the hour in UTC.

Method” on page 190.

Set the year in four-digit format in UTC.

setUTCM | | i seconds() See “Date.setUTCMilliseconds()
Method” on page 191.

set UTCM nut es()

set UTCMont h() See “Date.setUTCMonth()
Method” on page 192.

set UTCSeconds()

See “Date.setUTCMinutes()
Method” on page 192.

See “Date.setUTCSeconds()
Method” on page 193.

ADOBE LIVEMOTION 2.0
Scripting Guide

Set the milliseconds in UTC.

Set the minutes in UTC.

Set the month in UTC.

Set the seconds in UTC.

set Year () See “Date.setYear() Method” on Set the year in four-digit format.
page 194.
toString() See “Date.toString() Method” on Return the date and time values as a
page 195. string.
UTC() See “Date.UTC() Method” on Return the number of milliseconds
page 195. between January 1,1970in UTC and the
time specified.
val uef () See “Date.valueOf() Method” on Return the number of milliseconds that
page 196. have passed since midnight, January 1,
1970 UTC. Equivalent to get Ti me() .
Date.getDate() Method

dat eObj . get Dat e()

Description

The get Dat () method returns the day of the month.

Returns

An integer value from 1 to 31.

Example

var now = new Date();

trace(now. getDate());//prints the day of the nonth

173

174 | CHAPTER 9
Reference

See also

“Date.getUTCDate() Method” on page 178, “Date.setDate() Method” on page 183

Date.getDay() Method

dat eObj . get Day()

Description

The get Day() method returns the day of the week.

Returns

An integer from 0 (Sunday) to 6 (Saturday).

Example

var now = new Date();
trace(now. getDay());//prints the day of the week as an integer

See also

“Date.getUTCDay() Method” on page 179

Date.getFullYear() Method

dat eObj . get Ful | Year ()

Description

The get Ful | Year () method returns the year expressed in four-digit format.

Returns

The year expressed in four digits—for example, 2001.

var now = new Date();
trace(now. getFull Year());//prints the year in four digits

ADOBE LIVEMOTION 2.0

See also

“Date.getYear() Method” on page 182, “Date.getUTCFullYear() Method” on page 179,
“Date.setFullYear() Method” on page 184

Scripting Guide

Date.getHours() Method

dat eObj . get Hour s()

Description

The get Hour s() method returns the hour of the day.

Returns

An integer value in the range of 0 (midnight) to 23 (11 PM).

Example

var now = new Date();
trace(now. getHours());//prints the hour

See also

“Date.getUTCHours() Method” on page 180, “Date.setHours() Method” on page 185

Date.getMilliseconds() Method

dateObj .getM 1 1iseconds()

Description

The get M I | i seconds() method returns the milliseconds.

Returns
An integer from 0 to 999.

var now = new Date();
trace(now.getMIliseconds());//prints the mlliseconds

175

176

CHAPTER 9
Reference

See also

“Date.getUTCMilliseconds() Method” on page 180, “Date.setMilliseconds() Method” on
page 185

Date.getMinutes() Method
dat eObj . get M nut es()

Description

The get M nut es() method returns the minutes.

Returns

An integer value in the range 0 to 59.

Example

var now = new Date();
trace(now. getMnutes());//prints the mnutes

See also

“Date.getUTCMinutes() Method” on page 181, “Date.setMinutes() Method” on page 186

Date.getMonth() Method

dat eObj . get Mont h()

Description

The get Mont h() method returns the month.

Returns

An integer value from 0 (Jan.) to 11 (Dec.).

Example

var now = new Date();

ADOBE LIVEMOTION 2.0
Scripting Guide

trace(now. getMonth());//prints the nmonth as an integer

See also

“Date.getUTCMonth() Method” on page 181, “Date.setMonth() Method” on page 187

Date.getSeconds() Method

dat eObj . get Seconds()

Description

The get Seconds() method returns the seconds.

Returns

An integer value in the range of 0 to 59.

Example

var now = new Date();
trace(now. get Seconds());//prints the seconds

See also

“Date.getUTCSeconds() Method” on page 182, “Date.setSeconds() Method” on page 187

Date.getTime() Method

dat eObj . get Ti me()

Description

The get Ti me() method returns the number of milliseconds that have passed since January 1,
1970.

Returns

An integer.

177

178

CHAPTER 9
Reference

Example

var now = new Date();
trace(now. getTine());//prints a very |large integer

See also

“Date.setTime() Method” on page 188, “Date.setMilliseconds() Method” on page 185

Date.getTimezoneOffset() Method

dat eObj . get Ti mrezoneOf f set ()

Description

The get Ti mezoneO f set () method returns the number of minutes between UTC and local
time. Accounts for daylight savings time.

Returns

An integer representing the number of minutes.

Example

var now = new Date();

trace(now. get Ti mezoneOf fset());

/1 for California, prints 420 (7 hours) if daylight savings;
/1 if not daylight savings, prints 480

Date.getUTCDate() Method

dat eObj . get UTCDat e()

Description

The get UTCDat e() method returns the day of the month in UTC.

Returns

An integer value from 1 to 31.

Example

var now = new Date();
trace(now. getUTCDate());//prints the day of the nonth

See also

“Date.getDate() Method” on page 173, “Date.setUTCDate() Method” on page 189

ADOBE LIVEMOTION 2.0
Scripting Guide

Date.getUTCDay() Method

dat eObj . get UTCDay/()

Description

The get UTCDay() method returns the day of the week in UTC.

Returns

An integer from 0 (Sunday) to 6 (Saturday).

Example

var now = new Date();
trace(now. get UTCDay());//prints the day of the week as an integer

See also

“Date.getDay() Method” on page 174

Date.getUTCFullYear() Method

dat eObj . get UTCFul | Year ()

Description

The get UTCFul | Year () method returns the year as four-digits in UTC.

Returns

The year expressed in four digits—for example, 2001.

179

180 | CHAPTER 9
Reference

Example

var now = new Date();
trace(now. get UTCFul | Year());//prints the year in four digits

See also

“Date.getFullYear() Method” on page 174, “Date.setUTCFullYear() Method” on page 189

Date.getUTCHours() Method

dat eObj . get UTCHour s()

Description

The get UTCHour s() method returns the hour in UTC.

Returns

An integer value in the range of 0 (midnight) to 23 (11 PM).

Example

var now = new Date();
trace(now. get UTCHours());//prints the hour

See also

“Date.getHours() Method” on page 175, “Date.setUTCHours() Method” on page 190

Date.getUTCMilliseconds() Method

dat eObj . get UTCM | | i seconds()

Description

The get UTCM | | i seconds() method returns the milliseconds in UTC.

Returns

An integer from 0 to 999.

ADOBE LIVEMOTION 2.0

Example

var now = new Date();
trace(now. getUTCM | | i seconds());//prints the mlliseconds

See also

“Date.getMilliseconds() Method” on page 175, “Date.setUTCMilliseconds() Method” on
page 191

Scripting Guide

Date.getUTCMinutes() Method

dat eObj . get UTCM nut es()

Description

The get UTCM nut es() method returns the minutes in UTC.

Return

An integer value in the range of 0 to 59.

Example

var now = new Date();
trace(now. get UTCM nutes());//prints the minutes

See also

“Date.getMinutes() Method” on page 176, “Date.setUTCMinutes() Method” on page 192

Date.getUTCMonth() Method

dat eObj . get UTCMont h()

Description

The get UTCMont h() method returns the month in UTC.

181

182 | CHAPTER 9
Reference

Returns

An integer value from 0 (Jan.) to 11 (Dec.).

Example

var now = new Date();
trace(now. get UTCMonth());//prints the nonth as an integer

See also

“Date.getMonth () Method” on page 176, “Date.setUTCMonth() Method” on page 192

Date.getUTCSeconds() Method

dat eObj . get UTCSeconds()

Description

The get UTCSeconds() method returns the seconds in UTC.

Returns

An integer value in the range of 0 to 59.

Example

var now = new Date();
trace(now. get UTCSeconds());//prints the seconds

See also

“Date.getSeconds() Method” on page 177, “Date.setUTCSeconds() Method” on page 193

Date.getYear() Method

dat eObj . get Year ()

ADOBE LIVEMOTION 2.0
Scripting Guide

Description

The get Year () method returns the year relative to 1900. For example, 101 is returned for the
year 2001.

Returns

An integer representing the number of years that have passed since 1900.

Example

var now = new Date();
trace(now. getYear());//prints current year mnus 1900

See also

“Date.getFullYear() Method” on page 174, “Date.getUTCFullYear() Method” on page 179,
“Date.setYear() Method” on page 194

Date.setDate() Method

dat eObj . set Dat e(dat e)

Description

The set Dat () method sets the day of the month of dat eQbj . This does not affect the system
clock or anything else.

Parameters

date An integer value from 1 to 31 indicating the day of the month to set.

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now. setDate(6));//prints a very |arge integer
trace(now. getDate());//prints 6

183

184 | CHAPTER 9
Reference

See also

“Date.getDate() Method” on page 173, “Date.setUTCDate() Method” on page 189

Date.setFullYear() Method

dat eObj . set Ful | Year (year, nonth, date)

Description

The set Ful | Year () method sets the year of dat eObj . The method also sets nont h and dat e
when these optional parameters are specified. This does not affect the system clock or anything

else.

Parameters

year A four-digit integer value indicating the year to set—for example, 2001.

nont h (Optional) An integer value from 0 (Jan.) to 11 (Dec.) indicating the month
of the year to set.

date (Optional) An integer value from 1 to 31 indicating the day of the month to
set.

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();

trace(now. set Ful | Year (2001));//prints a very large integer
trace(now. getFul | Year());//prints 2001

trace(now. getMonth());//prints nmonth

trace(now. getDate());//prints day of the nonth

See also

“Date.setUTCFullYear() Method” on page 189, “Date.setYear() Method” on page 194,
“Date.getFullYear() Method” on page 174

ADOBE LIVEMOTION 2.0
Scripting Guide

Date.setHours() Method

dat eObj . set Hour s(hour)

Description

The set Hour s() method sets the hour of dat eQbj . This does not affect the system clock or
anything else.

Parameters

hour An integer value from 0 (midnight) to 23 (11 PM) indicating the hour of the
day to set.

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now. set Hours(22));//prints a very large integer
trace(now. getHours());//prints 22

See also

“Date.getHours() Method” on page 175, “Date.setUTCHours() Method” on page 190

Date.setMilliseconds() Method

dateObj .setM || iseconds(ns)

Description

The set M I | i seconds() method sets the milliseconds of dat ebj . This does not affect the
system clock or anything else.

Parameters

ns An integer value from 0 to 999 indicating the milliseconds to set.

185

186

CHAPTER 9
Reference

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now. setM I liseconds(847));//prints a very |arge integer
trace(now. getM I liseconds());//prints 847

See also

“Date.getMilliseconds() Method” on page 175, “Date.setUTCMilliseconds() Method” on
page 191

Date.setMinutes() Method

dat eObj . set M nut es(mi n)

Description

The set M nut es() method sets the minutes of dat eObj . This does not affect the system clock
or anything else.

Parameters

mn An integer value from 0 to 59 indicating the number of minutes to set.

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now. setMnutes(59));//prints a very large integer
trace(now. getM nutes());//prints 59

See also

“Date.getMinutes() Method” on page 176, “Date.setUTCMinutes() Method” on page 192

ADOBE LIVEMOTION 2.0
Scripting Guide

Date.setMonth() Method

dat eObj . set Mont h(nont h)

Description

The set Mont h() method sets the month of dat eObj . This does not affect the system clock or
anything else.

Parameters

nont h An integer value from 0 (Jan.) to 11 (Dec.) indicating the month to set.

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now. setMonth(0));//prints a very |arge integer
trace(now. getMonth());//prints 0

See also

“Date.getMonth () Method” on page 176, “Date.setUTCMonth() Method” on page 192

Date.setSeconds() Method

dat eObj . set Seconds(sec)

Description

The set Seconds() method sets the seconds of dat eObj . This does not affect the system clock
or anything else.

Parameters

sec An integer value from 0 to 59 indicating the seconds to set.

187

188

CHAPTER 9
Reference

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now. set Seconds(59));//prints a very |large integer
trace(now. get Seconds());//prints 59

See also

“Date.getSeconds() Method” on page 177, “Date.setUTCSeconds() Method” on page 193

Date.setTime() Method

dat eObj . set Ti me(ns)

Description

The set Ti me() method sets the date in number of milliseconds that have passed since January
1, 1970. This does not affect the system clock or anything else.

Parameters

ns An integer indicating the number of milliseconds between the date to be
set and midnight, January 1, 1970.

Returns

The number of milliseconds set.

Example

var now = new Date();
trace(now. set Ti me(999930239559));//prints a very large integer
trace(now. getTinme());//prints 999930239559

See also

“Date.getTime() Method” on page 177

ADOBE LIVEMOTION 2.0
Scripting Guide

Date.setUTCDate() Method

dat eObj . set UTCDat e(dat e)

Description

The set UTCDat e() method sets the date of the month in UTC of dat eQbj . This does not affect
the system clock or anything else.

Parameters

date An integer value from 1 to 31 indicating the day to be set.

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now. setUTCDate(2));//prints a very |large integer
trace(now. getUTCDate());//prints 2

See also

“Date.getUTCDate() Method” on page 178, “Date.setDate() Method” on page 183

Date.setUTCFullYear() Method

dat eObj . set UTCFul | Year (year, nonth, date)

Description

The set UTCFul | Year () method sets the year in UTC of dat eQbj , and optionally sets the month
and day of the month. This does not affect the system clock or anything else.

189

190

CHAPTER 9
Reference

Parameters

year The year expressed in four digits—for example, 2001.
nont h (Optional) An integer from 0 (Jan.) to 11 (Dec.).

date (Optional) An integer value from 1 to 31.

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();

trace(now. set UTCFul | Year (2001, 3,1));//prints a very |large integer
trace(now. get UTCFul | Year());//prints 2001
trace(now. get UTCMont h());//prints 3

trace(now. getUTCDate());//prints 1

See also

“Date.getUTCFullYear() Method” on page 179, “Date.setFullYear() Method” on page 184

Date.setUTCHours() Method

dat eObj . set UTCHour s(hour)

Description

The set UTCHour s() method sets the hour of the day in UTC of dat eObj . This does not affect
the system clock or anything else.

Parameters

hour An integer value from 0 (midnight) to 23 (11 PM) indicating the hour to be
set.

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

ADOBE LIVEMOTION 2.0
Scripting Guide

Example

var now = new Date();
trace(now. set UTCHours(22));//prints a very large integer
trace(now. get UTCHours());//prints 22

See also

“Date.getUTCHours() Method” on page 180, “Date.setHours() Method” on page 185

Date.setUTCMilliseconds() Method

dat eObj . set UTCM | | i seconds(rs)

Description

The set UTCM | | i seconds() method sets the milliseconds in UTC of dat eQbj . This does not
affect the system clock or anything else.

Parameters

ns An integer value in the range of 0 to 999 indicating the number of millisec-
onds to set.

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now. setUTCM | | i seconds(220));//prints a very |arge integer
trace(now. getUTCM | | i seconds());//prints 220

See also

“Date.getUTCMilliseconds() Method” on page 180, “Date.setMilliseconds() Method” on
page 185

191

192

CHAPTER 9
Reference

Date.setUTCMinutes() Method

dat eObj . set UTCM nut es(mi n)

Description

The set UTCM nut es() method sets the minutes in UTC of dat eQbj . This does not affect the
system clock or anything else.

Parameters

mn An integer value in the range 0 to 59 indicating the number of minutes to
be set.

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now. set UTCM nutes(45));//prints a very large integer
trace(now. get UTCM nutes());//prints 45

See also

“Date.getUTCMinutes() Method” on page 181, “Date.setMinutes() Method” on page 186

Date.setUTCMonth() Method

dat eObj . set UTCMont h(nont h)

Description

The set UTCMont h() method sets the month in UTC of dat eQbj . This does not affect the system
clock or anything else.

ADOBE LIVEMOTION 2.0
Scripting Guide

Parameters

nont h An integer value in the range 0 (Jan.) to 11 (Dec.) indicating the month to
set.

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now. set UTCMont h(11));//prints a very large integer
trace(now. getUTCMonth());//prints 11

See also

“Date.getUTCMonth() Method” on page 181, “Date.setMonth() Method” on page 187

Date.setUTCSeconds() Method

dat eObj . set UTCSeconds(sec)

Description

The set UTCSeconds() sets the seconds in UTC of dat eObj . This does not affect the system
clock or anything else.

Parameters

sec An integer value in the range 0 to 59 indicating the number of seconds to
set.

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now. set UTCSeconds(44));//prints a very large integer

193

194 | CHAPTER 9
Reference

trace(now. get UTCSeconds());//prints 44

See also

“Date.getUTCSeconds() Method” on page 182, “Date.setSeconds() Method” on page 187

Date.setYear() Method

dat eObj . set Year (year, nonth, date)

Description

The set Year () method sets the year of dat eObj , and optionally the month and day of the
month. This does not affect the system clock or anything else.

Parameters

year An integer value indicating the year to set. The method interprets a 1- or 2-
digit value to mean the 1900s—for example, 13 is interpreted to mean
1913.

nont h (Optional) An integer value in the range of 0 (Jan.) to 11 (Dec.) indicating
the month to set.

date (Optional) An integer value in the range of 1 to 31 indicating the day to be
set.

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();

trace(now. set Year (2001, 3,1));//prints a very large integer
trace(now. getFul | Year());//prints 2001

trace(now. getMonth());//prints 3

trace(now. getDate());//prints 1

ADOBE LIVEMOTION 2.0
Scripting Guide

See also

“Date.getYear() Method” on page 182, “Date.setFullYear() Method” on page 184,
“Date.setUTCFullYear() Method” on page 189

Date.toString() Method

dateObj . toString()

Description

The t oSt ri ng() method returns the date and time values as a string.

Returns
The following string is an example of the format returned by this method:

Mon Aug 13, 10:54:21 GVI-0700 2001

Example

var now = new Date();
trace(now. toString());//string with the date

Date.UTC() Method

Dat e. UTC(year, mont h, dat e, hour, mi n, sec, ns)

Description

The Dat e. UTC() method returns the date as the number of milliseconds between the time
specified (passed in as the arguments to the method) and midnight, January 1, 1970, in UTC.
The first three parameters are required. Dat e. UTC() and Dat e() accept the same arguments; the
only difference between the two is that the new Dat e object created using Dat e. UTC() assumes
UTC while the new Dat e object created using only Dat e() assumes local time. A new UTC date
object is normally created like this:

now = new Dat e(Date. UTC(2001, 9, 30));

In addition, Dat e. UTC() is commonly used with the set Ti me() method to set a UTC date.

195

196 | CHAPTER 9
Reference

Parameters

year The year expressed in four digits— for example, 2001. To indicate for a year from 1900
to 1999, you can specify a value from 0 to 99.

nont h An integer value from 0 (Jan.) to 11 (Dec.).

date An integer value from 1 to 31.

hour (Optional) An integer value in the range of 0 (midnight) to 23 (11 PM).

mn (Optional) An integer value in the range of 0 to 59.

sec (Optional) An integer value in the range of 0 to 59.

ns (Optional) An integer value in the range of 0 to 999.

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date(Date. UTC(96, 11, 29, 11, 58, 59, 345));
trace(now. getTine());//prints mlliseconds

trace(now. get UTCFul | Year());//prints 1996

trace(now. getMonth());//prints 11

trace(now. get UTCDate());//prints 29

trace(now. get UTCHours());//prints 11

trace(now. get UTCM nutes());//prints 58

trace(now. get UTCSeconds());//prints 59

trace(now. getUTCM | | i seconds());//prints 345

See also

“Date.setTime() Method” on page 188

Date.valueOf() Method

dat eObj . val ueOf ()

ADOBE LIVEMOTION 2.0
Scripting Guide

Description

The val uedf () method returns the number of milliseconds that have passed since midnight,
January 1, 1970 UTC. Equivalent to get Ti me().

Returns

An integer.

Example

var now = new Date();
trace(now. valued ());//prints the number of mlliseconds

See also

“Date.getTime() Method” on page 177

duplicateMovieClip() Global Function

dupl i cateMovi eCl i p(target, newNanme, depth)

Description

The dupl i cat eMovi eCl i p() global function creates a duplicate of t ar get while t ar get is
playing. The duplicate movie clip always starts at its frame 1 regardless of t ar get ’s frame at the
time of duplication. The duplicate movie clip inherits transformations but not the current values
of movi eCl i p’s user-defined variables. The duplicate movie clip is placed in t ar get ’s parent’s
programmatic stack. A programmatic stack holds child movie clips; when you duplicate a movie
clip the duplicate will have the same parent as the original, and thus reside in the parent’s
programmatic stack.

The r enoveMovi eCl i p() global function is used to delete duplicate movie clips.

movi eCl i p. removeMovi eCli p() can also be used by duplicate movie clips to delete
themselves. Duplicate movie clips can also be removed by placing another movie clip at the same
depth in the programmatic stack.

197

198

CHAPTER 9
Reference

Parameters

target A path or reference to the movie clip that is duplicated.

newNane A string specifying the name of the duplicate movie clip. This must be a unique
name.

depth The depth of the movie clip in t ar get ' s parent’s programmatic stack.

Example

duplicateMovieCip (_root. baseball, "newBasebal |", 1);//creates new basebal |

_root.newBasebal | . _x += 25;//noves new baseball along x axis

_root.newBasebal | . _y += 25;//noves new baseball along y axis

See also

“removeMovieClip() Global Function” on page 275, “MovieClip.duplicateMovieClip()
Method” on page 241, “MovieClip.removeMovieClip() Method” on page 253

escape() Global Function

escape(string)

Description

The escape() global function creates an encoded string from st ri ng. In the new string,
characters of st ri ng that require encoding are replaced with the format %x, where xx is the
hexadecimal value of the character. The encoding is basically URL encoding except that spaces
are replaced with 920 instead of a + sign. Use the unescape() global function to translate the
string back into its original format.

Parameters

string The string to be encoded.

Example

[lprints Billy%0went %0fi shi ng%21%24%23%21
trace(escape("Billy went fishing!$#"));

ADOBE LIVEMOTION 2.0
Scripting Guide

See also

“unescape() Global Function” on page 304

eval() Global Function

eval (expression)

Description

The eval () global function returns the value of, or a reference to, expr essi on.

Note: This implementation of eval () is different from the traditional JavaScript implementation.

Parameters

expressi on An expression that evaluates to a variable, property, object, movie clip, or
function.

Returns

If expr essi on is a variable or property, the value of the variable or property is returned. If
expr essi on is an object, movie clip, or function, a reference to the item is returned.

Example

X=4;

trace(eval (x));//prints 4

str = "basebal | ";

hi t Basebal | = eval ("_root."+ str);

hi t Basebal | . _x += 50;//noves novie clip 50 pixels along x axis

trace(eval (this._x));//returns _x property for "this" reference

_focusrect Global Property

_focusrect

199

200 | CHAPTER 9
Reference

Description

The _focusrect global property is a boolean that specifies whether a button with the “over”
state defined and that currently has keyboard focus has a yellow border that appears around it.
Keyboard focus is obtained using the Tab key. As a boolean, it can be assigned only one of two
values: t r ue or f al se. If assigned t r ue, the yellow border appears; if f al se, it does not. The
default value is t r ue. This property can be read or written.

fscommand() Global Function

get URL("fsconmmand: command”, argunent)

Description

The f scommand global function is used only within the context of get URL() . See get URL() for
details. In LiveMotion, f sconmand communication is only supported for use with the
standalone Flash Player.

Parameters

conmand The command to execute.

ar gument The argument for the command.
See also

“getURL Global Function” on page 201

getTimer Global Function
get Ti mer ()

Description

The get Ti ner () global function gets the number of milliseconds that have elapsed since the
SWE started playing.

ADOBE LIVEMOTION 2.0
Scripting Guide

Returns

The elapsed time in milliseconds.

getURL Global Function

get URL(url)
get URL(url, w ndow)
get URL(url, w ndow, howToSendVari abl es)

Description

The get URL() global function gets a document from a specified URL and loads it into the Web
browser in the specified wi ndow. It is also used to execute a script on a server and receive the
results in a Web browser window or frame. Additionally, it can be used to execute JavaScript code
("javascript: command”) or VBScript code ("vbscri pt: command") in a Web browser, and it
provides support for the f scommand global function. Thefil e,ftp,http,and pri nt protocols
are supported.

Note: This method is not supported in Preview mode.

Parameters

url A string specifying the URL to which to hyperlink (HTTP or FTP). This
may be a relative or an absolute pathname. It can be the name of a doc-
ument or it can be a script, and the f sconmand global function can be
used here.

wi ndow (Optional) The target frame in the browser—e.g., _sel f (the default),
_parent,_top,_bl ank.If omitted, _sel f is used. Custom names can
also be used.

howToSendVari abl es (Optional) Omit this parameter if you don’t want to send variables. This

parameter is a string literal. Specify GET to send variables via get (i.e.,
tacked onto the end of the URL) or POST to send them with post (i.e., put
into the body of the request). Both methods send them in application/x-
www-form-urlencoded MIME format. All user-defined variables are
sent.

The f sconmand options are as follows:

201

202

CHAPTER 9
Reference

* get URL("fscommand: al | owscal e", val ue) —Tells the standalone Flash Player whether its
contents should scale with the size of the player’s window. val ue is the string "t r ue" or
"fal se", indicating whether or not (respectively) the contents of the Flash Player should scale.

* get URL("fscommand: exec", applicationNane) —Tells the standalone Flash Player to
launch an external application. appl i cat i onNane is a string showing an absolute path to the
application.

* get URL("fscommand: fullscreen”, val ue)—Tellsthe standalone Flash Player whether to
maximize, filling the entire screen. val ue is the string "t rue" or "f al se", indicating whether
or not (respectively) to maximize.

* get URL("fscommand: quit")—Tells the standalone Flash Player to quit.

* get URL("fscommand: showmenu”, val ue) —Tells the standalone Flash Player whether to
suppress the display of the controls in the context menu. val ue is the string "t r ue” or"f al se",
indicating whether or not (respectively) to suppress.

* get URL("fscommand: trapal | keys", val ue) —Tells the standalone Flash Player whether
to send all keystrokes to the SWF file(s) executing in the Flash Player. val ue is the string "t r ue”
or "fal se", indicating whether or not (respectively) to send.

Example

get URL("ftp://downl oad.intel.cont');

get URL("http://ww. adobe. cont', "_parent");
getURL("file:///Cl/coolestFile. htm");

get URL("javascript: alert(\"H\");");

See also

“loadVariables() Global Function” on page 220, “MovieClip.getURL() Method” on page 245,
“MovieClip.loadVariables() Method” on page 251, “fscommand() Global Function” on
page 200

getVersion() Global Function
get Ver si on()

ADOBE LIVEMOTION 2.0
Scripting Guide

Description

The get Ver si on() global function returns, in string form, the version of the Flash Player that
the user currently has installed. The first number refers to the major version number of the Flash
Player; the second number gives the minor version; the third number is the build (revision); and
the fourth number is the patch.

For example, from LiveMotion’s Preview mode:
LM 5,0,42,0
For example, from an exported SWF file (on a Windows machine):

WN 5,0,30,0

Returns

The version of the Flash Player installed on the user’s system.

gotoAndPlay() Global Function

got oAndPl ay(| abel)

Description

The got 0AndP!l ay() global function sends the current timeline’s playhead to the specified
| abel and continues playing from | abel .

Note: Frame numbers should not be passed to this global function. The use of labels is recommended.

Parameters

| abel A string indicating the destination of the playhead.

See also

“gotoAndStop() Global Function” on page 204, “MovieClip.gotoAndPlay() Method” on
page 247

203

204

CHAPTER 9
Reference

gotoAndStop() Global Function

got oAndSt op(| abel)

Description

The got 0AndSt op() global function sends the current timeline’s playhead to the specified
| abel and stops playing.

Note: Frame numbers should not be passed to this global function. The use of labels is recommended.

Parameters

| abel A string indicating the destination of the playhead.

See also

“gotoAndPlay() Global Function” on page 203, “MovieClip.gotoAndStop() Method” on
page 247

Infinity Global Property

Infinity

Description

The I nfi ni ty global property is a predefined variable with the value for infinity. It is any value
larger than Number . MAX_VALUE, which is the largest number that can be represented in JavaS-
cript. This property can only be read.

See also

“-Infinity Global Property” on page 204, “Number.POSITIVE_INFINITY Property” on
page 267, “Number.MAX_VALUE Property” on page 265

-Infinity Global Property

-Infinity

ADOBE LIVEMOTION 2.0
Scripting Guide

Description

The - I nfi ni ty global property is a predefined variable with the value of -infinity. This property
can only be read.

See also

“Infinity Global Property” on page 204, “Number.NEGATIVE_INFINITY Property” on
page 266

isFinite Global Function

i sFi nite(expression)

Description

Thei sFi ni te() global function evaluates an expression and returns t r ue if the expression is a
finite number. Otherwise, it returns f al se—the value is infinity or negative infinity.

Parameters

expressi on Any valid JavaScript expression.

Returns

t r ue if the expression is a finite number, f al se otherwise.

See also

“Infinity Global Property” on page 204, “-Infinity Global Property” on page 204

IsNan() Global Function

i sNan(expr essi on)

Description

The i sNan() global function returns t r ue if the expression is Not-a-Number (NaN).

205

206

CHAPTER 9
Reference

Parameters

expressi on

Returns

Any valid JavaScript expression.

t r ue if the expression is not a number (NaN), f al se otherwise.

See also

“Number.NaN Property” on page 266

Key Object

Description

The Key object is used to retrieve the state of the keyboard. The Key object and its constants and

methods are static—you do not create Key objects using a constructor.

Constants

BACKSPACE

CAPSLOCK

CONTROL

DELETEKEY

END

ENTER

See "Key.BACKSPACE Key. BACKSPACE constant contains the key code for the
Constant” on page 208. BACKSPACE key.

See “Key.CAPSLOCK Con- Key. CAPSLOCK constant contains the key code for the
stant” on page 208. CAPSLOCK key.

See “Key.CONTROL Con- Key. CONTROL constant contains the key code for the
stant” on page 208. CONTROL key.

See “Key.DELETEKEY Con-Key. DELETEKEY constant contains the key code for the
stant” on page 209. DELETEKEY key.

See “Key.DOWN Con- Key. DOWN constant contains the key code for the DOAN
stant” on page 209. key.

See “Key.END Constant” Key. END constant contains the key code for the END
on page 2009. key.

See “Key.ENTER Con- Key. ENTER constant contains the key code for the
stant” on page 210. ENTERkey.

ESCAPE

I NSERT

LEFT

PGDN

PGUP

RI GHT

SHI FT

SPACE

TAB

uP

Methods

getAscii ()

get Code()

i sDown()

i sToggl ed()

ADOBE LIVEMOTION 2.0
Scripting Guide

See “Key.ESCAPE Con- Key. ESCAPE constant contains the key code for the
stant” on page 210. ESCAPE key.

See "Key.HOME Constant”Key. HOVE constant contains the key code for the HOVE
on page 212. key.

See “Key.INSERT Con- Key. | NSERT constant contains the key code for the
stant” on page 212. | NSERT key.

See “Key.LEFT Constant” Key. LEFT constant contains the key code for the LEFT
on page 214. key.

See “Key.PGDN Constant” Key. PGDN constant contains the key code for the PGDN
on page 214. key.

See “Key.PGUP Constant” Key. PGUP constant contains the key code for the PGUP
on page 215. key.

See “Key.RIGHT Constant” Key. RI GHT constant contains the key code for the
on page 215. Rl GHT key.

See “Key.SHIFT Constant” Key. SHI FT constant contains the key code for the
on page 215. SHI FT key.

See “Key.SPACE Constant”Key. SPACE constant contains the key code for the
on page 216. SPACE key.

See “Key.TAB Constant” Key. TAB constant contains the key code for the TABkey.
on page 216.

See “Key.UP Constant” on Key. UP constant contains the key code for the UP key.
page 216.

See “Key.getAscii() Get the ASCII code of the last key pressed.
Method"” on page 211.

See “Key.getCode() Get the key code of the last key pressed.
Method"” on page 211.

See “Key.isDown() Check whether the specified key is currently down.
Method"” on page 212.

See “Key.isToggled() Check whether the Num lock, Caps lock, or Scroll lock key is
Method” on page 213. toggled on.

207

208

CHAPTER 9
Reference

Key.BACKSPACE Constant

Key. BACKSPACE

Description

The Key. BACKSPACE constant contains the key code for the BACKSPACE key. It is passed to
Key. i sDown() to determine whether the BACKSPACE key is pressed. It is returned by
Key. get Code() if the BACKSPACE key was last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.CAPSLOCK Constant

Key. CAPSLOCK

Description

The Key. CAPSLOCK constant contains the key code for the CAPSLOCK key. It is passed to
Key. i sToggl ed to determine whether the CAPSLOCK key is on. It is returned by Key. get Code()
if CAPSLOCK key was last key pressed.

See also

“Key.isToggled() Method” on page 213, “Key.getCode() Method” on page 211

Key.CONTROL Constant

Key. CONTROL

Description

The Key. CONTROL constant contains the key code for the CONTROL key. It is passed to
Key. i sDown() to determine whether the CONTROL key is pressed. It is returned by
Key. get Code() if CONTROL key was last key pressed.

ADOBE LIVEMOTION 2.0
Scripting Guide

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.DELETEKEY Constant

Key. DELETEKEY

Description

The Key. DELETEKEY constant contains the key code for the DELETEKEY key. It is passed to
Key. i sDown() to determine whether the DELETEKEY key is pressed. It is returned by
Key. get Code() if the DELETEKEY key was last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.DOWN Constant

Key. DOVWN

Description

The Key. DOAN constant contains the key code for the DOWNkey. It is passed to Key. i sDown() to
determine whether the DOAN key is pressed. It is returned by Key. get Code() if the DOAN key was
last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.END Constant

Key. END

209

210

CHAPTER 9
Reference

Description

The Key. END constant contains the key code for the ENDKkey. It is passed to Key. i sDown() to
determine whether the END key is pressed. It is returned by Key. get Code() if the END key was
last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.ENTER Constant

Key. ENTER

Description

The Key. ENTER constant contains the key code for the ENTERKkey. It is passed to Key. i sDown()
to determine whether the ENTER key is pressed. It is returned by Key. get Code() if the ENTER
key was last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.ESCAPE Constant

Key. ESCAPE

Description

The Key. ESCAPE constant contains the key code for the ESCAPE key. It is passed to
Key. i sDown() to determine whether the ESCAPE key is pressed. It is returned by
Key. get Code() if the ESCAPE key was last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

ADOBE LIVEMOTION 2.0
Scripting Guide

Key.getAscii() Method

Key. get Asci i ()

Description

The Key. get Asci i () method returns the ASCII code of the last key pressed.

Example
In the onKeyUp or onKeyDown event:

var asciiVal = Key.getAscii();

if (asciiVal == 102)
{
trace("Lower case ‘f’ has been pressed");
}
See also

“Key.getCode() Method” on page 211

Key.getCode() Method

Key. get Code()

Description

The Key. get Code() method returns the key code of the last key pressed.

Example
In the onKeyUp or onKeyDown event:

i f (Key.getCode() == Key. ESCAPE)

trace("Key. ESCAPE was pressed.");

See also

“Key.getAscii() Method” on page 211

211

212

CHAPTER 9
Reference

Key.HOME Constant

Key. HOVE

Description

The Key. HOVE constant contains the key code for the HOVE key. It is passed to Key. i sDown() to
determine whether the HOVE key is pressed. It is returned by Key. get Code() if the HOVE key was
last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.INSERT Constant

Key. | NSERT

Description

The Key. | NSERT constant contains the key code for the | NSERT key. It is passed to
Key. i sDown() to determine whether | NSERT key is pressed. It is returned by Key. get Code() if
the | NSERT key was last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.isDown() Method

Key. i sDown(keycode)

Description

The Key. i sDown() method is used to check whether the specified key is currently down.

Parameters

keycode The key code to check for.

Returns

tr ue if the key is pressed; f al se otherwise.

Example
In the onKeyUp or onKeyDown event:

i f (Key.isDown(key. Rl GHT))

{

trace("Ri ght arrow key was pressed.");
}
See also

“Key.isToggled() Method” on page 213

ADOBE LIVEMOTION 2.0
Scripting Guide

Key.isToggled() Method

Key. i sToggl ed(keycode)

Description

The Key. i sToggl ed() method is used to see if the Caps lock, Num lock, or Scroll lock key is on.

Parameters

keycode If this parameter is Key. CAPSLOCK or the integer 20, then the
method checks for whether the Caps lock key is toggled on. If the
parameter is the integer 144, then the method checks for whether
the Num lock key is toggled on. If the parameter is the integer 145,
then the method checks for whether the Scroll lock key is toggled
on.

Returns

t r ue if the Num lock or Caps lock key is toggled on; f al se otherwise.

213

214

CHAPTER 9
Reference

Example

In the onKeyUp or onKeyDown event:

if (Key.isToggled(20))//detect whether Caps |ock key is toggled on
{

}

trace("Caps | ock key is on.");

See also

“Key.isDown() Method” on page 212

Key.LEFT Constant

Key. LEFT

Description

The Key. LEFT constant contains the key code for the LEFT key. It is passed to Key. i sDown() to
determine whether the LEFT key is pressed. It is returned by Key. get Code() if the LEFT key was
last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.PGDN Constant

Key. PGDN

Description

The Key. PGDN constant contains the key code for the PGDNkey. It is passed to Key. i sDown() to
determine whether the PGDN key is pressed. It is returned by Key. get Code() if the PGDNkey was
last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

ADOBE LIVEMOTION 2.0
Scripting Guide

Key.PGUP Constant

Key. PGUP

Description

The Key. PGUP constant contains the key code for the PGUP key. It is passed to Key. i sDown() to
determine whether the PGUP key is pressed. It is returned by Key. get Code() if the PGUP key was
last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.RIGHT Constant

Key. Rl GAT

Description

The Key. RI GHT constant contains the key code for the RI GHT key. It is passed to Key. i sDown()
to determine whether the RI GHT key is pressed. It is returned by Key. get Code() if the Rl GHT
key was last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.SHIFT Constant

Key. SHI FT

Description

The Key. SHI FT constant contains the key code for the SHI FT key. It is passed to Key. i sDown()
to determine whether the SHI FT key is pressed. It is returned by Key. get Code() if the SHI FT
key was last key pressed.

215

216

CHAPTER 9
Reference

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.SPACE Constant

Key. SPACE

Description

The Key. SPACE constant contains the key code for the SPACE key. It is passed to Key. i sDown()
to determine whether the SPACE key is pressed. It is returned by Key. get Code() if the SPACE
key was last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.TAB Constant

Key. TAB

Description

The Key. TAB constant contains the key code for the TABkey. It is passed to Key. i sDown() to
determine whether the TAB key is pressed. It is returned by Key. get Code() if the TAB key was
last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.UP Constant

Key. UP

ADOBE LIVEMOTION 2.0
Scripting Guide

Description

The Key. UP constant contains the key code for the UPkey. It is passed to Key. i sDown() to
determine whether the UP key is pressed. It is returned by Key. get Code() if the UP key was last
key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

_leveln Global Property

_leveln

Description

The _| evel n global property is used to explicitly refer to the levels of the Flash Player and it is
used to access the contents of those levels. It is used specify the level into which to load a SWF
file using the | oadMovi e() or | oadMovi eNunt() global function and it is used to refer to that
SWE file after it has been loaded. The _r oot level movie clip loads at level 0 by default. This
property can only be read.

Note: This global property is not supported in Preview mode (except for _| evel 0).

Example

| oadMovi e("http://devtech. corp. adobe. conflivenotion/billys.swf",
"_level1");

_level 1.stop();

See also

“loadMovie() Global Function” on page 218, “loadMovieNum() Global Function” on page 219

ImFrameOfLabel() Global Function
| nFraneOf Label (1 abel)

217

218

CHAPTER 9
Reference

Description

The | nFranmedf Label () global function returns the frame number at which | abel resides.

Parameters

| abel A string identifying the label on the composition (_r oot ’s) timeline.

Returns

The frame number associated with | abel , or 0 if | abel is not found on the composition
timeline.

Example

/lreturns frane number of "firstThrow' | abel
| mFrameO Label ("firstThrow');

loadMovie() Global Function

| oadMovi e(url, target)
| oadMovi e(url, target, howToSendVari abl es)

Description

The | oadMovi e() global function loads additional SWE files into the Flash Player. These SWF
files can be loaded into Flash Player levels, or they can be loaded into existing movie clips. A
movie clip can replace itself, even if it is at _| evel 0.

If a new main movie clip is loaded at level 0, every level is unloaded and the effect is the same as
starting a new SWF file in the Flash Player. The movie clip loaded in level 0 sets the frame rate,
background color, and frame size for all other loaded movie clips.

Note: _r oot does not always refer to _| evel 0. It refers to the root of the current level where the
reference is being made. For instance, if a movie clip in _| evel 2 references _r oot it is the same as
referencing _| evel 2.

Movie clips loaded with the | oadMovi e() global function can be unloaded using the unl oad-
Movi e() global function or the unl oadMovi eNun() global function. Likewise, a new movie clip
can be loaded into the level using the | oadMovi e() or | oadMovi eNun() global function.

ADOBE LIVEMOTION 2.0
Scripting Guide

When a SWF file is loaded into an existing movie clip, the onData event handler is called. Even
though the contents of the movie clip are replaced, the movie clip handlers are not. These include
onEnterFrame, onLoad, onUnload, onData, onMouseDown, onMouseUp, onMouseMove,
onKeyDown, and onKeyUp. Everything else—including button handlers, state scripts, and
objects—are replaced. This movie clip “shell” concept is important to keep in mind because it
means that, when using | oadMovi e() and unl oadMovi e() , a movie clip instance is never really
removed from the composition. Movie clip content is simply moved in and out of the shell.

Note: This method is not supported in Preview mode.

Parameters
url A string specifying the URL from which to load the SWF file.
target A path or a reference to another movie clip that the new SWF file will replace,

or the player level. The loaded movie clip inherits the position, scaling, and
rotation of the movie it’s replacing.

howToSendVar i abl es (Optional) Omit this parameter if you don’t want to send variables. This
parameter is a string literal. Specify GET to send variables via get (i.e., tacked
onto the end of the URL) or POST to send them with post (i.e., put into the
body of the request). Both methods send them in application/x-www-form-
urlencoded MIME format. All user-defined variables are sent.

Example

| oadMovi e("http://devtech. corp. adobe. conf docs/Iivenotion/billys.sw",
"_level1");

| oadMovi e("file:///Cl/cool estMvie.swi", "_levell");

See also

“loadMovieNum() Global Function” on page 219, “unloadMovie() Global Function” on
page 304, “unloadMovieNum() Global Function” on page 305, “MovieClip.loadMovie()
Method” on page 250

loadMovieNum() Global Function

| oadMovi eNun{url, level)
| oadMovi eNun{url, level, howToSendVari abl es)

219

220

CHAPTER 9
Reference

Description

The | oadMovi eNun() global function is the same as | oadMovi e() except that the second
parameter must be specified as a number. With | oadMovi eNun{) you cannot specify the name
of another movie clip to be replaced.

Note: This method is not supported in Preview mode.

Parameters
url A string specifying the URL from which to load the SWF file.
| evel The player level number into which to load the SWF file. Must be a non-

negative integer.

howToSendVari abl es (Optional) A string literal. GET or POST.

See also

“loadMovie() Global Function” on page 218, “unloadMovie() Global Function” on page 304,
“unloadMovieNum() Global Function” on page 305

loadVariables() Global Function

| oadVari abl es(url, target)
| oadVari abl es(url, target, howToSendVari abl es)

Description

The | oadVari abl es() global function loads variables fetched from the specified URL into
tar get . The movie clip's onData event handler is called when the variables have been loaded.
The data that’s loaded is scoped to the movie clip/level that it’s loaded into. All the values loaded
are considered the string data type. If a variable to be loaded is not already declared within
target, then it is added as a new property of t ar get and can be accessed using the standard
target .property syntax or handled in the same way as any other variable.

ADOBE LIVEMOTION 2.0
Scripting Guide

The data fetched from the URL must be in the application/x-www-form-urlencoded MIME
format.

Note: Variables cannot be loaded from a local file in Preview mode. However, HTTP requests for
external data can be.

Parameters

url A string specifying the URL from which to get the variables. For security
reasons, the URL must be in the same domain as that from which the
movie clip was downloaded.

tar get A path or reference to an existing movie clip or player level in which the
loaded variables are defined.

howToSendVari abl es (Optional) Omit this parameter if you don’t want to send variables. If
omitted, variables are retrieved but none are sent. This parameter is a
string literal. Specify GET to send variables via get (i.e., tacked onto the
end of the URL) or POST to send them with post (i.e., put into the body
of the request). Both methods send them in application/x-www-form-
urlencoded MIME format. All user-defined variables are sent.

Example

| oadVari abl es("http://ww. myServer.conl cgi bi n/ stockdata.pl",this,"GET");

See also

“loadVariablesNum() Global Function” on page 221, “getURL Global Function” on page 201,
“MovieClip.getURL() Method” on page 245, “MovieClip.loadVariables() Method” on page 251

loadVariablesNum() Global Function

| oadVari abl esNum (url, level)
| oadVari abl esNum (url, |evel, howToSendVari abl es)
Description

The | oadVari abl esNun() global function is the same as | oadVari abl es() except the second
argument must be a player level number.

221

222

CHAPTER 9
Reference

Parameters

url A string specifying the URL from which to get the variables.

| evel The player level number in which the loaded variables are
defined. Must be a non-negative integer.

howToSendVari abl es (Optional) A string literal. GET or POST.

See also

“loadVariables() Global Function” on page 220, “getURL Global Function” on page 201,
“loadMovie() Global Function” on page 218, “loadMovieNum() Global Function” on page 219

Math Object

Description

The Mat h object has constants and methods to facilitate use of common mathematical functions
and values. The Mat h object and its constants and methods are static—you do not create Mat h
objects using a constructor. For example, you refer to the constant PI as Mat h. Pl and you call
the sine function as Mat h. si n(x) , where x is the method’s argument. Constants are defined
with the full precision of real numbers.

Constants

E See “Math.E Constant” on Euler's constant and the base of natural logarithms
page 227. (approximately 2.718).

LN2 See “Math.LN2 Constant” on Natural logarithm of 2 (approximately 0.693).
page 228.

LN10 See “Math.LN10 Constant” on Natural logarithm of 10 (approximately 2.302).
page 229.

LOXRE See “Math.LOG2E Constant” on NBase 2 logarithm of E (approximately 1.442).
page 229.

LOGLOE See “Math.LOG10E Constant” on Base 10 logarithm of E (approximately 0.434).

page 230.

Pl

SQRT1_2

SQRT2

Methods

abs()

acos()

asin()

atan()

atan2()

ceil ()

cos()

exp()

floor()

I'og()

max()

m n()

See “Math.PI Constant” on
page 231.

See “Math.SQRT1_2 Constant”
on page 233.

See “Math.SQRT2 Constant” on
page 233.

See “Math.abs() Method” on
page 224.

See “Math.acos() Method” on
page 224.

See “Math.asin() Method” on
page 225.

See “Math.atan() Method” on
page 225.

See “Math.atan2() Method” on
page 226.

See “Math.ceil() Method” on
page 226.

See “Math.cos() Method” on
page 227.

See “Math.exp() Method” on
page 228.

See “Math.floor() Method” on
page 228.

See “Math.log() Method” on
page 229.

See “Math.max() Method” on
page 230.

See “Math.min() Method” on
page 230.

ADOBE LIVEMOTION 2.0
Scripting Guide

Ratio of the circumference of a circle to its diameter
(approximately 3.14159).

Square root of 1/2; equivalently, 1 over the square
root of 2 (approximately 0.707).

Square root of 2 (approximately 1.414).

Return the absolute value of a number.

Return the arccosine (in radians) of a number.

Return the arcsine (in radians) of a number.

Return the arctangent (in radians) of a number.

Return the arctangent (in radians) of the quotient of

the arguments (y/x).

Return the value rounded up.

Return the cosine of an angle provided in radians.

Return Mat h. Eraised to the power of a number.

Return the value rounded down.

Return the natural logarithm of a number.

Return the maximum of two numbers.

Return the minimum of two numbers.

223

224

CHAPTER 9
Reference

pow() See “Math.pow() Method” on Return X",
page 231.

randond() See “Math.random() Method” Return a pseudo-random number from 0. O up to
on page 231. but not including 1. 0.

round() See “Math.round() Method” on Return the value of a number rounded to the nearest
page 232. integer.

sin() See “Math.sin() Method” on Return the sine of an angle provided in radians.
page 232.

sqrt () See “Math.sqrt() Method” on Return the square root of a number.
page 233.

tan() See “Math.tan() Method” on Return the tangent of an angle provided in radians.
page 233.

Math.abs() Method

Mat h. abs(x)

Description

The abs() method returns the absolute value of a number.

Parameters

X A number.
Math.acos() Method
Math.acos(x)

Description

The acos() method returns the arccosine (in radians) of a number. x must be in the range of -
1.0 and 1.0. If it is not, the method returns NaN.

ADOBE LIVEMOTION 2.0
Scripting Guide

Parameters

X A number between -1.0 and 1.0.

See also

“Math.asin() Method” on page 225, “Math.atan() Method” on page 225, “Math.atan2()
Method” on page 226, “Math.cos() Method” on page 227, “Math.sin() Method” on page 232,
“Math.tan() Method” on page 233

Math.asin() Method

Mat h. asi n(x)

Description

The asi n() method returns the arcsine (in radians) of a number. x must be in the range of -1.0
and 1.0. If it is not, the method returns NaN.

Parameters

X A number between -1.0 and 1.0.

See also

“Math.acos() Method” on page 224, “Math.atan() Method” on page 225, “Math.atan2()
Method” on page 226, “Math.cos() Method” on page 227, “Math.sin() Method” on page 232,
“Math.tan() Method” on page 233

Math.atan() Method

Mat h. at an(x)

Description

The at an() method returns the arctangent (in radians) of a number. x must be in the range of
-Infinityandlnfinity,inclusive.

225

226

CHAPTER 9
Reference

Parameters

X A numberin therange of - I nfi ni ty and | nfi ni ty,inclusive.

See also

“Math.acos() Method” on page 224, “Math.asin() Method” on page 225, “Math.atan2()
Method” on page 226, “Math.cos() Method” on page 227, “Math.sin() Method” on page 232,
“Math.tan() Method” on page 233

Math.atan2() Method

Mat h. at an2(y, x)

Description

The at an2() method returns the arctangent (in radians) of the quotient of its arguments (y/x).
Note that the arguments to this function pass the y-coordinate first and the x-coordinate second.

Parameters

X,y Two numbers representing a point.

See also

“Math.acos() Method” on page 224, “Math.asin() Method” on page 225, “Math.atan() Method”
on page 225, “Math.cos() Method” on page 227, “Math.sin() Method” on page 232, “Math.tan()
Method” on page 233

Math.ceil() Method

Mat h. cei | (x)

Description

The cei | () method returns the value rounded up to the nearest integer.

ADOBE LIVEMOTION 2.0 | 227
Scripting Guide

Parameters

X A number.

See also

“Math.floor() Method” on page 228

Math.cos() Method

Mat h. cos(x)

Description

The cos() method returns the cosine of an angle provided in radians. The value is between -1
and 1.

Parameters

X An angle, in radians.

See also
“Math.acos() Method” on page 224, “Math.asin() Method” on page 225, “Math.atan() Method”

on page 225, “Math.atan2() Method” on page 226, “Math.sin() Method” on page 232,
“Math.tan() Method” on page 233

Math.E Constant
Mat h. E

Description

The E constant represents Euler's constant and the base of natural logarithms (approximately
2.718).

228 | CHAPTER 9
Reference

Math.exp() Method

Mat h. exp(x)

Description

The exp() method returns Mat h. E raised to the power of x.

Parameters

X A number.

See also

“Math.E Constant” on page 227, “Math.log() Method” on page 229, “Math.pow() Method” on
page 231

Math.floor() Method

Mat h. f | oor (x)

Description

The f | oor () method returns the value rounded down to the nearest integer.

Parameters

X A number.

See also

“Math.ceil() Method” on page 226

Math.LN2 Constant
Mat h. LN2

Description

The LN2 constant is the natural logarithm of 2 (approximately 0.693).

ADOBE LIVEMOTION 2.0
Scripting Guide

Math.LN10 Constant
Mat h. LN10

Description

The LN10 constant is the natural logarithm of 10 (approximately 2.302).

Math.log() Method

Mat h. | og(x)

Description

The | og() method returns the natural logarithm of a number.

Parameters

X A number.

See also

“Math.exp() Method” on page 228, “Math.pow() Method” on page 231

Math.LOG2E Constant

Mat h. LORZE

Description

The LOG2E constant is the base 2 logarithm of E (approximately 1.442).

229

230 | CHAPTER 9
Reference

Math.LOG10E Constant

Mat h. LOGLOE

Description

The LOGLOE constant is the base 10 logarithm of E (approximately 0.434).

Math.max() Method

Mat h. max(x, y)

Description

The max() method returns the maximum of two numbers.

Parameters

X,y Two numbers.

See also

“Math.min() Method” on page 230

Math.min() Method
Math.min(x, y)

Description

The ni n() method returns the minimum of two numbers.

Parameters

X,y Two numbers.

ADOBE LIVEMOTION 2.0

See also

“Math.max() Method” on page 230

Scripting Guide

Math.Pl Constant
Mat h. PI

Description

The Pl constant is the ratio of the circumference of a circle to its diameter (approximately
3.14159).

Math.pow() Method

Mat h. pow(base, exponent)

Description

The pow() method returns X".

Parameters

base The base number.

exponent The exponent to which base is raised.
See also

“Math.exp() Method” on page 228, “Math.log() Method” on page 229

Math.random() Method

Mat h. randomn()

231

232

CHAPTER 9
Reference

Description

Ther andom() method returns a pseudo-random number from 0. 0 up to but not including 1. 0.
The random number generator is seeded from the current time.

Math.round() Method

Mat h. r ound(x)

Description

The r ound() method returns the value of a number rounded to the nearest integer. If the
fractional portion of number is .5 or greater, the argument is rounded to the next higher integer.
If the fractional portion of number is less than .5, the argument is rounded to the next lower
integer.

Parameters

X A number.

Math.sin() Method

Mat h. si n(x)

Description

The si n() method returns the sine of an angle provided in radians.

Parameters

X An angle, in radians.

See also

“Math.acos() Method” on page 224, “Math.asin() Method” on page 225, “Math.atan() Method”
on page 225, “Math.atan2() Method” on page 226, “Math.cos() Method” on page 227,
“Math.tan() Method” on page 233

ADOBE LIVEMOTION 2.0 {233
Scripting Guide

Math.sqrt() Method

Mat h. sqgrt (x)

Description

The sqrt () method returns the square root of a number.

Parameters

X A number.

Math.SQRT1_2 Constant

Mat h. SQRT1_2

Description

The SQRT1_2 constant represents the square root of 1/2—equivalently, 1 over the square root of
2, approximately 0.707.

Math.SQRT2 Constant

Mat h. SQRT2

Description

The SQRT2 constant represents the square root of 2 (approximately 1.414).

Math.tan() Method

Mat h. t an(x)

Description

The t an() method returns the tangent of an angle provided in radians.

234 | CHAPTER 9
Reference

Parameters

X An angle, in radians.

See also

“Math.acos() Method” on page 224, “Math.asin() Method” on page 225, “Math.atan() Method”
on page 225, “Math.atan2() Method” on page 226, “Math.cos() Method” on page 227,
“Math.sin() Method” on page 232

Mouse Object

Description

The Mouse object is used to show or hide the cursor. The Mouse object and its methods are
static—you do not create Mouse objects using a constructor.

Properties

None.

Methods

Mouse. hi de See “Mouse.hide() Hide the mouse cursor.
Method"” on page 234.

Mouse. show See “Mouse.show() Show the mouse cursor.
Method"” on page 235.

Mouse.hide() Method

Mouse. hi de()

Description

The hi de() method hides the mouse cursor.

See also

“Mouse.show() Method” on page 235

ADOBE LIVEMOTION 2.0
Scripting Guide

Mouse.show() Method
Mouse. show()

Description

The show() method shows the mouse cursor.

See also

“Mouse.hide() Method” on page 234

MovieClip Object

Description

The MovieClip object is the object at the heart of LiveMotion. _r oot itself is an instance of the
MovieClip object, and many of the MovieClip methods are also available as global functions.

Constructor

None. Movie clips are created manually using the LiveMotion Composition window. In
addition, new movie clips can be added with at t achMovi e() and dupl i cat eMovi eClip() .

Properties

_al pha See “MovieClip._alpha Prop-

erty” on page 239.

_currentframe See “MovieClip._currentframe
Property” on page 241.

_dropt ar get See “MovieClip._droptarget

Property” on page 241.

Opacity of the movie clip on a scale of 0 (transpar-
ent) to 100 (opaque).

Location of the movie clip playhead.

Absolute path (in slash notation) of a movie clip

over which the movie clip passes during drag oper-

ations by the user.

235

236

CHAPTER 9
Reference

_franmesl oaded

_hei ght

name

_parent

_rotation

_target

_total franes

—url

_visible

_width

_Xnouse

_xscal e

_y

_ynouse

_yscale

See “MovieClip._framesloaded
Property” on page 242.

See “MovieClip._height Prop-
erty” on page 248.

See “MovieClip._name Prop-
erty” on page 252.

See “MovieClip._parent Prop-
erty” on page 252.

See “MovieClip._rotation Prop-
erty” on page 254.

See “MovieClip._target Prop-
erty” on page 257.

See “MovieClip._totalframes
Property” on page 257.

See “MovieClip._url Property”
on page 258.

See “MovieClip._visible Prop-
erty” on page 258.

See “MovieClip._width Prop-
erty” on page 259.

See “MovieClip._x Property” on
page 259.

See “MovieClip._xmouse Prop-
erty” on page 260.

See “MovieClip._xscale Prop-
erty” on page 260.

See “MovieClip._y Property” on
page 260.

See “MovieClip._ymouse Prop-
erty” on page 261.

See “MovieClip._yscale Prop-
erty” on page 261.

Number of movie clip frames that have been

loaded.

Height of the movie clip in pixels.

Name of the movie clip.

Movie clip containing this movie clip.

Rotation angle of the movie clip in degrees.

Absolute path of the movie clip.

Number of frames in the movie clip.

URL from which the movie clip was loaded.

Boolean indicating whether the movie clip is visi-

ble.

Width of the movie clip in pixels.

Horizontal location of the movie clip in pixels.

Horizontal location of the mouse cursor in pixels.

Horizontal scaling factor of the movie clip.

Vertical location of the movie clip in pixels.

Vertical location of the mouse cursor in pixels.

Vertical scaling factor of the movie clip.

Methods
at t achMovi e()

dupl i cateMovi el i p()

get Bounds()

get Byt esLoaded()

get BytesTotal ()

get URL()

gl obal ToLocal ()

got oAndPl ay()

got oAndSt op()

hitTest ()

ADOBE LIVEMOTION 2.0
Scripting Guide

See“MovieClip.attachMovie() Attach the named movie clip (passed in
Method” on page 239. as an argument) to the movie clip.

See “MovieClip.duplicate- ~ Duplicate this movie clip. Also a global

MovieClip() Method” on movie clip function. See “duplicateMov-
page 241. ieClip() Global Function” on page 197
See “MovieClip.getBounds() Return bounds of the movie clip. The
Method” on page 243. returned object contains the values in
the properties xM n, XMax, yM n and
yMax.
See “MovieClip.getBytes- Return the number of bytes already
Loaded() Method” on loaded if the movie clip is external
page 244. (loaded with movi ed i p. | oad-

Movi e()) . If the movie clip is internal,
the number returned is always the same
as that returned by novi eC i p. get -
Byt esTotal ().

See “MovieClip.getBytesTo- Return the size of the movie clip in bytes.
tal() Method” on page 245. When running in Preview mode, you will
get an arbitrary number.

See “MovieClip.getURL() Load the URL into the browser. Also a glo-
Method"” on page 245. bal movie clip function. See “getURL Glo-
bal Function” on page 201.

See “MovieClip.globalToLo- Convert the given global point to local
cal() Method” on page 246. coordinates.

See “MovieClip.gotoAnd- Go to the specified label and play. Also a

Play() Method” on page 247. global movie clip function. See
“gotoAndPlay() Global Function” on
page 203.

See “MovieClip.gotoAnd- Go to the specified label and stop. Also a
Stop() Method” on page 247. global movie clip function. See
“gotoAndStop() Global Function” on

page 204.
See “MovieClip.hitTest() Return a boolean indicating whether the
Method” on page 248. movie clip intersects with a given clip

(passed in as an argument) or given x/y
coordinates.

237

238

CHAPTER 9
Reference

| mBet Current State()

| oadMovi e()

| oadVari abl es()

| ocal Tod obal ()

next Frame()

play()

prevFrame()

renmoveMovi ed i p()

startDrag()

stop()

See “MovieClip.ImSetCur-
rentState() Method” on
page 249.

See “MovieClip.loadMovie()
Method"” on page 250.

See “MovieClip.loadVari-

Change the state of the movie clip.

Load an external SWF file into the player.
Also a global movie clip function. See
“loadMovie() Global Function” on

page 218

Load variables fetched from the specified

ables() Method” on page 251.URL. The movie clip’s onData handler is

See “MovieClip.localToGlo-
bal() Method” on page 251.

See “MovieClip.nextFrame()
Method” on page 252.

See “MovieClip.play()
Method” on page 253.

See “MovieClip.prevFrame()
Method” on page 253.

See “MovieClip.removeMov-
ieClip() Method” on
page 253.

See “MovieClip.startDrag()
Method” on page 254.

See “MovieClip.stop()
Method” on page 255.

called when the variables have been
loaded. Also a global movie clip function.
See “loadVariables() Global Function” on
page 220.

Convert the given local point to global
coordinates.

Go to the next frame and stop playing.
Also a global movie clip function. See
“nextFrame() Global Function” on
page 263.

Start playing. Also a global movie clip
function. See “play() Global Function” on
page 274.

Go to the previous frame and stop play-
ing. Also a global movie clip function. See
“prevFrame() Global Function” on

page 275.

Delete aduplicate or attached movie clip.
Also a global movie clip function. See
“removeMovieClip() Global Function” on
page 275.

Start dragging a movie clip. Also a global
movie clip function. See “startDrag() Glo-
bal Function” on page 287.

Stop playing. Also a global movie clip
function. See “stop() Global Function” on
page 288.

ADOBE LIVEMOTION 2.0
Scripting Guide

st opDrag() See “MovieClip.stopDrag() Stop any drag operation in progress. Also
Method” on page 255. a global movie clip function. See “start-
Drag() Global Function” on page 287.

swapDept hs() See“MovieClip.swapDepths() Swap the movie clip’s depth with that of
Method"” on page 256. another movie clip.

unl oadMovi e() See “MovieClip.unload- Unload a movie that was previously
Movie() Method” on loaded with | oadnovi e() .Also a global
page 257. movie clip function. See “unloadMovie()

Global Function” on page 304.

val uedf () See “MovieClip.valueOf() Returns the absolute path to the movie
Method” on page 258. clip using dot (as opposed to slash) nota-
tion.

MovieClip._alpha Property

nmovi eC i p. _al pha

Description

The _al pha property sets the opacity of the movie clip. 0 is transparent; 100 is opaque. This
property can be read or written.

MovieClip.attachMovie() Method

nmovi e i p. att achMovi e(export Nane, newNane, depth)

Description

The at t achMovi e() method creates a new instance of expor t Name and attaches it to the movie
clip by placing it at the designated depth in novi eCl i p’s programmatic stack. Remove the
attached movie clip by using the novi eCl i p. removeMovi eCl i p() method or the r enoveMov-
i eClip() global function. The movie clip may also be removed by placing another movie clip
at the same depth in the programmatic stack.

expor t Nane is the sharing name of the movie clip that is to be attached.

239

240

CHAPTER 9
Reference

A movie clip can be attached to the _r oot movie clip as well using the syntax _root. attach-
Movi e(export Name, newNare, depth).

A movie clip instanced using at t achMovi e() becomes a child of the movie clip through which
the method was called, and is in that movie clip’s programmatic stack. For example:

cli pA. attachMovi e(export Name, "“clipB", depth);

clipBisachild ofcli pAand isin cl i pAs programmatic stack.

In contrast, a movie clip instanced using dupl i cat eMovi eCl i p() becomes a child of the parent
of the movie clip through which the method was called, and is in the parent’s programmatic
stack. For example:

clipA. duplicateMviedip("clipB", depth);

clipBisachildofclipA _parent andisinclipA _parent’s programmatic stack.

Note: In Preview mode, the movie clip that is attached is the local version only. If the “Use External
Asset” feature is used from the Export palette, this will not be the same movie clip that is actually
used when the SWF file is executing in the Flash Player.

Parameters

expor t Name The movie clip to be attached. This movie clip already exists in the current SWF
file. It was assigned its sharing name (expor t Name) via the Export palette. A
remote copy may or may not have been loaded in when the SWF file was loaded
into the Flash player, depending on whether the “Use External Asset” feature was
used from the Export palette.

newNane A string indicating the name for the attached movie clip.

depth The depth for the movie clip in the programmatic stack.

See also

“removeMovieClip() Global Function” on page 275, “MovieClip.removeMovieClip() Method”
on page 253, “loadMovie() Global Function” on page 218, “unloadMovie() Global Function” on
page 304, “MovieClip.loadMovie() Method” on page 250,“MovieClip.unloadMovie() Method”
on page 257,“duplicateMovieClip() Global Function” on page 197, “MovieClip.duplicateMov-

ieClip() Method” on page 241,“Sound.attachSound() Method” on page 281

ADOBE LIVEMOTION 2.0
Scripting Guide

MovieClip._currentframe Property

nmovi eCl i p. _currentframe

Description

The _currentfranme property specifies the location (frame number) of the playhead of
movi el i p. This property can only be read.

MovieClip._droptarget Property

nmovi eCl i p. _dropt ar get

Description

The _dropt ar get property is a string value that specifies the absolute path (in slash notation)
of a movie clip over which novi eCl i p passes during drag operations by the user. To convert a
_droptarget string to a movie clip reference, use eval () . This property can only be read.

MovieClip.duplicateMovieClip() Method

nmovi e i p. dupl i cat eMovi ed i p(newNane, depth)

Description

The dupl i cat eMovi ed i p() method duplicates novi eCl i p. Duplicate movie clips always start
playing at frame 1. The duplicate movie clip inherits transformations but not the current values
of movi eCl i p’s user-defined variables. The duplicate movie clip is placed in novi eQl i p’s
parent’s programmatic stack. A programmatic stack holds child movie clips; when you duplicate
a movie clip the new movie clip will have the same parent as the original, and thus reside in the
parent’s programmatic stack. The r enoveMovi ed i p() method is used to delete duplicate
movie clips.

movi eCl i p. removeMovi eCli p() can be used by duplicate movie clips to delete themselves, or
the r enoveMovi ed i p() global function can be used to delete duplicate movie clips. Duplicate
movie clips can also be removed by placing another movie clip at the same depth in the program-
matic stack.

241

242

CHAPTER 9
Reference

A movie clip instanced using dupl i cat eMovi eCl i p() becomes a child of the parent of the
movie clip through which the method was called, and is in the parent’s programmatic stack. For
example:

clipA. duplicateMviedip("clipB", depth);

clipBisachildofclipA _parent andisinclipA _parent’s programmatic stack.

In contrast, a movie clip instanced using at t achMovi e() becomes a child of the movie clip
through which the method was called, and is in that movie clip’s programmatic stack. For
example:

cli pA. attachMovi e(export Name, "“clipB", depth);

clipBisachild ofcli pAand isin cl i pAs programmatic stack.

Parameters

newNane A string indicating the new name for the duplicate movie clip.

depth An integer indicating the depth at which the duplicate movie clip is placed
in movi eCl i p’s parent’s programmatic stack.

Example

_root. basebal | . duplicateMvieClip ("newBaseball", 1);//creates new baseball

_root.newBasebal | . _x += 25;//noves new baseball along x axis

_root.newBasebal | . _y += 25;//noves new baseball along y axis

See also

“removeMovieClip() Global Function” on page 275, “MovieClip.removeMovieClip() Method”
on page 253, “loadMovie() Global Function” on page 218, “unloadMovie() Global Function” on
page 304, “MovieClip.loadMovie() Method” on page 250,“MovieClip.unloadMovie() Method”
on page 257,“duplicateMovieClip() Global Function” on page 197, “MovieClip.attachMovie()
Method” on page 239

MovieClip._framesloaded Property

nmovi ed i p. frames| oaded

ADOBE LIVEMOTION 2.0 |243
Scripting Guide

Description

The _franmesl oaded property holds the number of frames that have already been downloaded.
This property can only be read.

This property is often used in conjunction with the _t ot al f r ames property to create a preloader
for the _r oot movie clip. For example, you could place the following code in a keyframe script
on a frame somewhere between the begi nLoop and St art labels. The _r oot movie clip loops
between the begi nLoop label and the frame where the keyframe script is, then jumps to the
Start label when the entire _r oot movie clip has downloaded.

if (_root._framesl oaded == _root._total franes)
{
_root.got oAndPl ay("Start");
}
el se
{
_root. got oAndPI ay(" begi nLoop");
}
See also

“MovieClip._totalframes Property” on page 257

MovieClip.getBounds() Method

nmovi eC i p. get Bounds()
nmovi eC i p. get Bounds(t ar get Coor di nat eSpace)

Description

The get Bounds() method returns the bounds of the movie clip as an object. If specified, the
values returned represent the coordinate space of t ar get Coor di nat eSpace.

Parameters

t ar get Coor di nat eSpace (Optional) A path or reference to a movie clip in which nmov-
i ed i p’ sboundsare measured. Defaults to movi eCl i p if not
specified.

244

CHAPTER 9
Reference

Returns

An object with four properties: obj . xM n, obj .xMax, obj .yM n, obj .y Max.

Example

var coordinates = _root. baseball.getBounds();
trace(coordi nates. xMn);//prints val ue
trace(coordi nates. xMax);//prints val ue
trace(coordinates.yMn);//prints val ue
trace(coordi nates.yMax);//prints val ue

var coordi nates = _root. basebal|.getBounds("_root");
trace(coordi nates.xMn);//prints val ue
trace(coordi nates. xMax);//prints val ue
trace(coordinates.yMn);//prints val ue
trace(coordi nates.yMax);//prints val ue

See also

“MovieClip.globalToLocal() Method” on page 246, “MovieClip.localToGlobal() Method” on
page 251

MovieClip.getBytesLoaded() Method

nmovi eC i p. get Byt esLoaded()

Description

The get Byt esLoaded() method returns the number of bytes already loaded if movi eCli p is
external. If internal, the number returned is always the same as that returned by
nmovi eCl i p. get BytesTotal ().

Returns

The number of bytes already loaded for novi eCl i p.

See also

“MovieClip.getBytesTotal() Method” on page 245

ADOBE LIVEMOTION 2.0
Scripting Guide

MovieClip.getBytesTotal() Method

nmovi eCl i p. get Byt esTot al ()

Description

The size of novi ed i p in bytes. When running in Preview mode, the number returned is
arbitrary.

Returns

The size of novi ed i p in bytes.

See also

“MovieClip.getBytesLoaded() Method” on page 244

MovieClip.getURL() Method

movi ed i p. get URL(url, w ndow)
nmovi ed i p. get URL(url, w ndow, howToSendVari abl es)

Description

The get URL() method loads a URL into the web browser. It operates the same as the global form,
except when variables are sent they are sent from the novi eCl i p timeline.

Note: This method is not supported in Preview mode.

Parameters

url A string specifying the URL to which to hyperlink. This may be a relative
or an absolute pathname, or the name of a document or script.

245

246

CHAPTER 9
Reference

wi ndow (Optional) A string specifying the target frame in the browser—e.g.,
_sel f (the default), _parent,_t op,_bl ank. If omitted, _sel f is
used. Custom names can also be used.

howToSendVari abl es (Optional) Omit this parameter if you don’t want to send variables. This
parameter is a string literal. Specify GET to send variables via get (i.e.,
tacked onto the end of the URL) or POST to send them with post (i.e., put
into the body of the request). Both methods send them in application/x-
www-form-urlencoded MIME format. All user-defined variables are
sent.

See also

“getURL Global Function” on page 201

MovieClip.globalToLocal() Method

nmovi ed i p. gl obal ToLocal (poi nt)

Description

The gl obal ToLocal () method converts the given global point to local (nmovi eCl i p) coordi-

nates.

Parameters

poi nt An object of type Obj ect with two properties:x and y.x andy are set to the global
coordinates before the object poi nt is passed to gl obal ToLocal ().

Example

wher esTheMouse = new Obj ect () ;

wher esTheMbuse. x = _root._Xxnouse;

wher esTheMouse.y = _root._ynouse;

t hi s. gl obal ToLocal (wher esTheMuse) ;
/ I wher esTheMouse. x and wheresTheMuse.y now contain | ocal coordinates

See also

“MovieClip.getBounds() Method” on page 243, “MovieClip.localToGlobal() Method” on
page 251, “Object Class” on page 269

ADOBE LIVEMOTION 2.0

Scripting Guide

MovieClip.gotoAndPlay() Method

nmovi ed i p. got oAndPl ay(| abel)

Description

The got 0AndPI ay() method goes to the specified | abel and continues playing from | abel .

Note: Frame numbers should not be passed to this method. The use of labels is recommended.

Parameters

| abel A string indicating the destination of the playhead.

See also

“MovieClip.gotoAndStop() Method” on page 247, “gotoAndPlay() Global Function” on
page 203

MovieClip.gotoAndStop() Method

nmovi ed i p. got oAndSt op(| abel)

Description

The got 0AndSt op() method goes to the specified | abel and stops playing.

Note: Frame numbers should not be passed to this method. The use of labels is recommended.

Parameters

| abel A string indicating the destination of the playhead.

See also

“MovieClip.gotoAndPlay() Method” on page 247, “gotoAndStop() Global Function” on
page 204

247

248

CHAPTER 9
Reference

MovieClip._height Property

nmovi eC i p. _hei ght

Description

The _hei ght property represents the height of the movie clip in pixels. The _hei ght property
is based on the content within novi ed i p. If movi edl i p has no content, then _hei ght is 0.
_hei ght is also determined by placement of the objects within novi eCl i p: the farthest object
toward the top or bottom determines the value of _hei ght . If objects within movi eCl i p are
moved, _hei ght can change. This property can be read or written.

Note: Only _r oot . hei ght and _r oot . wi dt h return dimensions of the _r oot movie clip.

See also

“MovieClip._width Property” on page 259

MovieClip.hitTest() Method

nmovi ed i p. hitTest(x, y, shapeFl ag)
nmovi eCl i p. hit Test(target)

Description

The hi t Test () method returns a boolean indicating whether novi eCl i p intersects with a
specific point in the composition, or overlaps with another movie clip. When specifying the hit
test, you indicate whether the test involves matching a specific x/y point in the composition (first
form) against just the border of novi eCl i p or all of it, or (second form) finding any overlap with
the other clip.

Parameters
X Horizontal component of the hit test. Defined in global coordinate space.

y Vertical component of the hit test. Defined in global coordinate space.

ADOBE LIVEMOTION 2.0
Scripting Guide

shapeFl ag Boolean indicating whether the test should test just the bounding box (f al se)
or all pixels (t r ue) of novi eCl i p for overlap with the point.

target A path or reference to a movie clip against which the hit test is made.

Returns

t rue if a hit occurred; f al se otherwise.

Example
if (this.hitTest(_root._xnouse, _root._ynouse, true))
{
trace("The nouse has passed over the nmovie clip");
b
See also

“MovieClip.getBounds() Method” on page 243

MovieClip.ImSetCurrentState() Method

nmovi e i p. | nSet Current St at e(| abel)

Description

The | nSet Current St at e() method sets the state of movi eCl i p.

Parameters

| abel A string representing anovi eCl i p state that was already
defined for novi eCl i p. This can be a standard state like “over’
or a custom state. Must appear in quotes.

Example

if (_root._xnouse < 175 && _root._ynouse > 100)

{

_root. Spiral .| nSet CurrentState("Purple");
}

if (_root._xnouse > 175 && _root._ynouse > 100)

{

249

250

CHAPTER 9
Reference

_root.Spiral .|l nSetCurrentState("G een");

MovieClip.loadMovie() Method

nmovi ed i p. | oadMovi e(url)
nmovi ed i p. | oadMovi e(url, howToSendVari abl es)

Description

The | oadMovi e() method brings an external SWF file into the player and optionally sends
variables to ur | . movi eCl i p and any programmatically generated movie clips associated with it
are replaced with the new SWE file. Use unl oadMovi e() to remove the movie clip. The unl oad-
Movi e() global function can also be used to remove the movie clip.

Note: This method is not supported in Preview mode.

Parameters

url A string literal representing URL from which to get the SWF file to
load. This can be an absolute or a relative URL.

howToSendVari abl es (Optional) Omit this parameter if you don’t want to send variables.
This parameter is a string literal. Specify GET to send variables via get
(i.e., tacked onto the end of the URL) or POST to send them with post
(i.e., put into the body of the request). Both methods send them in
application/x-www-form-urlencoded MIME format. All user-defined
variables are sent.

Example

_root. basebal | .| oadVbvi e("http://devtech. corp. adobe. conf docs/|ivenotion/bil

lys.swf");

See also

“loadMovie() Global Function” on page 218, “unloadMovie() Global Function” on page 304,
“MovieClip.unloadMovie() Method” on page 257

ADOBE LIVEMOTION 2.0
Scripting Guide

MovieClip.loadVariables() Method

nmovi eC i p. | oadVari abl es(url, howToSendVari abl es)

Description

Thel oadVari abl es() method loads variables fetched from the specified URL. The movie clip's
onData event handler is called when all of the variables have been loaded.

The data fetched from the URL must be in the application/x-www-form-urlencoded MIME
format.

Note: Variables cannot be loaded from a local file in Preview mode. However, HTTP requests for
external data can be.

Parameters

url The URL from which to get the variables. For security reasons, the URL
must be in the same domain as that from which the movie clip was
downloaded.

howToSendVar i abl es (Optional) Omit this parameter if you don't want to send variables.
This parameter is a string literal. If omitted, variables are loaded only.
Specify GET to send variables via get (i.e., tacked onto the end of the
URL) or POST to send them with post (i.e., put into the body of the
request). Both methods send them in application/x-www-form-
urlencoded MIME format. All user-defined variables are sent.

See also

“loadVariables() Global Function” on page 220, “loadVariablesNum() Global Function” on
page 221, “getURL Global Function” on page 201, “MovieClip.getURL() Method” on page 245,

MovieClip.localToGlobal() Method

nmovi ed i p. | ocal Tod obal (poi nt)

Description

The | ocal Tod obal () method converts the given local (nmovi ed i p) point to global coordi-
nates.

251

252

CHAPTER 9
Reference

Parameters

poi nt An object of type Cbj ect with two properties: x andy.x andy
are set to the local coordinates before the object poi nt is
passed to| ocal Tod obal ().

See also

“MovieClip.getBounds() Method” on page 243, “MovieClip.globalToLocal() Method” on
page 246, “Object Class” on page 269

MovieClip._name Property

nmovi eC i p. _nane

Description

The _name property of the movie clip represents the name of the movie clip as a string (as
opposed to a reference). This is a relative reference (no pathname is returned). This property can
be read or written.

MovieClip.nextFrame() Method

nmovi eC i p. next Frane()

Description

The next Frane() method moves the playhead to the next frame and stops the playhead.

See also

“nextFrame() Global Function” on page 263, “MovieClip.prevFrame() Method” on page 253,
“MovieClip.stop() Method” on page 255, “MovieClip.play() Method” on page 253

MovieClip._parent Property

nmovi eCl i p. _parent

ADOBE LIVEMOTION 2.0 |253
Scripting Guide

Description

The _par ent property is a reference (not a string) to the parent of novi eCl i p. This allows
syntax such as: _parent . _parent. stop() . This property can only be read.

MovieClip.play() Method
nmovi ed i p. play()

Description

The pl ay() method starts playing the timeline of novi eCl i p.

See also

“play() Global Function” on page 274, “MovieClip.prevFrame() Method” on page 253,
“MovieClip.nextFrame() Method” on page 252, “MovieClip.stop() Method” on page 255

MovieClip.prevFrame() Method

nmovi eCl i p. prevFrane()

Description

The prevFrane() method moves the playhead to the previous frame and stops it there.

See also

“prevFrame() Global Function” on page 275, “MovieClip.nextFrame() Method” on page 252,
“MovieClip.stop() Method” on page 255, “MovieClip.play() Method” on page 253

MovieClip.removeMovieClip() Method

movi e i p. renpveMovi ed i p()

254

CHAPTER 9
Reference

Description

The r enoveMovi eCl i p() method deletes the movie clip from the player. Unlike the r enove-
Movi ed i p() global function, movie clips that call this method can only delete themselves.

See also

“removeMovieClip() Global Function” on page 275, “duplicateMovieClip() Global Function”
on page 197, “MovieClip.duplicateMovieClip() Method” on page 241, “MovieClip.attach-
Movie() Method” on page 239

MovieClip._rotation Property

nmovi eCl i p. _rotation

Description

The _r ot at i on property specifies the rotation of the movie clip in degrees. This property can
be read or written.

MovieClip.startDrag() Method

nmovi e i p. startDrag()
nmovi eC i p. startDrag(l ockCenter)
nmovi eCl i p. startDrag(l ockCenter, left, top, right, bottom

Description

The start Drag() method causes novi eCl i p to visually follow the mouse cursor. Use
stopDrag() to halt dragging.

Parameters

| ockCent er (Optional) A boolean indicating whether the draggable nov-
i eC i p should be centered under the mouse cursor (t r ue) or
dragged relative to the mouse cursor’s location when clicked
(f al se). Defaultis f al se.

ADOBE LIVEMOTION 2.0
Scripting Guide

| eft (Optional) The x-coordinate boundary to the left of which nov-
i eCip cannot be dragged.

top (Optional) The y-coordinate boundary above which novi eCl i p
cannot be dragged.

right (Optional) The x-coordinate boundary to the right of which nov-
i eC i p cannot be dragged.

bottom (Optional) The y-coordinate boundary below which novi eCl i p
cannot be dragged.

Example

/1 onButtonPress event
this.startDrag();

/1 onButt onRel ease event
this.stopDrag();

See also
“MovieClip.stopDrag() Method” on page 255, “startDrag() Global Function” on page 287

MovieClip.stop() Method

nmovi e i p. stop()

Description

The st op() method stops playing the timeline of novi eCl i p.

See also

“stop() Global Function” on page 288, “MovieClip.play() Method” on page 253

MovieClip.stopDrag() Method

movi eCl i p. st opDrag()

255

256

CHAPTER 9
Reference

Description

The st opDr ag() method ends any drag operation currently in progress.

Example

/1 onButt onPress event
this.startDrag();

/1 onButt onRel ease event
this.stopDrag();

See also
“MovieClip.startDrag() Method” on page 254, “stopDrag() Global Function” on page 288

MovieClip.swapDepths() Method

nmovi ed i p. swapDept hs(target)
movi eC i p. swapDept hs(dept h)

Description

The swapDept hs() method changes the position of novi eCl i p in novi eCl i p’s parent’s visual
stacking order (z-order). Movie clips at the top of the stack (higher level numbers) cover those
lower in the stack. You can swap the depths of attached or duplicate movie clips with manually
created clips, but be sure that you test extensively since this has been a problem area with the

Flash Player in the past.

Parameters

target A path or reference to a movie clip to be swapped with nov-
i eC i p. The movie clipand novi ed i p must have the same
parent.

depth An integer specifying the level in movi eCl i p’s parent’s visual

stack with which to swap. If another movie clip resides at this
level, then full swapping occurs. Otherwise, novi ed i p is sim-
ply moved to that level. May be 0. The higher the number, the
more visible is the layer.

ADOBE LIVEMOTION 2.0
Scripting Guide

MovieClip._target Property

nmovi eCl i p. _target

Description

The _t ar get property represents the target path of movi eCl i p in absolute terms using slash
notation. To get the path in dot notation, use the t ar get Pat h() global function. This property
can only be read.

See also

“targetPath() Global Function” on page 302

MovieClip._totalframes Property

nmovi eCl i p. _total franes

Description

The _t ot al f r ames property specifies the total number of frames in movi eCl i p. It is often used
in conjunction with the _f r ames| oaded property to determine the percentage of total frames

that have already downloaded; when an acceptable number are ready, the movie clip is started.
This property can only be read.

See also

“MovieClip._framesloaded Property” on page 242

MovieClip.unloadMovie() Method

nmovi ed i p. unl oadMovi e()

Description

The unl oadMovi e() method unloads a movie clip that was previously loaded with
| oadMovi e() .

257

258

CHAPTER 9
Reference

See also

“unloadMovie() Global Function” on page 304, “MovieClip.loadMovie() Method” on page 250

MovieClip._url Property

movi ed i p. _url

Description

The _ur| property specifies the URL of the file from which nmovi eCl i p was loaded. This
property can only be read.

See also

“loadMovie() Global Function” on page 218, “loadMovieNum() Global Function” on page 219

MovieClip.valueOf() Method

nmovi ed i p. val ueOf ()

Description

The val ueOf () method returns a string that is the path to novi eCl i p in absolute terms using
dot notation.

See also

“Object.valueOf() Method” on page 272, “targetPath() Global Function” on page 302

MovieClip._visible Property

nmovi eCl i p. _visible

Description

Boolean indicating whether movi eCl i p is visible. Visibility: t r ue if visible; f al se if hidden.
This property can be read or written.

ADOBE LIVEMOTION 2.0
Scripting Guide

See also

“MovieClip.swapDepths() Method” on page 256, “MovieClip._alpha Property” on page 239

MovieClip._width Property

nmovi eCl i p. _width

Description

The _wi dt h property represents the width of the movie clip in pixels. The _wi dt h property is
based on the content within novi eCl i p. If movi eCl i p has no content, then _wi dt his 0. _wi dth
is also determined by placement of the objects within novi eCl i p: the farthest object to the left
or right determines the value of _wi dt h. If objects within novi eCl i p are moved, _wi dt h can
change. This property can be read or written.

Note: Only _root. _wi dth and _root. _hei ght return dimensions of the _r oot movie clip.

See also

“MovieClip._height Property” on page 248

MovieClip._x Property

movi e i p. _x

Description

The _x property specifies the horizontal position of movi eCl i p in pixels.If movi eCl i p is on

the _r oot timeline, then the coordinate system is based on 0,0 x/y coordinates in the upper left
corner of the composition.If novi eCl i p is contained within another movie clip, novi eCl i p’s

coordinates are relative to the position of the enclosing movie clip’s anchor point. This property
can be read or written.

See also

“MovieClip._y Property” on page 260

259

260

CHAPTER 9
Reference

MovieClip._xmouse Property

nmovi el i p. _xnouse

Description

The _xnouse property specifies the horizontal location of the mouse cursor in pixels in the local
coordinate system of novi eCl i p. If novi eCl i p is _r oot , then the coordinate system is based
on 0,0 x/y coordinates in the upper left corner of the composition. Otherwise, the _xnouse
coordinate is relative to the position of novi eCl i p’s anchor point. This property can only be
read.

Note: The _xmouse and _ynouse coordinates are relative to the movie clip. Only _r oot . _xnouse

and _r oot . _ymouse return absolute positions.

See also

“MovieClip._ymouse Property” on page 261

MovieClip._xscale Property

nmovi eCl i p. _xscal e

Description

The _xscal e property of movi eCl i p represents the horizontal scaling percentage of the movie
clip relative to its original size. This property can be read or written.

See also

“MovieClip._yscale Property” on page 261

MovieClip._y Property

movi ed i p._y

Description

ADOBE LIVEMOTION 2.0
Scripting Guide

The _y property specifies the vertical position of novi eCl i p in pixels.If movi eCl i p is on the
_root timeline, then the coordinate system is based on 0,0 x/y coordinates in the upper left
corner of the composition.If novi eCl i p is contained within another movie clip, novi eCl i p’s
coordinates are relative to the position of the enclosing movie clip’s anchor point. This property
can be read or written.

Note: In the Flash Player, the y-axis is inverted—that is, positive values increase in the “downward”

direction rather than upward.

See also

“MovieClip._x Property” on page 259

MovieClip._ymouse Property

nmovi eCl i p. _ynouse

Description

The _ynmouse property specifies the vertical location of the mouse cursor in pixels in the local
coordinate system of novi eCl i p. If novi eCl i p is _r oot , then the coordinate system is based
on 0,0 x/y coordinates in the upper left corner of the composition. Otherwise, the _ynouse
coordinate is relative to the position of novi eCl i p’s anchor point. This property can only be
read.

Note: The _ynouse and _xnouse coordinates are relative to the movie clip. Only _r oot . _ynouse
and _r oot . _xmouse return absolute positions.

Note: In Flash Player, the y-axis is inverted—that is, positive values increase in the “downward”

direction rather than upward.

See also

“MovieClip._xmouse Property” on page 260

MovieClip._yscale Property

nmovi eCl i p. _yscal e

261

262

CHAPTER 9
Reference

Description

The _yscal e property of novi eCl i p represents the vertical scaling percentage of the movie clip
relative to its original size. This property can be read or written.

See also

“MovieClip._xscale Property” on page 260

NaN Global Property

NaN

Description

The NaN global property is a predefined variable with the value NaN (Not-a-Number), as
specified by the IEEE-754 standard. This property can only be read.

Example

trace(NaN);//prints NaN
var redFish = NaN;
trace(redFish);//prints NaN

See also

“IsNan() Global Function” on page 205, “Number.NaN Property” on page 266

newline Constant

new i ne

Description

The new i ne constant is used wherever a\ n could be used in text to force a line break. It is equiv-
alent to the ASCII value of 10.

ADOBE LIVEMOTION 2.0
Scripting Guide

nextFrame() Global Function

next Frame()

Description

The next Frame() global function moves the playhead of the current timeline to the next frame
and stops it.

See also

“MovieClip.nextFrame() Method” on page 252, “prevFrame() Global Function” on page 275

Number() Global Function

Nurber (expr essi on)

Description

The Nunber () global function converts expr essi on into a number. Do not confuse this global
function with the Nunber object.

Parameters

expressi on A string, boolean, or other expression to convert into a number.

Returns

A number representing the expression, or NaN if the expression cannot be converted into a
number.

Example

trace(Nunber(2 * 2));//prints 4

See also

“Number Object” on page 264, “parseFloat() Global Function” on page 273, “parselnt() Global
Function” on page 273, “String() Global Function” on page 289, “Boolean() Global Function”
on page 161

263

264

CHAPTER 9
Reference

Number Object

Description
The Nunber object helps you work with numeric values. It is an object wrapper for primitive

numeric values.

The primary uses for the Nunber object are to access constant properties that represent the
largest and smallest representable numbers, positive and negative infinity, and the Not-a-
Number (NaN) value.

The properties of Nunber are properties of the object itself, not of individual Nunber objects. You

need to create an instance of type Nunber only when you wish to use its methods.

Constructor

new Nunber (val ue)

Parameters

val ue The numeric value of the object being created.

Properties

MAX_VALUE See “Number.MAX_VALUE Prop- Constant representing the largest repre-
erty” on page 265. sentable number

M N_VALUE See “Number.MIN_VALUE Prop- Constant representing the smallest rep-
erty” on page 265. resentable number.

NaN See “Number.NaN Property” on Constant representing the special "Not a
page 266. Number" value.

NEGATI VE_I NFI NI TY See “Num-
ber.NEGATIVE_INFINITY Prop-
erty” on page 266.

Constant representing negative infinity.

POSI TI VE_I NFI NI TY See “Num-
ber.POSITIVE_INFINITY Property”
on page 267.

Constant representing positive infinity.

ADOBE LIVEMOTION 2.0
Scripting Guide

Methods

toString() See “Number.toString() Return a string representing the object.
Method” on page 268.

val uef () See “Number.valueOf() Return the primitive value of the object.

Method” on page 268.

Number.MAX_VALUE Property

Nunber . MAX_VALUE

Description

The MAX_VALUE property represents the maximum representable numeric value. It has value
of approximately 1.79e+308, though this may vary depending on the platform. Values larger
than MAX_VALUE are represented as infinity (see “Number.POSITIVE_INFINITY Property”
on page 267 and “Number. NEGATIVE_INFINITY Property” on page 266). This property can
only be read.

Example

if (1000 * 100001 <= Numnber.MAX_VALUE)
trace("No overflow');//prints "No overflow'
el se
trace("Overflow');

See also

“Number.MIN_VALUE Property” on page 265, “Number.POSITIVE_INFINITY Property” on
page 267, “Number.NEGATIVE_INFINITY Property” on page 266, “Infinity Global Property”
on page 204, “-Infinity Global Property” on page 204

Number.MIN_VALUE Property

Nunber . M N_VALUE

265

266

CHAPTER 9
Reference

Description

The MIN_VALUE property represents the smallest positive representable numeric value. It is the
number closest to 0—not the most negative number that can be represented. MIN_VALUE has
a value of approximately 2.22e-308, though this may vary depending on the platform. Values
smaller than MIN_VALUE (“underflow values”) are converted to 0.

Example

if (1/1000000000000000000000000<= Number. MAX_ VALUE)
trace("No underflow');//prints "No underfl ow
el se
trace("Underflow');

See also

“Number.MAX_VALUE Property” on page 265

Number.NaN Property

Nunber . Nan

Description

The Nan property is a special value representing Not-A-Number. This value complies with the
IEEE-754 value for Not-A-Number. This property can only be read.

Example

var twoFish = 1;

if (twoFish < 2 || twoFish > 2) {
twoFi sh = Number . NaN;

}

trace(twoFish);//prints "NaN'

Number.NEGATIVE_INFINITY Property

Nunber . NEGATI VE_I NFI NI TY

ADOBE LIVEMOTION 2.0
Scripting Guide

Description

The NEGATI VE_I NFI NI TY property is a special numeric value representing negative infinity.
Mathematically, this value behaves like infinity—for example, anything multiplied by infinity is
infinity, and anything divided by infinity is 0. This property can only be read.

Example

var 1 Q = - Nunber. MAX_VALUE*10;
if (1Q == Nunber.NEGATI VE_I NFI NI TY)
trace("Really low');//prints "Really | ow
el se
trace("Not so low');

See also

“Number.POSITIVE_INFINITY Property” on page 267, “Infinity Global Property” on
page 204, “-Infinity Global Property” on page 204

Number.POSITIVE_INFINITY Property

Nunber . POSI Tl VE_I NFI NI TY

Description

The POSI TI VE_I NFI NI TY property is a special numeric value representing infinity. This value
behaves mathematically like infinity—for example, anything multiplied by infinity is infinity,
and anything divided by infinity is 0. This property can only be read.

Example

var 1 Q = Nunber. MAX_VALUE* 10;
if (1Q == Nunber.PGCSITIVE_I NFI NI TY)
trace("Really high");//prints "Really high"
el se
trace("Not so high");

See also

“Number.NEGATIVE_INFINITY Property” on page 266, “Infinity Global Property” on
page 204, “-Infinity Global Property” on page 204

267

268

CHAPTER 9
Reference

Number.toString() Method

num toString()
num t oSt ri ng(radix)

Description

The t oSt ri ng() method returns a string representing the specified object.

Parameters

radi x (Optional) An integer between 2 and 36 specifying the base to
use for representing numeric values. Default is 10.

Returns

A string representing the specified object.

Example

var tenFish = new Nunber (10);
trace("Billy and Monica caught " + tenFish.toString() + " fish.");
//prints "Billy and Monica caught 10 fish."

See also

“Object.toString() Method” on page 271

Number.valueOf() Method

num val ueOf ()

Description

The val uedf () method returns the value of numas a primitive number.

Returns

The primitive value of num

ADOBE LIVEMOTION 2.0 |269
Scripting Guide

See also

“Object.valueOf() Method” on page 272

Object Class

Description

The Obj ect class provides the primitive JavaScript object type. All JavaScript objects are derived
from the Obj ect class. That s, all JavaScript objects have the methods and properties defined for
the Obj ect class available to them. In C++ terminology, Obj ect is the base class that is inherited
by all JavaScript objects.

In addition to using a constructor to create a new instance of the Obj ect class, you can also use
the bracket syntax (e.g., newObj ect = { valuel: 1, value2: 2};).

Constructor

new Cbj ect ()

Parameters

None.

Properties
constructor See “Object.constructor Prop- Reference to the function used to create an object.
erty” on page 270.

__proto__ See “Object.__proto__ Prop- Reference to an object’s prototype object.
erty” on page 270.

Methods

toString() See “Object.toString() Method” on Returns a string representing the object.
page 271.

val uef () See “Object.valueOf() Method” on Returns the primitive value of the object.

page 272.

270

CHAPTER 9
Reference

Object.constructor Property

obj . const uct or

Description

The const ruct or property is a reference to the prototype function used to createobj . The value
of this property is a reference to the function itself, not a string containing the function's name.
This property can be read or written.

Example

beret = new Object();

trace (beret.constructor == Object);//prints "true"
beret = {};

trace (beret.constructor == Object);//prints "true"

Object._ proto__ Property

obj.__proto__
Description
The __proto__ (double underscores) property is a reference to obj ’s prototype object. This

property can be read or written.

The pr ot ot ype object of the Obj ect class, on the other hand, is used to pass properties and
methods to objects that inherit the Obj ect class. Note that the __proto__ property and

pr ot ot ype object are common to all scripting objects. Since all LiveMotion objects are derived
from the Obj ect class, you can use the pr ot ot ype object to add methods and properties to all
LiveMotion objects. These become global methods and properties. When adding a global
property this way, you are in essence creating a global variable. This property can be read or
written.

Example

bj ect. prototype. newProp = "office";//create a true global variable
oval = new Date();

trace(oval .newProp); //prints "office"

trace(oval.__proto__); //prints "Date"

ADOBE LIVEMOTION 2.0 |271
Scripting Guide

Object.toString() Method

obj.toString()

Description

Thet oSt ring() method returns a string representing obj . Many objects override this method
in favor of their own implementation (for example, dat eQbj . t oSt ri ng()).

If an object has no string value and no user-defined t oSt ri ng() method, toString() returns
[obj ect type],wheretype is the object type or the name of the constructor function that
created the object.

Returns

A string representing obj .

Example

function Cat (nane, breed, col or, sex) {
t hi s. name=nane
thi s. breed=breed
this. col or=col or
thi s. sex=sex

}
theCat = new Cat (" Socks", "Calico", "chocolate","girl");

The following code creates cat ToSt ri ng() , the function that will be used in place of the default
toString() method. This function generates a string containing each property, of the form
“property = value”.

function catToString() {

var ret = "Cat " + this.name + " is [";
for (var prop in this)
ret +=" " + prop + " is " + this[prop] + ";"

return ret + "]"

}

The following code assigns the user-defined function to the object'st oSt ri ng() method:

Cat.prototype.toString = catToStri ng;

272

CHAPTER 9
Reference

With the preceding code in place, any time t heCat is used in a string context, (for example,
trace(theCat.toString()))JavaScriptautomatically calls the cat ToSt ri ng function, which
returns the following string:

Cat Socks is [name is Socks; breed is Calico; color is chocolate; sex is
girl;]
See also

“Array.toString() Method” on page 160, “Date.toString() Method” on page 195,
“Boolean.toString() Method” on page 163, “Number.toString() Method” on page 268,
“Object.valueOf() Method” on page 272

Object.valueOf() Method

obj . val ued ()

Description

The val ueOf () method returns the primitive value of obj . If obj has no primitive value,

val ueOf () returns the object itself. Note that you rarely need to invoke the val ueCf () method
yourself. JavaScript automatically invokes it when encountering an object where a primitive
value is expected.

The following shows the object types for which the val uef () method is most useful. Most
other objects have no primitive values.

* Nunber object type—val ueCf () returns primitive numeric value associated with the object.
* Bool ean object type—val ueOf () returns primitive boolean value associated with the object.
* String object type—val ueCf () returns string associated with the object.

You can create a val ueOf () method to be called in place of the default val ueOf () method. Your
function must take no arguments.

Returns

The primitive value of obj ; if obj has no primitive value, val ueCf () returns the object itself.

ADOBE LIVEMOTION 2.0
Scripting Guide

See also

“Boolean.valueOf() Method” on page 163, “MovieClip.valueOf() Method” on page 258,
“Number.valueOf() Method” on page 268, “Object.toString() Method” on page 271

parseFloat() Global Function

par seFl oat (string)

Description

The par seFl oat () global function parses string to find the first set of characters that can be
converted to a floating-point number and returns that number. If the function does not
encounter characters that it can convert to a number, it returns NaN. The function supports
exponential notation.

Parameters

string The string from which to extract a floating-point number.

Returns

A floating-point number, or NaN if no number was found.

Example

trace(parseFloat ("2.12"));//prints 2.12
trace(parseFl oat ("a23"));//prints NaN
trace(parseFl oat ("25e10"));//prints 250000000000

See also

“Number() Global Function” on page 263, “parselnt() Global Function” on page 273

parseint() Global Function

parselnt(string)
parselnt(string, base)

273

274

CHAPTER 9
Reference

Description

The par sel nt () global function parses st ri ng to find the first set of characters that can be
converted to an integer in the specified base and returns that integer. If the function does not

encounter characters that it can convert to an integer, it returns NaN.

Parameters

string The string from which to extract an integer.

base (Optional) The base of the string to parse (from base 2 to base
36). If not supplied, base is determined by the format of
string.

Returns

An integer in base 10, or NaN if no number was found.

Example

trace(parselnt("10"));//prints 10

trace(parselnt("10", 2));//prints 2 (decinmal equivalent of binary 10)
trace(parselnt(10 * 10));//prints 100
trace(parselnt("OxFF"));//prints 255 (deci mal equival ent of hex FF)
trace(parselnt("0377"));//prints 255 (deci mal equival ent of octal 377)

See also

“Number() Global Function” on page 263, “parseFloat() Global Function” on page 273

play() Global Function
play()

Description

The pl ay() global function moves the playhead of the current timeline forward.

See also

“gotoAndPlay() Global Function” on page 203, “MovieClip.play() Method” on page 253, “stop()

Global Function” on page 288

ADOBE LIVEMOTION 2.0
Scripting Guide

prevFrame() Global Function

prevFrame()

Description

The prevFrane() global function moves the playhead of the current timeline to the previous
frame and stops it there.

See also

“MovieClip.prevFrame() Method” on page 253, “nextFrame() Global Function” on page 263

_quality Global Property

_quality

Description

The _qual ity global property sets the level of rendering quality. It takes one of the following
strings (must be used with quotes):

* " LOW —Graphics aren’t anti-aliased; bitmaps aren’t smoothed.
* " MEDI UM' —Graphics are anti-aliased using a 2x2 grid; bitmaps aren’t smoothed.

* " H GH'—Graphics are anti-aliased using a 4x4 grid; bitmaps are smoothed if the movie clip is
static.

* "BEST" —Graphics are anti-aliased using a 4x4 grid; bitmaps are always smoothed.

removeMovieClip() Global Function

renmoveMovi e i p(target)

Description

The r enoveMovi eCl i p() global function deletes a movie clip. It can be used to delete movie
clips created with the dupl i cat eMovi eCl i p(), novi eCl i p. dupl i cat eMovi eCl i p(),or
nmovi eCl i p. attachMovi e().

275

276

CHAPTER 9
Reference

Parameters

target A path or a reference to an existing movie clip.

See also

“duplicateMovieClip() Global Function” on page 197, “MovieClip.duplicateMovieClip()
Method” on page 241, “MovieClip.attachMovie() Method” on page 239, “MovieClip.remove-
MovieClip() Method” on page 253

_root Global Property

_root

Description

_root is a special case of the MovieClip object. _r oot is a reference to the root movie clip in the
current level, and as such it can be used in absolute paths to any object. This property can only
be read. It’s equivalent to saying _| evel 4 if the scriptis also at _| evel 4. It is most often used to
invoke methods and reference properties that are members of the _r oot movie clip. For
example:

_root.attachMovi e(export Nane, newNane, depth)//attaches novie clip to _root
_root._x = -150 //causes a horizontal offset of the entire SW file
See also

“_leveln Global Property” on page 217, “MovieClip._parent Property” on page 252

Selection Object

Description

The Sel ect i on object contains information about the text field that currently has focus. A text
field gets focus when the user clicks on the text field with the mouse. Since only one text field can
have focus at a time, the Sel ect i on object is static. No constructor is required. In LiveMotion,
text fields are created using the text field tool.

ADOBE LIVEMOTION 2.0
Scripting Guide

Using the Sel ect i on object you can control a user’s interaction with text fields and capture text
from the text fields. You can position or get the position of the cursor in a text field.

Properties

None.

Methods

get Begi nl ndex()

get Car et | ndex()

get Endl ndex()

get Focus()

set Focus()

set Sel ection()

See “Selection.getBeginin-
dex() Method” on page 277.

See “Selection.getCaretin-
dex() Method” on page 278.

See “Selection.getEndIndex()
Method” on page 278.

See “Selection.getFocus()
Method” on page 279.

See “Selection.setFocus()
Method” on page 279.

See “Selection.setSelection()
Method” on page 280.

Return the index of the beginning of the
selection span. Return -1 if there is no cur-
rently selected field.

Return the index of the current caret (vertical
text cursor).

Return the index of the end of the current
selection. Returns -1 if there is no selection.

Return a string that is the absolute path to
the text field with the current focus.

Set the focus of the editable text field associ-
ated with the variable in the argument.

Set the beginning and ending indices of the
selection span.

Selection.getBeginindex() Method

Sel ecti on. get Begi nl ndex()

Description

The get Begi nl ndex() method returns the index of the first character of the selection span. It
returns - 1 if there is no currently selected field. The index is zero-based, where the first position
in the text field is 0. If no text is selected, the position of the cursor is returned.

Returns

Index of the beginning of the selection span. Returns - 1 if there is no currently selected field. If
no text is selected, the position of the cursor is returned.

277

278

CHAPTER 9
Reference

See also

“Selection.getEndIndex() Method” on page 278

Selection.getCaretindex() Method

Sel ection. get Caret | ndex()

Description

The get Car et | ndex() method returns the index of the current caret (vertical text cursor) in the
selection that currently has focus. If there is no current selection, - 1 is returned.

Returns

Index of the current caret (vertical text cursor) in the selection that currently has focus. If there
is no current selection, - 1 is returned.

Selection.getEndindex() Method

Sel ecti on. get Endl ndex()

Description

The get Endl ndex() method returns the index of the character after the last character of the
selection span. It returns - 1 if there is no currently selected field. The index is zero-based, where
the first position in the text field is 0. If no text is selected, the position of the cursor is returned.

Returns

Index of the character after the last character of the selection span. Returns - 1 if there is no
currently selected field. If no text is selected, the position of the cursor is returned.

See also

“Selection.getBeginIndex() Method” on page 277

ADOBE LIVEMOTION 2.0
Scripting Guide

Selection.getFocus() Method

Description

The get Focus() method returns a string that is the absolute path to the text field with the
current focus. If no text field is selected, nul | is returned. The result can be eval () ’ed—i.e.,
eval (Sel ecti on. get Focus()) returns a reference to the text field.

Returns

A string that is the absolute path to the text field with the current focus. If no text field is selected,
nul | is returned.

See also

“Selection.setFocus() Method” on page 279

Selection.setFocus() Method

Sel ection. set Focus(text Fi el dPat h)

Description

The set Focus() method sets the focus of the editable text field associated with the variable in
the argument.

Parameters

t ext Fi el dPat h A string representing the path to the text field that will gain
focus.

Returns

t r ue if the focus was set, f al se otherwise.

Example

trace(Sel ection. set Focus("_root.display"));//prints "true" if there is a
text box whose var = display

279

280

CHAPTER 9
Reference

See also

“Selection.getFocus() Method” on page 279

Selection.setSelection() Method

Sel ection. setSel ection(start, end)

Description

The set Sel ecti on() method sets the beginning and ending indices of the selection span. The
indices are zero-based, where the first position in the text field is 0. The method has no effect if
there is no currently selected text field. If st art = end, the cursor is set at that point in the text.

Parameters

start The index of the beginning of the selection.

end The index of the character after the last character to be included
in the new selection.

See also

“Selection.getBeginIndex() Method” on page 277, “Selection.getEndIndex() Method” on
page 278

Sound Object

Description

The Sound object is used to create an object that plays a sound. The object can be set and
controlled to provide the sounds for an individual movie clip, including _r oot , or for the global
timeline. All of the movie clip’s children are affected by a Sound object created for it.

Constructor

new Sound()
new Sound(target)

Parameters

t ar get

Properties

None.

Methods

at t achSound()

get Pan()

get Transform()

get Vol une()

set Pan()

set Transform()

set Vol une()

start()

stop()

ADOBE LIVEMOTION 2.0
Scripting Guide

(Optional) A path or reference to a player level or an existing movie clip. If not speci-
fied, the Sound object created controls all sounds in the global timeline. All of the
sound in the movie clip hierarchy will from this point down will be controlled by the
new Sound object.

See “Sound.attachSound() Add a new sound to a movie clip.
Method” on page 281.

See “Sound.getPan() Method” on Get the current pan value of a sound.

page 282.

See “Sound.getTransform() Get the current panning transform value of a
Method” on page 282. sound.

See “Sound.getVolume() Get the current volume of a sound.

Method” on page 283.

See “Sound.setPan() Method” on Set the current pan value of a sound.

page 284.

See “Sound.setTransform() Set the current panning transform value of a
Method” on page 284. sound.

See “Sound.setVolume() Set the current volume of a sound.

Method” on page 285.

See “Sound.start() Method” on Play a sound.
page 286.

See “Sound.stop() Method” on Stop playing a sound or all sounds.
page 286.

Sound.attachSound() Method

soundObj . at t achSound(expor t Nane)

281

282

CHAPTER 9
Reference

Description

The at t achSound() method attaches a sound to a Sound object.expor t Nane is the sharing
name of the sound. This is the sound file that was imported into LiveMotion, then assigned a
sharing name using the Export palette. Only one sound at a time can be attached to soundQbj .

»

Note: In Preview mode, the sound that is attached is the local version only. If the “Use External Asset
feature is used from the Export palette, this will not be the same sound that is actually used when the
SWE file is executing in the Flash Player.

Parameters

expor t Name The sharing name of the sound to attach. This name was
assigned to the sound using the Export palette.

See also

“MovieClip.attachMovie() Method” on page 239

Sound.getPan() Method

soundObj . get Pan()

Description

The get Pan() method gets the current pan value of the sound. This value was set by the last call
to set Pan() . The pan value is used to implement the balance function between audio channels.

Returns

The pan value of the sound (a number in the range of - 100 to 100).

See also

“Sound.setPan() Method” on page 284

Sound.getTransform() Method
soundQbj . get Transform()

ADOBE LIVEMOTION 2.0
Scripting Guide

Description

The get Tr ansf or n{) method returns the current panning transform values of a Sound object.
The panning transform values are similar to the pan value, but they let you specify the relative
amounts of right channel sound to be included in the left speaker, and vice versa.

Returns

An object of type Obj ect with the following properties:

* | | —the percentage of the left channel to play in the left speaker (an integer value in the range
of 0 to 100).

* | r —the percentage of the left channel to play in the right speaker (an integer value in the range
of 0 to 100).

* r | —the percentage of the right channel to play in the left speaker (an integer value in the range
of 0 to 100).

* rr —the percentage of the right channel to play in the right speaker (an integer value in the
range of 0 to 100).

See also

“Sound.setTransform() Method” on page 284, “Object Class” on page 269

Sound.getVolume() Method

soundQbj . get Vol une()

Description

The get Vol ume() method gets the current volume of a sound. This is the volume set by the last
set Vol une() call. Values are from 0 - 100.

Returns

The volume of the sound (an integer value in the range from 0 - 100).

See also

“Sound.setVolume() Method” on page 285

283

284

CHAPTER 9
Reference

Sound.setPan() Method

soundQbj . set Pan(pan)

Description

The set Pan() method sets the current pan value of a Sound object. The pan value is used to
implement the balance function between audio channels. A value of - 100 routes all sound
through the left channel only; a value of 100 routes all sound through the right channel. Values
in between reflect the range between these two extremes, with a value of 0 indicating equal
balance between the two channels. Default value is 0.

Parameters

pan The pan value of the sound (a number in the range of - 100 to
100).

See also

“Sound.getPan() Method” on page 282

Sound.setTransform() Method

soundQbj . set Transforn(transform

Description

The set Tr ansf or m() method sets the current panning transform values of a Sound object. The
panning transform values are similar to the pan value, but they let you specify the relative
amounts of right channel sound to be included in the left speaker, and vice versa. The panning
transform values are passed into the set Tr ansf or n{) method by instantiating an object of type
bj ect and setting the following four properties:

* | | —the percentage of the left channel to play in the left speaker (an integer value in the range
of 0 to 100);
* | r —the percentage of the left channel to play in the right speaker (an integer value in the range
of 0 to 100);

* r| —the percentage of the right channel to play in the left speaker (an integer value in the range
of 0 to 100);

ADOBE LIVEMOTION 2.0
Scripting Guide

* rr —the percentage of the right channel to play in the right speaker (an integer value in the
range of 0 to 100).

Anl | value of, for example, 50% indicates that 50% of the left channel content should be played
through the left speaker.

Parameters

transform An objectwith 1 ,Ir,rl,andrr properties.
Example

waveringVoi ce = new Object();

voice.ll = 50;

voice.lr = 50;

voice.rl = 50;

voice.rr = 50;

soundQbj . set Tr ansf or m(waveri ngVoi ce) ;

See also

“Sound.getTransform() Method” on page 282, “Object Class” on page 269

Sound.setVolume() Method

soundQbj . set Vol une(vol une)

Description

The set Vol ume() method sets the current volume of a sound.

Parameters

vol une The volume of the sound (an integer in the range of 0 - 100).

See also

“Sound.getVolume() Method” on page 283

285

286

CHAPTER 9
Reference

Sound.start() Method

soundQbj . start (of fset, |oops)

Description

The st art () method plays the sound attached to soundQbj .

Parameters

of f set The number of seconds to wait before playing the sound. Default value is 0.
| oops The number of times to loop the sound before stopping. Default value is 1.
See also

“Sound.stop() Method” on page 286

Sound.stop() Method

soundQbj . stop()
soundQbj . st op(export Nane)

Description

The st op() method stops playing a sound or all sounds. All sounds controlled by soundQbj are
stopped if no argument is provided.

Parameters

expor t Name (Optional) The sharing name of the sound to stop. This name was
assigned to the sound using the Export palette.

See also

“Sound.start() Method” on page 286

ADOBE LIVEMOTION 2.0
Scripting Guide

_soundbuftime Global Property

_soundbuftinme

Description

The_soundbuf t i me global property is an integer indicating the number of seconds of streaming
sound to load before playing starts. Default value is 5 seconds. This property can be read or
written.

startDrag() Global Function

startDrag(target)
startDrag(target, |ockCenter)
startDrag(target, |ockCenter, left, top, right, bottom

Description

The startDrag() global function causes t ar get to visually follow the mouse cursor. Use the
st opDrag() global function to halt dragging.

Parameters

target A path or reference to the existing movie clip to drag.

| ockCent er (Optional) A boolean indicating whether the draggablet ar get
should be centered under the mouse cursor (t r ue) or dragged
relative to the mouse cursor’s location when clicked (f al se).
Defaultis f al se.

| eft (Optional) The x-coordinate boundary to the left of which t ar -
get cannot be dragged.

top (Optional) The y-coordinate boundary above which t ar get
cannot be dragged.

right (Optional) The x-coordinate boundary to the right of which t ar -
get cannot be dragged.

bottom (Optional) The y-coordinate boundary below whicht ar get can-

not be dragged.

287

288 | CHAPTER 9
Reference

See also

“stopDrag() Global Function” on page 288, “MovieClip.startDrag() Method” on page 254

stop() Global Function
stop()

Description

The st op() global function stops playing the timeline of the current movie clip.

See also

“play() Global Function” on page 274

stopAllSounds() Global Function

st opAl | Sounds()

Description

The st opAl | Sounds() global function stops all sounds currently playing in the composition. It
doesn’t stop the playhead and it doesn’t stop new sounds from starting.

See also

“Sound.stop() Method” on page 286

stopDrag() Global Function
st opDrag()

Description

The st opDr ag() global function stops the dragging of the currently draggable object.

ADOBE LIVEMOTION 2.0

See also

“startDrag() Global Function” on page 287, “MovieClip.stopDrag() Method” on page 255

Scripting Guide

String() Global Function

String(val ue)

Description

The String() global function returns a primitive string representation of val ue. Do not
confuse this global function with the St ri ng object.

Parameters

val ue A number, string, variable, or boolean to convert to a string.

Returns

« If val ue is a boolean, returnst r ue or f al se.

« If val ue is a string, returns the string.

« If val ue is a number, returns a string representation of the number.

« If val ue is a MovieClip object, returns the absolute path in dot notation.
« If val ue is an object, returns a string representation of the object.

* If val ue is undefined, returns an empty string.

See also

“String Object” on page 290, “Object.toString() Method” on page 271, “Boolean() Global
Function” on page 161, “Number() Global Function” on page 263

289

290

CHAPTER 9
Reference

String Object

Description

The St ri ng object is a wrapper around the string primitive data type. Do not confuse a string
literal with the St ri ng object. For example, the following code creates the string literal s1 and
also the St ri ng object s2:

sl "foo" // creates a string literal value

s2 = new String("foo") // creates a String object
trace(sl.valueOf());//prints "foo"
trace(s2.valuedf());//prints "foo"

You can call any of the methods of the St ri ng object on a string literal value— JavaScript
automatically converts the string literal to a temporary St ri ng object, calls the method, then
discards the temporary St ri ng object. You can also use the | engt h property with a string
literal.

Constructor

new String(val ue)

Parameters
val ue The initial value of the string object, or a number, variable, or boolean to convert to
a string. If this parameter is not supplied, the string will be set to " (the empty
string).
Properties
| ength See “String.length Property” The length of the string.
on page 296.
Methods
char At () See “String.charAt() Method” Return the character at the specified index.
on page 291.

char CodeAt () See “String.charCodeAt() Return the ASCII value of the character at the speci-
Method” on page 292. fied index.

ADOBE LIVEMOTION 2.0
Scripting Guide

concat () See “String.concat() Method” Concatenate the text of two or more strings and

on page 293.

return the new string.

fronChar Code() See “String.fromCharCode() Returna string created from the characters specified

Method” on page 294.

i ndexO () See “String.indexOf()
Method” on page 294.

| ast I ndexOf () See “String.lastindexOf()
Method” on page 295.

in the argument list.

Return the index of the first occurrence of the speci-
fied value in the string, or - 1 if not found.

Return the index of the last occurrence of the speci-
fied value in the string, or - 1 if not found.

splice() See “String.slice() Method” on Return a string consisting of the sub-string specified
page 297. in the argument list.

split() See “String.split() Method” on Split a string into an array of sub-strings.
page 297.

substr () See “String.substr() Method” Return the specified number of charactersin a string
on page 298. beginning at the specified location.

substring() See “String.substring()
Method” on page 299.

toLower Case() See “String.toLowerCase()
Method” on page 301.

toUpper Case() See “String.toUpperCase()
Method” on page 301.

Return the characters between the two indices into
the string.

Convert the string to lowercase and return.

Convert the string to uppercase and return.

String.charAt() Method

stringQj . char At (i ndex)

Description

The char At () method returns the specified character from the string. Characters in a string are
indexed from left to right. The index of the first character is 0, and the index of the last character
is the length of string minus 1 (zero-based indexing). If the index is out of range, JavaScript

returns an empty string.

291

292

CHAPTER 9
Reference

Parameters

i ndex An integer between 0 and the length of the string minus 1 (zero-
based indexing).

Returns

A string consisting of one character or an empty string (if the index is out of range).

Example

The following example displays characters at sequential locations in the string “Billy”:

var anyString="Billy"

trace("The character at index 0 is " + anyString.charAt(0));
trace("The character at index 1 is " + anyString.charAt(1));
trace("The character at index 2 is " + anyString.charAt(2));
trace("The character at index 3 is " + anyString.charAt(3));
trace("The character at index 4 is " + anyString.charAt(4));
[/lprints

/1 The character at index O is B

/1 The character at index 1 is i

/1 The character at index 2 is |

/1 The character at index 3 is |

/1 The character at index 4 is vy

See also

“String.indexOf() Method” on page 294, “String.lastindexOf() Method” on page 295

String.charCodeAt() Method

stringQj . char CodeAt (i ndex)

Description

The char CodeAt () method returns the ASCII value of the character at the given index.

ADOBE LIVEMOTION 2.0
Scripting Guide

Parameters

i ndex An integer between 0 and the length of the string minus 1 (zero-based index-
ing). Default value is 0.

Returns

The ASCII value of the character.

Example

trace("|1CE". char CodeAt (0));// prints 73 - the ASCI| value of "I"
trace("ICE". charCodeAt());// prints 73 - the ASCI| value of "I"
trace("ICE". charCodeAt (1));// prints 67 - the ASCI| value of "C'
trace("|1CE". charCodeAt (2));// prints 69 - the ASCI| value of "E"

String.concat() Method

stringQoj . concat (val uel, value2, ...valuen)

Description

The concat () method concatenates the text of one or more strings to st ri ngobj and returns
the new string. If necessary, it first converts a given val ue to a string. The original string in not
affected.

Parameters

val uel,val ue2,. .. val uen The values to concatenate to st ri ngQbj .

Returns

The concatenated string.

Example

The following example combines two strings into a new string.

s1="Billy ";

s2="and ";
s3="Moni ca are fishing.";

293

294

CHAPTER 9
Reference

trace(sl.concat(s2,s3)); // prints "Billy and Mnica are fishing."

String.fromCharCode() Method

String. fronChar Code(val uel, value2, ...valuen)

Description

The f r onChar Code() method returns a string created by using the specified sequence of ASCII
values. Because f r omChar Code() is a static method of St ri ng, you always use it as
String. fronChar Code(), rather than as a method of a St ri ng object you create.

Parameters

val uel, value2, ...valuen A sequence of ASClI values.

Returns

A string consisting of the characters provided as ASCII values.

Example

trace(String. fronChar Code(66, 105, 108, 108, 121)); //Returns "Billy"

String.indexOf() Method

stringQj . i ndexCOf (searchVal ue, from ndex)

Description

The i ndexOf () method returns the index within the string of the first occurrence of the
specified value, starting the search at f r om ndex if provided. The method returns - 1 if the value
is not found.

Characters in a string are indexed from left to right. The index of the first character is 0, and the
index of the last character is length of the string minus 1 (zero-based indexing).

ADOBE LIVEMOTION 2.0
Scripting Guide

Parameters

sear chVal ue The string value for which to search.

from ndex (Optional) The location within the current string from which to start the
search. Can be any integer between 0 and the length of the string minus 1
(zero-based indexing). If this argument is not supplied, the default value is 0.

Returns

The position (zero-based) within the string where the first occurrence of sear chval ue was
found, or - 1 if it was not found.

Example

trace("Favorite beret".indexOf("Favorite")); // prints O
trace("Favorite beret".indexOF("Hat")); // prints -1

trace("Favorite beret".indexCf("beret",0)); // prints 9
trace("Favorite beret".indexCf("beret",9)); // prints 9

See also

“String.charAt() Method” on page 291, “String.lastIndexOf() Method” on page 295

String.lastindexOf() Method

stringQj .l astlndexd (searchVal ue, fromn ndex)

Description

The | ast | ndexOf () method returns the index within the string of the last occurrence of the
specified value, or - 1 if not found. The string is searched backward, starting at f r om ndex.

Characters in a string are indexed from left to right. The index of the first character is 0, and the
index of the last character is the length of the string minus 1.

295

296

CHAPTER 9
Reference

Parameters

sear chVal ue A string representing the value to search for.

from ndex (Optional) The location within the current string from which to start the
search. Can be any integer between 0 and the length of the string minus 1
(zero-based indexing). If this argument is not supplied, the default value is
0.

Returns

The position (zero-based) within the string where the last occurrence of sear chval ue was
found, or - 1 if it was not found.

Example

trace("Billy".lastlndexOf ("I")); // prints 3
trace("Billy".lastlndexOf ("I",2)); // prints 2
trace("Billy".lastlndexOF("x")); // prints -1

See also

“String.charAt() Method” on page 291, “String.indexOf() Method” on page 294

String.length Property

stringQoj.length

Description

The | engt h property is the length of the string. A nul | string has a length of 0. This property
can only be read.

Example

var x="Billy";
trace("Length is " + x.length);//Prints "Length is 5"

ADOBE LIVEMOTION 2.0
Scripting Guide

String.slice() Method

stringoj.slice(startSlice, endSlice)

Description

The sl i ce() method extracts a section of the string and returns the new string. sl i ce()
extracts up to but not including endS! i ce. Indexing is zero-based. For example, sl i ce(1, 4)
extracts the second character through the fourth character (characters indexed 1, 2, and 3). The
original string is unchanged.

As a negative index, start Sl i ce or endSl i ce indicates an offset from the end of the string,
where the last character is -1, the second is -2, etc. For example, sl i ce(2, - 1) extracts the third
character through the second to last character in the string.

Parameters

startSlice The zero-based index at which to begin extraction.

endSlice (Optional) The zero-based index at which to end extraction. If omitted, slice
extracts to the end of the string.

Returns

A substring of characters from st ri ngQbj , starting at st art Sl i ce and ending with endSl i ce
minus 1.

Example

str1="Billy and Monica are ice skating.";
str2=strl.slice(10,-5);
trace(str2); //Prints "Monica are ice ska"

See also

“String.substring() Method” on page 299, “String.substr() Method” on page 298

String.split() Method

stringQoj.split(delimter)

297

298

CHAPTER 9
Reference

Description

The spl i t () method splits the string into a group of substrings, places those strings into an
array, and returns the array. The substrings are created by breaking the original string at points
that match del i mi t er. When found, del i ni ter is removed from the string and the resulting
substring is added to the array.

Parameters

delimter (Optional) The character to use for delimiting. The delimiter is
treated as a string. If omitted, the array returned contains one
element consisting of the entire string.

Returns

An array whose elements are the substrings.

Example

myString = "Hello Billy. Let’s go fishing.";
splits = nyString.split(" ");

for(i=0; (splits[i] != "fishing."); ++i)
{

trace(splits[i]);

b

trace(splits[i]);

/1 Di spl ays

/1" Hell o"

[1"Billy."

/l"Let’s"

/1"go"

/1"fishing."

See also

“String.charAt() Method” on page 291, “String.lastIndexOf() Method” on page 295,
“String.indexOf() Method” on page 294, “Array.join() Method” on page 151

String.substr() Method

stringQbj.substr(start, |ength)

ADOBE LIVEMOTION 2.0
Scripting Guide

Description

The subst r () method returns the characters in the string beginning at st art and continuing
through the specified number of characters.st art is a character index. The index of the first
character is 0, and the index of the last character is the length of the string minus 1 (zero-based
indexing). subst r () begins extracting characters at st art and collects | engt h number of
characters. The original string is unchanged.

If start is negative, substr () uses it as a character index from the end of the string
(stringQbj.lengthplusstart).Ifl engt hisomitted,start extractscharacters to the end of

the string.

Parameters

start The location at which to begin extracting characters.
| ength (Optional) The number of characters to extract.
Returns

A string containing the extracted characters.

Example

str = "phonecal | "

trace("(1,2): " + str.substr(1,2));
trace("(-2,2): " + str.substr(-2,2));
trace("(1): " + str.substr(1));
trace("(20, 2): " + str.substr(20,2));
[/prints

/11(1,2): ho

11(-2,2): 11

/1(1): honecal

/1(20, 2)

See also

“String.substring() Method” on page 299, “String.slice() Method” on page 297

String.substring() Method

stringQj . substring(indexA, indexB)

299

300

CHAPTER 9
Reference

Description

The subst ri ng() method returns a substring of the string by extracting characters from
i ndexA up to but not including i ndexB. The original string is unchanged. Specifically:

» Ifi ndexAis less than 0, i ndexA is treated as if it were 0.
» Ifi ndexBis less than 0, i ndexB is treated as if it were 0.

« Ifi ndexB is greater than or equal tost ri ngQbj . | engt h, characters are extracted to the end of
the string.

« Ifi ndexAequalsi ndexB, subst ring() returns an empty string.
« Ifi ndexB is omitted, characters are extracted to the end of the string.

« Ifi ndexB is less than i ndexA, the two indices are automatically re-ordered.

Parameters

i ndexA An integer between 0 and the length of the string minus 1 (zero-based
indexing).

i ndexB (Optional) An integer between 0 and the length of the string minus 1
(zero-based indexing).

Returns

A substring of characters from st ri ngQbj .

Example

var str="trolling";

/1 Displays "tro"
trace(str.substring(O0,3));
trace(str.substring(3,0));//automatic re-ordering
/1 Displays "lin"
trace(str.substring(4,7));
trace(str.substring(7,4));
/1 Displays "trollin"
trace(str.substring(0,7));
/1 Displays "trolling"
trace(str.substring(O0,8));
trace(str.substring(0, 10));

ADOBE LIVEMOTION 2.0
Scripting Guide

See also

“String.substr() Method” on page 298, “String.slice() Method” on page 297

String.toLowerCase() Method
stringQj .toLower Case()

Description

The t oLower Case() method returns st ri ngObj converted to lowercase without affecting the
value of the string itself.

Returns

A lower case string.

Example

The following example displays the lowercase string “whi t e house”:
var upper Case="WH TE HOUSE";

trace(upper Case. toLower Case()) //Displays "white house"
See also

“String.toUpperCase() Method” on page 301

String.toUpperCase() Method

stringQj . toUpper Case()

Description

The t oUpper Case() method returns st ri ngObj converted to uppercase without affecting the
value of the string itself.

Returns

An upper case string.

301

302

CHAPTER 9
Reference

Example

The following example displays the string “WHI TE HOUSE™:

var | ower Case="white house";

trace(l ower Case. t oUpper Case()); //displays "WH TE HOUSE"
See also

“String.toLowerCase() Method” on page 301

targetPath() Global Function

tar get Pat h(movi eCl i p)

Description

The t ar get Pat h() global function returns the absolute path to movi eCl i p. as a string in dot
notation. To get the path in slash notation, use the _t ar get property of MovieClip.

Parameters

novi eCl i p A reference to the movie clip for which the path is requested.

Returns

A string representing the absolute path to novi eCl i p.

Example

tar get Pat h(oval) ;

See also

“MovieClip._target Property” on page 257

Text Field Properties

vari abl eNane. scrol |
vari abl eNane. maxscrol |

ADOBE LIVEMOTION 2.0
Scripting Guide

Description

Thescrol | and maxscrol | text field properties give you control over the display of text in a text
field.vari abl eNane is the name of the variable (var=) associated with the text field.

The scrol | text field property allows you to control the display of information in a text field by
moving the text field to a specific position. It is set to the line number of the line that you want
to be the topmost visible line in the text field. It is used in conjunction with the maxscr ol |
property. This property can be read or written.

The maxscrol | text field property specifies the maximum value allowed for the scrol | text
field property. It serves as a value that you can use to ensure that the scrol | property is not
assigned a value larger than the number of the last line in the text field. This property can only
be read.

trace() Global Function

trace(expression)

Description

The trace() global function evaluates expr essi on and outputs the results as a string to the
Script Console window followed by a newline character. Used for debugging.

trace() is only useful from within LiveMotion’s Preview mode. You can display similar results
to a text field of the executing SWF file using the following code, where di spl ay is the variable
(var=) name of your text field:

_root.display = expression;

Parameters

expressi on The expression to evaluate. It needs to result in a string, or some-
thing that can be converted to a string.

Example

trace() is used extensively for output in the examples of this reference chapter.

trace(this);//prints MwieCip ("primtive" type)
trace(2 * 2);//prints 4
trace("Momnica and Billy were here.");//prints "Mnica and Billy were here."

303

304

CHAPTER 9
Reference

unescape() Global Function

unescape(stringExpressi on)

Description

The unescape() global function translates the encoded string st ri ngExpr essi on into a
regular string. In st r i ngExpr essi on, characters that required encoding were replaced with the
format % x, where xx is the hexadecimal value of the character. This type of encoding is basically
URL encoding except that spaces are replaced with %20 instead of a + sign. Use the escape()
global function to encode strings.

Parameters

stringExpression A string encoded with the escape() global function.

Returns

A regular string version of st ri ngExpr essi on.

Example

[lprints "Billy went fishing!#?!"
trace(unescape("Bil | y%®20went %20f i shi ng%219%24%23%21")) ;

See also

“escape() Global Function” on page 198

unloadMovie() Global Function
unl oadMovi e(t ar get)

Description

The unl oadMovi e() global function unloads the SWF file from t ar get that was previously
loaded using the | oadMovi e() global function, the | oadMovi eNun() global function, or the
movi el i p. | oadMovi e() method.

ADOBE LIVEMOTION 2.0
Scripting Guide

When a SWF file is unloaded from an existing movie clip, the contents of the movie clip are
unloaded, but the movie clip handlers are not. These include onEnterFrame, onLoad, onUnload,
onData, onMouseDown, onMouseUp, onMouseMove, onKeyDown, and onKeyUp. Everything
else—including button handlers, state scripts, and objects—are removed from the movie clip
“shell.” This movie clip shell concept is important to keep in mind because it means that, when
using | oadMovi e() andunl oadMovi e() , a movie clip instance is never really removed from the
composition. Movie clip content is simply moved in and out of the shell with | oadMovi e() and
unl oadMovi e() .

Parameters

target A path or reference to a level of the player or an existing movie
clip.

See also

“loadMovie() Global Function” on page 218, “loadMovieNum() Global Function” on page 219,
“unloadMovieNum() Global Function” on page 305, “MovieClip.loadMovie() Method” on
page 250, “MovieClip.unloadMovie() Method” on page 257

unloadMovieNum() Global Function
unl oadMovi eNun(nunber)

Description

Same as unl oadMovi e() except that a number is used to specify the player level. Therefore, it
can only be used to unload SWF files previously loaded using the | oadMovi e() global function
or the | oadMovi eNum() global function.

Parameters

nunber A non-negative integer specifying the level of the player contain-
ing the SWF file to unload.

305

306 | CHAPTER 9
Reference

See also

“loadMovie() Global Function” on page 218, “loadMovieNum() Global Function” on page 219,
“unloadMovie() Global Function” on page 304, “MovieClip.loadMovie() Method” on page 250,
“MovieClip.unloadMovie() Method” on page 257

updateAfterEvent() Global Function
updat eAft er Event ()

Description

The updat eAf t er Event () global function is used to update the display when one of the
following events occurs: onMouseMove, onMouseDown, onMouseUp, onKeyDown, onKeyUp.
Place this function in the appropriate event handler to cause refresh to occur.

XML Object

Description

The XML object enables you to load, parse, send, build, and manipulate EXtensible Markup
Language (XML) document trees. Unlike HTML, which uses a defined set of tags, XML allows
you to define your own document tags. LiveMotion allows you to either build an XML document
from scratch or read in and modify an existing XML document.

The following shows three levels of child nodes (the document itself is the parent):

<fish>//level 1 child node
<type>Bass</type>//"type" tag is level 2 child node; "Bass" is level 3
</fish>

For example, the following creates an XML document:

xm Docurent = new XM_("<fish><type>Bass</type></fish>");

The text can then be accessed as follows:

//prints "Bass"
trace(xm Docunent.firstChild.firstChild.firstChild.nodeVal ue);

ADOBE LIVEMOTION 2.0
Scripting Guide

Constructor

new XM.()
new XM.(source)

Parameters

source (Optional) Source XML document. If not provided, the XML object will contain a new,
empty XML document.

Properties

attributes

chi | dNodes

content Type

docTypeDecl

firstChild

ignoreVWite

last Child

| oaded

next Si bl i ng

nodeNane

nodeType

nodeVal ue

See “XML.attributes Property” Object whose properties store the attributes
on page 309. defined by the node.

See “XML.childNodes Property” Array of child nodes of node.
on page 310.

See “XML.contentType Prop- MIME content type.
erty” on page 311.

See “XML.docTypeDecl Prop- DOCTYPE declaration of the XML document.
erty” on page 314.

See “XML.firstChild Property” First child of the node, nul | if there are no chil-
on page 314. dren.

See “XML.ignoreWhite Prop- Whether to ignore whitespace during XML pars-
erty” on page 315. ing.

See “XML.lastChild Property” Last child of the node, nul | if there are no chil-
on page 317. dren.

See “XML.loaded Property” on t r ue if thel oad() orsendAndLoad() opera-
page 318. tion has completed.

See“XML.nextSibling Property” Next sibling of the node, nul | if this node is the
on page 318. last node.

See “XML.nodeName Property” Tag name of the node. nul | if this node is a text
on page 319. node.

See “XML.nodeType Property” Type of the node. Either 1 if the node is an ele-
on page 319. ment node, or 3 if the node is a text node.

See “XML.nodeValue Property” Text contained in the node. nul | if the node is
on page 320. not a text node.

307

308

CHAPTER 9
Reference

par ent Node

previ ousSi bl i ng

st at us

xm Decl

Methods
appendChi | d()

cl oneNode()

creat eEl enent ()

creat eText Node()

hasChi | dNodes()

i nsertBefore()

| oad()

par seXM.()

renoveNode()

send()

Parent node of the node. nul | if the node is at
the top of the hierarchy.

See “XML.parentNode Prop-
erty” on page 322.

See “XML.previousSibling Prop-Previous sibling of the node, nul | if the node is
erty” on page 323. the first node.

See “XML.status Property” on Whether there was an error parsing the XML
page 325. document. 0 indicates no errors.

See “XML.xmIDecl Property” on DOCTYPE declaration of the XML document.
page 326.

See “XML.appendChild()
Method"” on page 309.

Append a child to the node.

See “XML.cloneNode()
Method” on page 311.

Clone the node.

See “XML.createElement() Create an XML element node.

Method” on page 312.

See “XML.createTextNode()
Method” on page 313.

Create an XML text node.

See “XML.hasChildNodes()
Method” on page 315.

Return an indication whether the node has
children.

Insert a child node before another child
node.

See “XML.insertBefore()
Method” on page 316.

See “XML.load() Method” on Load and parse an XML document from the
page 317. given URL.

See“XML.parseXML() Method” Parse the given text as an XML document.
on page 322.

Delete the node and all of its children from
the containing document.

See “XML.removeNode()
Method” on page 323.

See “XML.send() Method” on Convert the XML documentinto a string and
page 324. send it to the given URL.

ADOBE LIVEMOTION 2.0 {309
Scripting Guide

sendAndLoad() See “XML.sendAndLoad() Convert the XML document into a string and
Method” on page 324. send it to the given URL. The receiving appli-
cation is to reply with an XML document.
toString() See “XML.toString() Method” Convert the XML object into a string.
on page 326.

Event Handlers

onDat a See “XML.onData() Event Han- Indicates that the XML document parsing
dler” on page 320. can begin.

onLoad See “XML.onLoad() Event Han- Indicates that the load of an XML document
dler” on page 321. completed successfully.

XML.appendChild() Method

node. appendChi | d(chi | dNode)

Description

The appendChi | d() method appends an existing XML node to node as its last child.

Parameters

chi | dNode An existing XML node to append to node as a child.

See also

“XML.createElement() Method” on page 312, “XML.createTextNode() Method” on page 313,
“XML.cloneNode() Method” on page 311, “XML.insertBefore() Method” on page 316

XML.attributes Property

node. attri butes

310

CHAPTER 9
Reference

Description

The at t ri but es property stores the names and values of attributes defined by node. This
property can be read or written.

For example, in the following line of code, nane is an attribute and val ue is the value of that
attribute:

<testtag name=\"val ue\">Bass</testtag>

Example

xm Docurment = new XM_("<testtag name=\"val ue\">Bass</testtag>");
trace(xm Docunent.firstChild.attributes.name);//prints "val ue"

See also

“XML.nodeType Property” on page 319

XML.childNodes Property

node. chi | dNodes[n]

Description

The chi | dNodes property holds an array of child nodes of node. Each elementn in the array is
a reference to a child node. Use the methods appendChi | d(),i nsert Before(), and
renoveNode() to manipulate child nodes. This property can only be read.

Example

xm Docunent = new XM.("<fish><type>Bass</type><col or>grey</col or></fish>");
trace(xm Docunent. chi | dNodes[0] . chi | dNodes[0] . nodeVal ue);//prints "type"
trace(xm Docunent. chil dNodes[0] . chi | dNodes[1] . nodeVal ue);//prints "col or"

See also

“XML.firstChild Property” on page 314, “XML.hasChildNodes() Method” on page 315,
“XML.lastChild Property” on page 317, “XML.nextSibling Property” on page 318, “XML.previ-
ousSibling Property” on page 323, “XML.appendChild() Method” on page 309, “XML.insert-
Before() Method” on page 316,“XML.removeNode() Method” on page 323

ADOBE LIVEMOTION 2.0
Scripting Guide

XML.cloneNode() Method

node. cl oneNode(deep)

Description

The cl oneNode() method clones node and, optionally, all of its children.

Parameters

deep A boolean indicating whether a deep clone (all of the node’s children as well as
node) should be performed. If t r ue, a deep clone is performed. If f al se, only
node is cloned.

Returns

The cloned node and, if deep is t r ue, all of its children.

Example

xm Docunment = new XM.("<fish><type>Bass</type></fish>");
newDocunment = new XM.();

node = xm Docunent . firstChild.cloneNode(true);
newDocunent . appendChi | d(node) ;

trace(newbDocunent. firstChild.nodevalue);//prints "“fish"

See also

“XML.appendChild() Method” on page 309, “XML.createElement() Method” on page 312,
“XML.createTextNode() Method” on page 313, “XML.insertBefore() Method” on page 316

XML.contentType Property

root. content Type

311

312

CHAPTER 9
Reference

Description

The cont ent Type property holds the MIME content type. The MIME type is sent to the server
when either the send() or sendAndLoad() methods are used. Only available on the root node
of the document. This property can be read or written. The default is appl i cat i on/ x- www+
formurl encoded.

See also

“XML.send() Method” on page 324, “XML.sendAndLoad() Method” on page 324

XML.createElement() Method

root. creat eEl ement (t agNane)

Description

The cr eat eEl ement () method creates a new element, or tag, node (not a text node). Only
available on the root node of the document. The new node has no parent and no children. Note
that the new node that is returned is not inserted into r oot . To do that, you must use append-
Child() orinsertBefore().

As an example of a tag node, examine the line:

<t ype>Bass</type>

t ype is a tag node, whereas Bass is the associated text node.

Parameters

t agNane The tag name of the node to create.

Returns

The new tag node.

Example

xm Docunent = new XM.();

node = xm Documnent . creat eEl ement ("fish");
xm Docunent . appendChi | d(node) ;

trace(xnm Docunent. firstChild. nodeVal ue);

ADOBE LIVEMOTION 2.0
Scripting Guide

See also

“XML.appendChild() Method” on page 309, “XML.cloneNode() Method” on page 311,
“XML.createTextNode() Method” on page 313, “XML.insertBefore() Method” on page 316,

XML.createTextNode() Method

root. creat eText Node(text)

Description

The cr eat eText Node() method creates a text node (as opposed to an element, or tag, node).

Only available on the root node of the document. The new node has no parent and no children.

Note that the new node that is returned is not inserted into r oot . To do that, you must use
appendChi I d() orinsertBefore().

As an example of a text node, examine the line:

<t ype>Bass</type>

t ype is a tag node, whereas Bass is the associated text node.

Parameters

t ext The text of the node to create.

Returns

The new text node.

Example

xm Docunent = new XM.();

node = xm Documnent . creat eEl ement ("fish");

xm Docunent . appendChi | d(node) ;

textString = xm Docunent. creat eText Node(" Bass");

xm Docunent . firstChild. appendChild(textString);

trace(xm Docunent. firstChild.nodevalue);//prints "“fish"

trace(xm Docunent.firstChild.firstChild.nodeValue);//prints "Bass"

313

314

CHAPTER 9
Reference

See also

“XML.appendChild() Method” on page 309, “XML.cloneNode() Method” on page 311,
“XML.createElement() Method” on page 312, “XML.insertBefore() Method” on page 316

XML.docTypeDecl Property

root . docTypeDecl

Description

The docTypeDecl property specifies the DOCTYPE declaration of the XML document. If there
is no DOCTYPE, then this property is undefined. Only available on the root node of the
document. This property can be read or written.

Example

xm Docurent = new XM.("<fish><type>Bass</type><col or>grey</col or></fish>");
xm Docunent . docTypeDecl = "<!DOCTYPE sal utation SYSTEM\"hello.dtd\">";
trace(xm Docunent . docTypeDecl);

//prints "<! DOCTYPE sal utation SYSTEM "hel | 0. dtd">"

See also

“XML.xmlDecl Property” on page 326

XML .firstChild Property

node. firstChild

Description

The first Chil d property specifies the first child of node, or nul | if there are no children. This
property can only be read.

Example

xm Docunment = new XM_("<fish><type>Bass</type></fish>");
trace(xm Docunent. firstChild.nodevalue);//prints "“fish"

ADOBE LIVEMOTION 2.0

See also

“XML.childNodes Property” on page 310, “XML.lastChild Property” on page 317,
“XML.nextSibling Property” on page 318, “XML.previousSibling Property” on page 323

Scripting Guide

XML.hasChildNodes() Method

node. hasChi | dNodes()

Description

The hasChi | dNodes() method returns an indication of whether node has children.

Returns

true if node has children; f al se otherwise.

Example

xm Docunment = new XM_("<fish><type>Bass</type></fish>");
i f (xm Docunent. hasChil dNodes())
{

trace("yes");//prints "yes"
}

el se

{

trace("no");

}

See also

“XML.childNodes Property” on page 310

XML.ignoreWhite Property

root.ignoreWite

315

316

CHAPTER 9
Reference

Description

The i gnor eWhi t e property stores a boolean that indicates whether to ignore whitespace during
XML parsing. Only available on the root node of the document. The default is f al se. This
property can only be read.

Note: Previous to release 410f the Netscape Flash Player plug-in and release 42 of the Internet
Explorer Flash Player plug-in, the Flash 5 Player treated whitespace (carriage returns, tabs, spaces)
as nodes. The i gnor eWi t e property is supported in the later releases. If your XML code needs to
run on earlier versions of the Flash 5 Player, you will need to include code that strips out whitespace
from incoming XML documents.

tenp = new Bool ean(true);

trace(tenp.valueO());//prints "true"

xm Docunent = new XM.("<fish><type>Bass</type></fish>");
tenp = xm Docunent.ignoreWite;
trace(tenp.valueO());//prints "fal se"

XML.insertBefore() Method

node. i nsert Bef ore(newChi I d, insertBeforeChild)

Description

The i nsert Bef or e() method inserts a new child node before an existing child node in the
hierarchy.

Parameters

newChi | d An existing XML node to add as a child to node before
i nsert Bef or eChi | d in the hierarchy.

i nsert Bef oreChild The child to insert newChi | d before in node’s child list.

Example

xm Docunent = new XM.("<col or >grey</col or>");

newNode = xnl Docunent. creat eEl enent (" <col or>");

newText = xnl Docunent. creat eText Node("white");

newNode. appendChi | d(newText) ;

xm Docunent . i nsert Bef or e(newNode, xm Docunent.firstChild);

trace(xm Docunent. chi | dNodes[0] . chi | dNodes[0] . nodeVal ue);//prints "grey"

ADOBE LIVEMOTION 2.0
Scripting Guide

trace(xm Docunent. chi |l dNodes[1] . chi | dNodes[0] . nodeVal ue);//prints "white"

See also

“XML.appendChild() Method” on page 309

XML.lastChild Property

node. | ast Chi I d

Description

The I ast Chi | d property holds the last child of node, or nul | if there are no children.It is equiv-
alent to chi | dNodes[chi | dNodes. | engt h- 1] . This property can only be read.

Example

xm Docurment = new XM_("<col or >whi t e</ col or ><col or 2>gr ey</ col or 2>");
trace(xnl Docunent. | ast Chi | d. nodeVal ue);//prints "col or2"

See also

“XML.childNodes Property” on page 310, “XML.firstChild Property” on page 314,
“XML.nextSibling Property” on page 318, “XML.previousSibling Property” on page 323

XML.load() Method

root.load(url)

Description

Thel oad() method loads and parses an XML document from ur | intor oot . Only available on
the root node of the document. The load doesn’t happen immediately. Use the r oot . onLoad()
event handler for code to execute when the document has finished downloading. The loaded
document replaces the contents of r oot with the downloaded XML data. When | oad() is first
executed, the | oaded property is set to f al se; then, when the download is complete, thel oaded
property is set to t r ue and the root node’s onLoad() event handler is called. The XML data is
not parsed until the entire document is loaded. The parsing may be done using the default JavaS-
cript parser, or the r oot . onDat a() event handler may be used to write your own parser.

317

318

CHAPTER 9
Reference

Parameters

url A string specifying the URL of the document to load and parse. Its XML hierarchy
isplacedintor oot . For security reasons, the URL must be in the same domain as
that from which the movie clip was downloaded.

See also

“XML.loaded Property” on page 318, “XML.onLoad() Event Handler” on page 321,
“XML.sendAndLoad() Method” on page 324, “XML.status Property” on page 325,
“XML.onData() Event Handler” on page 320, “XML.parseXML() Method” on page 322

XML.loaded Property

root. | oaded

Description

The | oaded property holds t r ue if the | oad() or sendAndLoad() operation has completed.
Otherwise it holds f al se. Only available on the root node of the document. This property can
only be read.

See also

“XML.load() Method” on page 317, “XML.onLoad() Event Handler” on page 321,
“XML.sendAndLoad() Method” on page 324, “XML.status Property” on page 325

XML.nextSibling Property

node. next Si bl i ng

Description

The next Si bl i ng property holds a reference to the next node in the same level of the XML
object hierarchy, or nul | if node is the last node. This property can only be read.

Example

xm Docurment = new XM_("<col or>whi t e</ col or ><col or 2>gr ey</ col or 2>");

ADOBE LIVEMOTION 2.0
Scripting Guide

tenpNode = xml Docurent . chi | dNodes[0] ;

trace(tenpNode. firstChild.nodeValue);//prints "white"
tenpNode = tenpNode. next Si bli ng;

trace(tenpNode. firstChild.nodeValue);//prints "grey"

See also

“XML.childNodes Property” on page 310, “XML.firstChild Property” on page 314,
“XML.lastChild Property” on page 317, “XML.nodeName Property” on page 319,
“XML.nodeValue Property” on page 320, “XML.previousSibling Property” on page 323

XML.nodeName Property

node. nodeNane

Description

The nodeNane property holds the tag name of node, or nul | if node is a text node. If the tag is
<nynode> then the nodeNane is nynode. This property can be read or written.

See also

“XML.nodeType Property” on page 319, “XML.nodeValue Property” on page 320

XML.nodeType Property

node. nodeType

Description

The nodeType property holds the type of node. The possible values are 1 if this node is an
element node, or 3 if this node is a text node. This property can only be read.

See also

“XML.nodeName Property” on page 319, “XML.nodeValue Property” on page 320

319

320

CHAPTER 9
Reference

XML.nodeValue Property

node. nodeVal ue

Description

The nodeVal ue property holds the text contained in node, or nul | ifnode is an element node.
This property can be read or written, though writing to it only makes sense if the node is a text
node.

See also

“XML.nodeName Property” on page 319, “XML.nodeType Property” on page 319

XML.onData() Event Handler

root . onDat a(sour ce)

Description

The onDat a() user-defined event handler executes automatically whenever raw XML source has
finished loading into the XML document due to a previousr oot . | oad() or root . sendAn-
dLoad() call, but before the XML has been parsed. This allows you to write a custom function
that handles the raw XML, or you can simply let the default XML parser execute on the raw
XML.This event handler should only be defined if you want to do the XML parsing yourself. It
is only available on the root node of the document.

If the raw source that is received is undefined, the onDat a() event handler calls the

root . onLoad() event handler with the success parameter set to f al se. Otherwise, the
onDat a() event handler parses the raw XML, sets the r oot . | oaded property tot r ue, and calls
the root . onLoad() event handler with the success parameter set to t r ue.

Parameters

source A string with the raw XML source.

ADOBE LIVEMOTION 2.0
Scripting Guide

Example

This example shows how to intercept the raw XML using the onDat a() event handler. It uses a
function literal.

xm Docunent = new XM.();
xm Docunent . onData = function(source)

{

trace("Print the raw XM.: \n" + source);
s
See also

“XML.onLoad() Event Handler” on page 321, “XML.load() Method” on page 317,
“XML.sendAndLoad() Method” on page 324, “XML.loaded Property” on page 318

XML.onLoad() Event Handler

root . onLoad(success)

Description

The onLoad() user-defined event handler is automatically executed whenever an external XML
file isloaded intor oot viatheroot. | oad() orroot.sendAndLoad() method. By default, the
onLoad() event handler is an empty function: you must provide your own callback handler, as
shown in the example. The onLoad() event handler is only available on the root node of the
document and it offers an alternative to monitoring the state to ther oot . | oaded property
before proceeding with processing the downloaded XML.

Parameters

success A boolean indicating success (t r ue) or failure (f al se) of the
root. | oad() orroot.sendAndLoad() method.

Example

xm Docunent = new XM.();

xm Docurent . onLoad = xnl Processor;
xm Docunent . | oad("nmyFile.xm");
function xm Processor (success)

{

321

322

CHAPTER 9
Reference

//function body
b
See also

“XML.onData() Event Handler” on page 320, “XML.load() Method” on page 317,
“XML.sendAndLoad() Method” on page 324, “XML.loaded Property” on page 318

XML.parentNode Property

node. par ent Node

Description

The par ent Node property holds the parent node of node, or nul | if node is at the top of the
hierarchy. This property can only be read.

See also

“XML.childNodes Property” on page 310, “XML.firstChild Property” on page 314,
“XML.lastChild Property” on page 317, “XML.previousSibling Property” on page 323

XML.parseXML() Method

root . par seXM.(source)

Description

The par seXM.() method parses sour ce as an XML document. It replaces any existing XML in
root with the resulting XML tree from sour ce. Only available on the root node of the

document. This method is similar to the | oad() method, but the source is passed in as a string
so can be used, for example, to pass in user input rather than just the contents of a URL or file.

Parameters

source The string to parse.

ADOBE LIVEMOTION 2.0
Scripting Guide

See also

“XML.load() Method” on page 317, “XML.status Property” on page 325

XML.previousSibling Property

node. previ ousSi bl i ng

Description

The pr evi ousSi bl i ng property holds a reference to the previous node in the same level of the
XML object hierarchy, or nul | if node is the first node. This property can only be read.

Example

xm Document = new XM.("<col or>whi t e</ col or ><col or 2>gr ey</ col or 2>") ;
tenpNode = xml Docurnent . chi | dNodes[1] ;

trace(tenpNode. firstChild.nodeValue);//prints "grey"

tenpNode = tenpNode. previ ousSi bl i ng;

trace(tenpNode. firstChild. nodeValue);//prints "white"

See also

“XML.childNodes Property” on page 310, “XML.firstChild Property” on page 314,
“XML.lastChild Property” on page 317, “XML.nextSibling Property” on page 318,
“XML.nodeName Property” on page 319, “XML.nodeValue Property” on page 320,
“XML.parentNode Property” on page 322

XML.removeNode() Method

node. r emoveNode()

Description

The r enoveNode() method deletes node and all of its children from the containing document.

See also

“XML.appendChild() Method” on page 309

323

324

CHAPTER 9
Reference

XML.send() Method

root.send(url, w ndow)

Description

The send() method converts r oot into a string of XML source and sends it as an HTTP request
tour | . The response data is usually an HTML file for display in a browser window; this contrasts
with the sendAndLoad() method, which receives XML for display directly from the movie clip.
Only available on the root node of the document.

Parameters

url The URL to which to send the XML text.

wi ndow A string indicating the window in which to display data returned
by the server. This may be a custom name or one of the standard
JavaScript windows (_bl ank, _parent,_sel f,or _t op).

See also

“XML.sendAndLoad() Method” on page 324, “XML.load() Method” on page 317

XML.sendAndLoad() Method

root. sendAndLoad(url, responsexM.)

Description

The sendAndLoad() method converts r oot into a string and sends it as an HTTP request to
ur | . The receiving application is supposed to reply with an XML document, which is parsed as
XML source and loaded into r esponseXM.; this contrasts with the send() method, which
receives an HTML file for display in a browser window. Only available on the root node of the
document.

ADOBE LIVEMOTION 2.0
Scripting Guide

Parameters

url The URL to which to send the XML text. For security reasons, the URL must be
in the same domain as that from which the movie clip was downloaded.

response XM The XML object into which to load the response.

See also

“XML.load() Method” on page 317, “XML.loaded Property” on page 318, “XML.send()
Method” on page 324, “XML.status Property” on page 325, “XML.onData() Event Handler” on
page 320, “XML.onLoad() Event Handler” on page 321

XML.status Property

root. status

Description

The st at us property holds an integer that indicates whether there was an error parsing the XML
document. Only available on the root node of the document. This property can only be read. The
possible error codes are:

* 0 — No error; parsing completed successfully.

* - 2 — A CDATA section was not properly terminated.

¢ - 3 — The XML declaration was not properly terminated.

¢ -4 — The DOCTYPE declaration was not properly terminated.
+ -5 — A comment was not properly terminated.

*+ -6 — An XML element was malformed.

* -7 — Out of memory.

* - 8 — An attribute value was not properly terminated.

* - 9 — A start tag was not properly matched with an end tag.

* - 10 — An end tag was not properly matched with a start tag.

325

326

CHAPTER 9
Reference

Parsing occurs in several instances: when an XM object is first instantiated using the XML
constructor, when an XM. object is loaded using the | oad() or sendAndLoad() method, or XML
is passed for parsing to the par seXM.() method. Before checking the value of this property,
check the | oaded property to ensure that the | oad() orsendAndLoad() method has completed
successfully.

See also
“XML.load() Method” on page 317, “XML.loaded Property” on page 318, “XML.onLoad()

Event Handler” on page 321, “XML.parseXML() Method” on page 322, “XML.sendAndLoad ()
Method” on page 324,

XML.toString() Method

node. toString()

Description

Thet oSt ri ng() method converts node into a string and returns it. If you're debugging with
trace(),you probably won’t use this much.

Returns

A string that is the XML source code equivalent of node.

Example

xm Docurment = new XM_("<col or >whi t e</ col or ><col or 2>gr ey</ col or 2>");
trace(xm Docunment . toString());
/1 di splays "<col or>whit e</col or ><col or 2>gr ey</ col or 2>"

See also

“Object.toString() Method” on page 271, “XML.nodeValue Property” on page 320

XML.xmlIDecl Property

root . xm Decl

ADOBE LIVEMOTION 2.0
Scripting Guide

Description

The xn Decl property is a string that holds the XML declaration tag of the XML document. It
is only available on the root node of the document and is used to identify the version of XML
being used in the document. This property can be read or written.

Example

xm Docunent = new XM.("<?xml version=\"1.0\"?><type>Bass</type>");
trace(xnm Docunent. xm Decl) ;

[lprints "<?xm version="1.0"?>"

See also

“XML.docTypeDecl Property” on page 314

XMLnode Object

Description

The XM_.node object is the base class defining core properties and methods of nodes in an XML
object hierarchy. Few programmers will need to access this object, but it is possible to use it to
extend the default functionality of XML objects.

XMLSocket Object

Description

The XML.Socket object is used to implement a client socket that allows the Flash Player to
communicate with a server via an “open” connection. A socket connection is useful because it
remains “open”—that is, a TCP/IP connection doesn’t have to be made between the client and
the server each time communications occur between the two, as is required when the HTTP
protocol is used. This enables the Flash Player to listen for incoming messages and quickly
process them; it also allows it to respond quickly.

Constructor

new XM.Socket ()

327

328

CHAPTER 9
Reference

Parameters

None.

Properties

None.

Methods

cl ose()

connect ()

send()

Event Handlers

onCl ose()

onConnect ()

onDat a()

onXM-()

See “XMLSocket.close() Method” on
page 328.

See “XMLSocket.connect() Method”
on page 329.

See “XMLSocket.send() Method” on
page 333.

See “XMLSocket.onClose() Event Han-
dler” on page 330.

See “XMLSocket.onConnect() Event
Handler” on page 331.

See “XMLSocket.onData() Event Han-
dler” on page 332.

See “XMLSocket.onXML() Event Han-
dler” on page 332.

Close an open socket connection.

Create a connection to a specified server.

Send an XML object to the server.

Callback function that is called when a con-
nection has closed.

Callback function that is called when a con-
nection is created.

Callback function that is called when data is
received but has not yet been parsed as
XML.

Callback function that is called when data
has been received and parsed into an XML
object hierarchy.

XMLSocket.close() Method

socket . cl ose()

Description

The cl ose() method closes an open socket connection.

ADOBE LIVEMOTION 2.0
Scripting Guide

See also

“XMLSocket.connect() Method” on page 329, “XMLSocket.onClose() Event Handler” on
page 330

XMLSocket.connect() Method

socket . connect (host, port)

Description

The connect () method creates a connection to a specified server. If this method returnst r ue,
then the onConnect () event handler is invoked to complete the connection.

Parameters

host The full DNS name or an IP address. nul | if you want to specify the current
server (where the currently executing SWF file was downloaded from). For
security reasons, if the Netscape SWF plug-in or an ActiveX control is being
used, the host must have the same domain name as the host from which
the SWF file was downloaded.

port The TCP port to which you wish to establish a connection. Must be a num-
ber equal to or greater than 1024.

Returns

true if a connection is successfully created; f al se otherwise.

Example
function socket Connect (success)
{
i f (success)
{
trace("Full connection achieved");

b

s

newSocket = new XM.Socket ();
newSocket . onConnect = socket Connect ();
i f (newSocket.connect ("http://ww. adobe. cont', 2000))

329

330

CHAPTER 9
Reference

{

trace("Initial connection achieved");
s
See also

“XMLSocket.close() Method” on page 328, “XMLSocket.onConnect() Event Handler” on
page 331

XMLSocket.onClose() Event Handler

socket.onCl ose = functi onNane
socket . functi onNane()

Description

The onCl ose() user-defined callback function is called when a connection is closed by the
server. The default implementation of this method performs no action. To override the default
implementation, you must write your own handler, as shown in the example.

Parameters

functi onNane The name of the function to call when the indicated connection has
closed.

Example

newSocket = new XM.Socket ();
newSocket . onCl ose = socket Cl osed;
function socket Cl osed()

{

trace("The connection was closed by the server");
b
See also

“XMLSocket.close() Method” on page 328

ADOBE LIVEMOTION 2.0
Scripting Guide

XMLSocket.onConnect() Event Handler

socket . onConnect = functionNane
socket . functi onNane(success)

Description

The onConnect () user-defined callback function is called when a connection is created. The
default implementation of this method performs no action. To override the default implemen-
tation, you must write your own handler, as shown in the example.

Parameters
success A boolean indicating success (t r ue) or failure (f al se).

functi onNane The name of the function to call when the connection is created.

Returns

true if a connection is successfully created; f al se otherwise.

Example
function socket Connect (success)
{
if (success)
{
trace("Full connection achieved");

b

s

newSocket = new XM.Socket ();
newSocket . onConnect = socket Connect ();
i f (newSocket.connect ("http://ww. adobe. cont', 2000))

{

trace("Initial connection achieved");
s
See also

“XMLSocket.connect() Method” on page 329

331

332

CHAPTER 9
Reference

XMLSocket.onData() Event Handler

socket . onDat a(sour ce)

Description

The onDat a() user-defined callback function is called when data is received but has not yet been
parsed. The onDat a() event handler executes automatically whenever a zero byte (ASCII null
character) is transmitted to the player over socket . This allows you to write a function that
handles the raw XML instead of the default parser that would otherwise be used before the XML
is passed onto the socket . onXM.() event handler. If you have not supplied onDat a() with a
custom callback function, the XML is passed onto the default XML parser, and then

socket . onXML() is called with the result.

Parameters

source A string with the raw XML source.

Example
The following shows how to implement the onDat a() event handler using a function literal.

newSocket = new XM.Socket ();
newSocket . onData = function(source)

{

trace("Print the raw XM.: \n" + source);
s
See also

“XMLSocket.onXML() Event Handler” on page 332; “XML.onData() Event Handler” on
page 320

XMLSocket.onXML() Event Handler

socket. onXM. = functi onNane
socket . functi onName(obj ect)

Description

ADOBE LIVEMOTION 2.0
Scripting Guide

The onXML() user-defined callback function is called when data has been received and parsed
into an XML object hierarchy. It has been parsed either by the default parser or by a custom
onDat a() event handler. The default implementation of this method performs no action. To
override the default implementation, you must write your own handler.

Parameters

obj ect An XML object containing a parsed XML document that was received from the
server.

functi onNane The name of the function to call when data has been received and parsed into
an XML object hierarchy.

See also

“XMLSocket.send() Method” on page 333, “XMLSocket.onData() Event Handler” on page 332

XMLSocket.send() Method

socket . send(obj ect)

Description

The send() method converts obj ect to a string and sends it to the server over the socket
connection, followed by a zero byte (ASCII null character). This operation is asynchronous: the
send() is initiated, but the operating system and networking software may not complete the
transmission until some amount of time has passed.

Parameters

obj ect The XML object to send.

See also

“XMLSocket.onXML() Event Handler” on page 332, “XMLSocket.send() Method” on page 333

333

334 | CHAPTER 9
Reference

Glossary Terms

Absolute reference Reference that uses_r oot as the starting point of the address to a movie clip.
The address is a string of movie clip names delimited by dot (.) notation representing each level
in the object hierarchy from _r oot down to and including the name of movie clip being refer-
enced. The absolute reference is the same regardless of where in the object hierarchy the source
movie clip that is making the reference is located. An example of an absolute reference is:
_root.novi ed i pA novi el ipB. _x

Anchor point Point that represents the 0,0 (x,y) origin point for al coordinates in a movie clip.
For a movie clip group with multiple objects, the anchor point is set to the center of the group.

Animation Changes applied to an object over time.

Button Movie clip that has a button event handler or has had states added to it by the user.
Composition Referstoa.|iv file that is created in LiveMotion.

Composition timeline Main timeline of a composition; also referred to as_r oot ’s timeline.

Composition window Window in the LiveMotion user interface that displays objects as they are
created and edited. The objects are displayed as they appear at the current time, which is deter-
mined by the current- time marker in the Timeline window. The Composition window also
displays the results of previewing a composition.

DOM Document Object Model. All the objects, their methods, and properties that are supported
by LiveMotion as extensions to the JavaScript core.

Event User interaction, such as pressing a key or dragging the mouse, or system interaction, such
as loading a movie clip.

Filename.liv Document created in the LiveMotion application using LiveMotion’s interface
tools, palettes, and (optional) scripting code; also referred to as a composition.

Interactivity Result of a user event such as pressing a button or moving the mouse over an object
in a composition or a system event such as loading a movie clip. The event triggers an event
handler that performs a response when the event occurs.

Keyframe script Script added to a frame in a timeline.
Label String identifier that references a frame in a timeline.

Movie clip Copy of the MovieClip object that has its own timeline and unique name and can be
manipulated by writing scripts.

Movie clip group Parent movie clip containing one or more nested objects.

335

336

Parent Timeline upon which a movie clip or movie clip group is created.

Path Reference enclosed in quotation marks. An example of a path is:
" _root. novi ed i pA novi eC ipB. _x"

Relative reference Movie clip names delimited by dot (.) notation that “navigate” through the
object hierarchy and include the name of each movie clip from the source movie clip to the
movie clip it is referencing. The contents of a relative reference are determined by the hierarchical
relationship of the source movie clip to the movie clip it is addressing. Although using the
keyword t hi s is optional in the relative reference, this scripting guide begins all relative refer-
ences with t hi s. An example relative reference is:

this._parent.noviedipA novieCdipB._x

Script keyframe Keyframe to which a script is added.
Siblings Movie clips on the timeline of the same parent.

Source Movie clip that is controlling another movie clip by calling MovieClip methods or
manipulating MovieClip properties.

SWF File format into which a LiveMotion composition is converted on export on export to
Macromedia Flash format. SWF files can be viewed with the Flash Player or a Web browser with
the Flash plug-in.

Index

Symbols
liv files 15, 40

_leveln 87

_root movie clip 64, 69, 71, 108

A

absolute reference 66, 67
ActionScript Syntax Helpers 119
adding states 16

attachSound() object method 84

Automation syntax helper 25, 117

behaviors
mapping to scripts 45
Behaviors button 40

bounds checking 35

C

children 79

clearing breakpoints 135
composition 15

Composition browser 25, 117,
121

Console window

comparing output to Debugger
140

using with Debugger 140

writing to 139

current-time marker 31

D
Debugger

activating 127

buttons 130

Call stack window 129
expression entry field 133, 137
halting execution 130

Kill 131

modes 127

modes for bringing up 127
Run 130

setting breakpoints 135
single-stepping 131

Source window 129

Step 131

Step Into 131

Step Out 132

Stop 130

terminating sessions 131

using with Console window 138

Variable window 129, 138
watching variables 132, 137
windows 129

depth 81, 85

Description window 26, 116

dot (.) notation 65

event handlers

automatically generated 103
button 98
defined 32, 89
key 94
mouse 97
system-based 90
event types 89
examples, list of hands-on 13
Export 84

exporting 15, 30

F
Find 25, 118, 126

forms
creating 110
sending and receiving variables

108, 110

using text fields 105

G

global function
fscommand() 200

global functions

337

338

INDEX

Boolean() 161

Date() 168
duplicateMovieClip() 78, 197
escape() 198

eval() 199

getTimer() 200
getURL() 108, 201
gotoAndPlay() 203
gotoAndStop() 204
isFinite() 205

isNan() 205
ImFrameOfLabel() 217
loadMovie() 88, 108, 218
loadMovieNum() 219
loadVariables() 108, 220
loadVariablesNum() 221
nextFrame() 263
Number() 263
parseFloat() 273
parselnt() 273

play() 274

prevFrame() 275
removeMovieClip() 275
startDrag() 287

stop() 288
stopAllSounds() 288
stopDrag() 288

String() 289

targetPath() 302

that use _leveln 87
trace() 303

unescape() 304
unloadMovie() 88, 304
unloadMovieNum() 305

updateAfterEvent 306
global properties

_focusrect 199
_leveln 87, 217
_quality 275
_root 276
_soundbuftime 287
-Infinity 204
Infinity 204
NaN 262
newline 262
Go to Label (and play) 50
Go to Label (and stop) 50

Go to next script 25, 117, 123

Go to previous script 25, 117, 123

Go To Relative Time 50

H
Handler scripts 25, 117, 123

hands-on examples
automatically generated button
handlers 103

changing movie clip states 47

creating a bounds check 35

creating a button event handler
100

creating a preloader 54

creating a simple event handler
33

creating a state script 36

creating a toggle button 101

creating an onKeyDown event
handler 96

initializing a movie clip property
34, 35

mouse trailer 72

programmatic bounce 92

using script keyframes 27

using system-based event
handlers 91

writing a keyframe script to a

movie clip timeline 30
hands-on examples, list of 13

hierarchy, movie clips 64

1
independent timelines 40

initializing properites 34

J

JavaScript

ECMA-standard 17

LiveMotion implementation of
18

JavaScript references 14

JavaScript Syntax Helpers 119

K
Keyframe scripts 25, 117, 124
keyframe scripts

on a movie clip timeline 30

L
labels 17, 52, 74

creating 27

defined 26

guidelines for creating label

names 26
jump to 30
label names 29
names 30
specifying as argument values 30
string values 30

using 26

M
Make Movie Clip Group

command 62
modes, Debugger 127
Movie Clip command 62
movie clip events 89

Movie clip navigator 24, 116, 118
movie clips

_root 64
accessing shareable 85

and movie clip groups 63

attachMovie() method 77, 84
built-in methods 61, 71
built-in properties 61, 69
creating manually 62

creating methods 76

creating programmatically 77
creating properties 76
defined 16, 61

duplicateMovieClip() method
78

events and handlers 32

hierarchy 31, 64, 73

hierarchy and the programmatic
stack 82

placement of programmatically
created 83

properties 69, 72
sharing 83

swapDepths() method 81

N

names, label 26

new operator 61

o
objects

Arguments 147
Array 149
Boolean 162

Color 164

ADOBE PRODUCT X.0

Date 169

Key 206

Math 222
Mouse 234
MovieClip 235
Number 264
Object 269
Selection 276
Sound 280
String 290
XML 306
XMLnode 327
XMLSocketObject 327

objects, scriptable 28

P
parent-child relationship 64

placing scripts 23
Play 49
Preview mode 30

programmatic stacks 78
properties
creating movie clip 76
initializing 34

setting 16

relative reference 67

User Guide

339

340

INDEX

S
Script Editor

buttons 116
setting breakpoints 134
window 116
script keyframes 23, 44
accessing scripts 40
and timelines 40
creating 27
defined 27
on the composition timeline 27
Script window 26, 116
Scripting helper window 26, 116

Scripting syntax helper 24, 44,
117, 119

scripts

accessing 43

adding to states 36
adding to timelines 44
Change State 47

creating Flash Player commands
56

deleting 45

Go to Label (and play) 52
Go to Label (and stop) 51
Go to RelativeTime 51
Go to URL 58

locations of 17, 23

on event handlers 33

on states 36

opening 45

placing 23

Play 50

Run JavaScript 58
state 36

stop 50

Stop All Sounds 57
Wait For Download 52

Scripts button 40

Scripts Editor
opening 30

setting breakpoints

in Script Editor 134

in the Debugger 135
setting properties 16
siblings 80
single-stepping 131

sound objects, accessing shareable
85

state change events 89
State scripts 25, 117, 124

state scripts 36

states

and timelines 40

predefined 104

writing scripts to 40
States palette 40, 45

states, adding 16

static stacks 78

Stop 49

SWF files 57, 79, 86, 88
loading 56
stacking order of 87
unloading 57

Syntax highlighting 25, 118, 126

T
text fields

creating and using 105

scroll and maxscroll properties
302

this 31, 65, 67, 75
time-independent 16

toggle buttons, creating 101

X
XML

using for communications 111,
112

XML sockets 112

processing incoming data 114

z
z-order 64, 82

	Introduction
	Overview of this guide
	What you should know
	Organization of this guide
	Hands-on examples in this guide
	Where to go for more information

	Overview
	Script authoring
	LiveMotion objects
	Writing scripts to objects
	Extending functionality
	Script locations
	JavaScript in LiveMotion

	Writing Scripts
	Introduction to script writing
	Script Editor overview
	Using labels
	Using script keyframes
	Using event handlers
	Using state scripts

	Behaviors
	Introduction to behaviors
	Working with scripts that replace behaviors
	Creating LiveMotion 1.0 behaviors using LiveMotion 2.0 scripts

	Movie Clips
	Introduction to movie clips
	How to create a movie clip using LiveMotion
	Movie clip hierarchy
	Movie clip addressing
	Movie clip properties and methods
	Creating movie clips programmatically
	Making shareable movie clips (and shareable sounds)
	Levels of the Flash Player

	Movie Clip Events and Event Handlers
	Introduction to events
	System-based events and event handlers
	Key events and event handlers
	Mouse events and event handlers
	Button events and event handlers
	State change events and handlers
	Automatically generated button event handlers

	Dynamic Data
	Forms and text fields
	loadVariables(), loadMovie(), and getURL()
	How to create a form and send its data to a server
	XML communications
	XML socket communications

	Script Editor
	Introduction to the Script Editor
	Exploring the Script Editor
	Script Editor buttons

	Debugger
	Introduction to the Debugger
	Exploring the Debugger
	Using the Console window

	Reference
	Introduction
	Keywords and Statement Syntax
	Operators
	Reference for Objects, Methods, Properties, and Globals
	Arguments Object
	Arguments.callee Property
	Arguments.length Property
	Array Object
	Array.concat() Method
	Array.join() Method
	Array.length Property
	Array.pop() Method
	Array.push() Method
	Array.reverse() Method
	Array.shift() Method
	Array.slice() Method
	Array.sort() Method
	Array.splice() Method
	Array.toString() Method
	Array.unshift() Method
	Boolean() Global Function
	Boolean Object
	Boolean.toString() Method
	Boolean.valueOf() Method
	Color Object
	Color.getRGB() Method
	Color.getTransform() Method
	Color.setRGB() Method
	Color.setTransform Method
	Date() Global Function
	Date Object
	Date.getDate() Method
	Date.getDay() Method
	Date.getFullYear() Method
	Date.getHours() Method
	Date.getMilliseconds() Method
	Date.getMinutes() Method
	Date.getMonth() Method
	Date.getSeconds() Method
	Date.getTime() Method
	Date.getTimezoneOffset() Method
	Date.getUTCDate() Method
	Date.getUTCDay() Method
	Date.getUTCFullYear() Method
	Date.getUTCHours() Method
	Date.getUTCMilliseconds() Method
	Date.getUTCMinutes() Method
	Date.getUTCMonth() Method
	Date.getUTCSeconds() Method
	Date.getYear() Method
	Date.setDate() Method
	Date.setFullYear() Method
	Date.setHours() Method
	Date.setMilliseconds() Method
	Date.setMinutes() Method
	Date.setMonth() Method
	Date.setSeconds() Method
	Date.setTime() Method
	Date.setUTCDate() Method
	Date.setUTCFullYear() Method
	Date.setUTCHours() Method
	Date.setUTCMilliseconds() Method
	Date.setUTCMinutes() Method
	Date.setUTCMonth() Method
	Date.setUTCSeconds() Method
	Date.setYear() Method
	Date.toString() Method
	Date.UTC() Method
	Date.valueOf() Method
	duplicateMovieClip() Global Function
	escape() Global Function
	eval() Global Function
	_focusrect Global Property
	fscommand() Global Function
	getTimer Global Function
	getURL Global Function
	getVersion() Global Function
	gotoAndPlay() Global Function
	gotoAndStop() Global Function
	Infinity Global Property
	-Infinity Global Property
	isFinite Global Function
	IsNan() Global Function
	Key Object
	Key.BACKSPACE Constant
	Key.CAPSLOCK Constant
	Key.CONTROL Constant
	Key.DELETEKEY Constant
	Key.DOWN Constant
	Key.END Constant
	Key.ENTER Constant
	Key.ESCAPE Constant
	Key.getAscii() Method
	Key.getCode() Method
	Key.HOME Constant
	Key.INSERT Constant
	Key.isDown() Method
	Key.isToggled() Method
	Key.LEFT Constant
	Key.PGDN Constant
	Key.PGUP Constant
	Key.RIGHT Constant
	Key.SHIFT Constant
	Key.SPACE Constant
	Key.TAB Constant
	Key.UP Constant
	_leveln Global Property
	lmFrameOfLabel() Global Function
	loadMovie() Global Function
	loadMovieNum() Global Function
	loadVariables() Global Function
	loadVariablesNum() Global Function
	Math Object
	Math.abs() Method
	Math.acos() Method
	Math.asin() Method
	Math.atan() Method
	Math.atan2() Method
	Math.ceil() Method
	Math.cos() Method
	Math.E Constant
	Math.exp() Method
	Math.floor() Method
	Math.LN2 Constant
	Math.LN10 Constant
	Math.log() Method
	Math.LOG2E Constant
	Math.LOG10E Constant
	Math.max() Method
	Math.min() Method
	Math.PI Constant
	Math.pow() Method
	Math.random() Method
	Math.round() Method
	Math.sin() Method
	Math.sqrt() Method
	Math.SQRT1_2 Constant
	Math.SQRT2 Constant
	Math.tan() Method
	Mouse Object
	Mouse.hide() Method
	Mouse.show() Method
	MovieClip Object
	MovieClip._alpha Property
	MovieClip.attachMovie() Method
	MovieClip._currentframe Property
	MovieClip._droptarget Property
	MovieClip.duplicateMovieClip() Method
	MovieClip._framesloaded Property
	MovieClip.getBounds() Method
	MovieClip.getBytesLoaded() Method
	MovieClip.getBytesTotal() Method
	MovieClip.getURL() Method
	MovieClip.globalToLocal() Method
	MovieClip.gotoAndPlay() Method
	MovieClip.gotoAndStop() Method
	MovieClip._height Property
	MovieClip.hitTest() Method
	MovieClip.lmSetCurrentState() Method
	MovieClip.loadMovie() Method
	MovieClip.loadVariables() Method
	MovieClip.localToGlobal() Method
	MovieClip._name Property
	MovieClip.nextFrame() Method
	MovieClip._parent Property
	MovieClip.play() Method
	MovieClip.prevFrame() Method
	MovieClip.removeMovieClip() Method
	MovieClip._rotation Property
	MovieClip.startDrag() Method
	MovieClip.stop() Method
	MovieClip.stopDrag() Method
	MovieClip.swapDepths() Method
	MovieClip._target Property
	MovieClip._totalframes Property
	MovieClip.unloadMovie() Method
	MovieClip._url Property
	MovieClip.valueOf() Method
	MovieClip._visible Property
	MovieClip._width Property
	MovieClip._x Property
	MovieClip._xmouse Property
	MovieClip._xscale Property
	MovieClip._y Property
	MovieClip._ymouse Property
	MovieClip._yscale Property
	NaN Global Property
	newline Constant
	nextFrame() Global Function
	Number() Global Function
	Number Object
	Number.MAX_VALUE Property
	Number.MIN_VALUE Property
	Number.NaN Property
	Number.NEGATIVE_INFINITY Property
	Number.POSITIVE_INFINITY Property
	Number.toString() Method
	Number.valueOf() Method
	Object Class
	Object.constructor Property
	Object.__proto__ Property
	Object.toString() Method
	Object.valueOf() Method
	parseFloat() Global Function
	parseInt() Global Function
	play() Global Function
	prevFrame() Global Function
	_quality Global Property
	removeMovieClip() Global Function
	_root Global Property
	Selection Object
	Selection.getBeginIndex() Method
	Selection.getCaretIndex() Method
	Selection.getEndIndex() Method
	Selection.getFocus() Method
	Selection.setFocus() Method
	Selection.setSelection() Method
	Sound Object
	Sound.attachSound() Method
	Sound.getPan() Method
	Sound.getTransform() Method
	Sound.getVolume() Method
	Sound.setPan() Method
	Sound.setTransform() Method
	Sound.setVolume() Method
	Sound.start() Method
	Sound.stop() Method
	_soundbuftime Global Property
	startDrag() Global Function
	stop() Global Function
	stopAllSounds() Global Function
	stopDrag() Global Function
	String() Global Function
	String Object
	String.charAt() Method
	String.charCodeAt() Method
	String.concat() Method
	String.fromCharCode() Method
	String.indexOf() Method
	String.lastIndexOf() Method
	String.length Property
	String.slice() Method
	String.split() Method
	String.substr() Method
	String.substring() Method
	String.toLowerCase() Method
	String.toUpperCase() Method
	targetPath() Global Function
	Text Field Properties
	trace() Global Function
	unescape() Global Function
	unloadMovie() Global Function
	unloadMovieNum() Global Function
	updateAfterEvent() Global Function
	XML Object
	XML.appendChild() Method
	XML.attributes Property
	XML.childNodes Property
	XML.cloneNode() Method
	XML.contentType Property
	XML.createElement() Method
	XML.createTextNode() Method
	XML.docTypeDecl Property
	XML.firstChild Property
	XML.hasChildNodes() Method
	XML.ignoreWhite Property
	XML.insertBefore() Method
	XML.lastChild Property
	XML.load() Method
	XML.loaded Property
	XML.nextSibling Property
	XML.nodeName Property
	XML.nodeType Property
	XML.nodeValue Property
	XML.onData() Event Handler
	XML.onLoad() Event Handler
	XML.parentNode Property
	XML.parseXML() Method
	XML.previousSibling Property
	XML.removeNode() Method
	XML.send() Method
	XML.sendAndLoad() Method
	XML.status Property
	XML.toString() Method
	XML.xmlDecl Property
	XMLnode Object
	XMLSocket Object
	XMLSocket.close() Method
	XMLSocket.connect() Method
	XMLSocket.onClose() Event Handler
	XMLSocket.onConnect() Event Handler
	XMLSocket.onData() Event Handler
	XMLSocket.onXML() Event Handler
	XMLSocket.send() Method

	Glossary Terms
	Index

