
1

Contents

Introduction

Overview of this guide . 11

What you should know . 11

Organization of this guide . 12

Hands-on examples in this guide . 13

Where to go for more information . 14

Chapter 1 Overview

Script authoring . 15

LiveMotion objects . 15

Writing scripts to objects . 15

Extending functionality . 16

Script locations . 17

JavaScript in LiveMotion . 17

Chapter 2 Writing Scripts

Introduction to script writing . 23

Script Editor overview . 24

Using labels . 26

Using script keyframes . 27

Using event handlers . 32

Using state scripts . 35

Chapter 3 Behaviors

Introduction to behaviors . 39

Working with scripts that replace behaviors 39

Creating LiveMotion 1.0 behaviors using LiveMotion 2.0 scripts 45

Chapter 4 Movie Clips

Introduction to movie clips . 61

How to create a movie clip using LiveMotion 62

Movie clip hierarchy . 64

CONTENTS2
Movie clip addressing . 66

Movie clip properties and methods . 69

Creating movie clips programmatically . 77

Making shareable movie clips (and shareable sounds) 83

Levels of the Flash Player . 86

Chapter 5 Movie Clip Events and Event Handlers

Introduction to events . 89

System-based events and event handlers . 90

Key events and event handlers . 94

Mouse events and event handlers . 97

Button events and event handlers . 98

State change events and handlers .102

Automatically generated button event handlers 103

Chapter 6 Dynamic Data

Forms and text fields .105

loadVariables(), loadMovie(), and getURL() 108

How to create a form and send its data to a server110

XML communications .111

XML socket communications .112

Chapter 7 Script Editor

Introduction to the Script Editor .115

Exploring the Script Editor .115

Script Editor buttons .116

Chapter 8 Debugger

Introduction to the Debugger .127

Exploring the Debugger .127

Using the Console window .138

Chapter 9 Reference

Introduction .143

Keywords and Statement Syntax .143

Operators .144

3

Reference for Objects, Methods, Properties, and Globals147

Arguments Object .147

Arguments.callee Property .148

Arguments.length Property .148

Array Object .149

Array.concat() Method .150

Array.join() Method .151

Array.length Property .152

Array.pop() Method .153

Array.push() Method .153

Array.reverse() Method .154

Array.shift() Method .155

Array.slice() Method .156

Array.sort() Method .157

Array.splice() Method .158

Array.toString() Method .160

Array.unshift() Method .160

Boolean() Global Function .161

Boolean Object .162

Boolean.toString() Method .163

Boolean.valueOf() Method .163

Color Object .164

Color.getRGB() Method .165

Color.getTransform() Method .165

Color.setRGB() Method .166

Color.setTransform Method .167

Date() Global Function .168

Date Object .169

Date.getDate() Method .173

Date.getDay() Method .174

Date.getFullYear() Method .174

Date.getHours() Method .175

Date.getMilliseconds() Method .175

Date.getMinutes() Method .176

Date.getMonth() Method .176

Date.getSeconds() Method .177

Date.getTime() Method .177

CONTENTS4
Date.getTimezoneOffset() Method .178

Date.getUTCDate() Method .178

Date.getUTCDay() Method .179

Date.getUTCFullYear() Method .179

Date.getUTCHours() Method .180

Date.getUTCMilliseconds() Method .180

Date.getUTCMinutes() Method .181

Date.getUTCMonth() Method .181

Date.getUTCSeconds() Method .182

Date.getYear() Method .182

Date.setDate() Method .183

Date.setFullYear() Method .184

Date.setHours() Method .185

Date.setMilliseconds() Method .185

Date.setMinutes() Method .186

Date.setMonth() Method .187

Date.setSeconds() Method .187

Date.setTime() Method .188

Date.setUTCDate() Method .189

Date.setUTCFullYear() Method .189

Date.setUTCHours() Method .190

Date.setUTCMilliseconds() Method .191

Date.setUTCMinutes() Method .192

Date.setUTCMonth() Method .192

Date.setUTCSeconds() Method .193

Date.setYear() Method .194

Date.toString() Method .195

Date.UTC() Method .195

Date.valueOf() Method .196

duplicateMovieClip() Global Function .197

escape() Global Function .198

eval() Global Function .199

_focusrect Global Property .199

fscommand() Global Function .200

getTimer Global Function .200

getURL Global Function .201

getVersion() Global Function .202

5

gotoAndPlay() Global Function .203

gotoAndStop() Global Function .204

Infinity Global Property .204

-Infinity Global Property .204

isFinite Global Function .205

IsNan() Global Function .205

Key Object .206

Key.BACKSPACE Constant .208

Key.CAPSLOCK Constant .208

Key.CONTROL Constant .208

Key.DELETEKEY Constant .209

Key.DOWN Constant .209

Key.END Constant .209

Key.ENTER Constant .210

Key.ESCAPE Constant .210

Key.getAscii() Method .211

Key.getCode() Method .211

Key.HOME Constant .212

Key.INSERT Constant .212

Key.isDown() Method .212

Key.isToggled() Method .213

Key.LEFT Constant .214

Key.PGDN Constant .214

Key.PGUP Constant .215

Key.RIGHT Constant .215

Key.SHIFT Constant .215

Key.SPACE Constant .216

Key.TAB Constant .216

Key.UP Constant .216

_leveln Global Property .217

lmFrameOfLabel() Global Function .217

loadMovie() Global Function .218

loadMovieNum() Global Function .219

loadVariables() Global Function .220

loadVariablesNum() Global Function .221

Math Object .222

Math.abs() Method .224

CONTENTS6
Math.acos() Method .224

Math.asin() Method .225

Math.atan() Method .225

Math.atan2() Method .226

Math.ceil() Method .226

Math.cos() Method .227

Math.E Constant .227

Math.exp() Method .228

Math.floor() Method .228

Math.LN2 Constant .228

Math.LN10 Constant .229

Math.log() Method .229

Math.LOG2E Constant .229

Math.LOG10E Constant .230

Math.max() Method .230

Math.min() Method .230

Math.PI Constant .231

Math.pow() Method .231

Math.random() Method .231

Math.round() Method .232

Math.sin() Method .232

Math.sqrt() Method .233

Math.SQRT1_2 Constant .233

Math.SQRT2 Constant .233

Math.tan() Method .233

Mouse Object .234

Mouse.hide() Method .234

Mouse.show() Method .235

MovieClip Object .235

MovieClip._alpha Property .239

MovieClip.attachMovie() Method .239

MovieClip._currentframe Property .241

MovieClip._droptarget Property .241

MovieClip.duplicateMovieClip() Method .241

MovieClip._framesloaded Property .242

MovieClip.getBounds() Method .243

MovieClip.getBytesLoaded() Method .244

7

MovieClip.getBytesTotal() Method .245

MovieClip.getURL() Method .245

MovieClip.globalToLocal() Method .246

MovieClip.gotoAndPlay() Method .247

MovieClip.gotoAndStop() Method .247

MovieClip._height Property .248

MovieClip.hitTest() Method .248

MovieClip.lmSetCurrentState() Method .249

MovieClip.loadMovie() Method .250

MovieClip.loadVariables() Method .251

MovieClip.localToGlobal() Method .251

MovieClip._name Property .252

MovieClip.nextFrame() Method .252

MovieClip._parent Property .252

MovieClip.play() Method .253

MovieClip.prevFrame() Method .253

MovieClip.removeMovieClip() Method .253

MovieClip._rotation Property .254

MovieClip.startDrag() Method .254

MovieClip.stop() Method .255

MovieClip.stopDrag() Method .255

MovieClip.swapDepths() Method .256

MovieClip._target Property .257

MovieClip._totalframes Property .257

MovieClip.unloadMovie() Method .257

MovieClip._url Property .258

MovieClip.valueOf() Method .258

MovieClip._visible Property .258

MovieClip._width Property .259

MovieClip._x Property .259

MovieClip._xmouse Property .260

MovieClip._xscale Property .260

MovieClip._y Property .260

MovieClip._ymouse Property .261

MovieClip._yscale Property .261

NaN Global Property .262

newline Constant .262

CONTENTS8
nextFrame() Global Function .263

Number() Global Function .263

Number Object .264

Number.MAX_VALUE Property .265

Number.MIN_VALUE Property .265

Number.NaN Property .266

Number.NEGATIVE_INFINITY Property .266

Number.POSITIVE_INFINITY Property .267

Number.toString() Method .268

Number.valueOf() Method .268

Object Class .269

Object.constructor Property .270

Object.__proto__ Property .270

Object.toString() Method .271

Object.valueOf() Method .272

parseFloat() Global Function .273

parseInt() Global Function .273

play() Global Function .274

prevFrame() Global Function .275

_quality Global Property .275

removeMovieClip() Global Function .275

_root Global Property .276

Selection Object .276

Selection.getBeginIndex() Method .277

Selection.getCaretIndex() Method .278

Selection.getEndIndex() Method .278

Selection.getFocus() Method .279

Selection.setFocus() Method .279

Selection.setSelection() Method .280

Sound Object .280

Sound.attachSound() Method .281

Sound.getPan() Method .282

Sound.getTransform() Method .282

Sound.getVolume() Method .283

Sound.setPan() Method .284

Sound.setTransform() Method .284

Sound.setVolume() Method .285

9

Sound.start() Method .286

Sound.stop() Method .286

_soundbuftime Global Property .287

startDrag() Global Function .287

stop() Global Function .288

stopAllSounds() Global Function .288

stopDrag() Global Function .288

String() Global Function .289

String Object .290

String.charAt() Method .291

String.charCodeAt() Method .292

String.concat() Method .293

String.fromCharCode() Method .294

String.indexOf() Method .294

String.lastIndexOf() Method .295

String.length Property .296

String.slice() Method .297

String.split() Method .297

String.substr() Method .298

String.substring() Method .299

String.toLowerCase() Method .301

String.toUpperCase() Method .301

targetPath() Global Function .302

Text Field Properties .302

trace() Global Function .303

unescape() Global Function .304

unloadMovie() Global Function .304

unloadMovieNum() Global Function .305

updateAfterEvent() Global Function .306

XML Object .306

XML.appendChild() Method .309

XML.attributes Property .309

XML.childNodes Property .310

XML.cloneNode() Method .311

XML.contentType Property .311

XML.createElement() Method .312

XML.createTextNode() Method .313

CONTENTS10
XML.docTypeDecl Property .314

XML.firstChild Property .314

XML.hasChildNodes() Method .315

XML.ignoreWhite Property .315

XML.insertBefore() Method .316

XML.lastChild Property .317

XML.load() Method .317

XML.loaded Property .318

XML.nextSibling Property .318

XML.nodeName Property .319

XML.nodeType Property .319

XML.nodeValue Property .320

XML.onData() Event Handler .320

XML.onLoad() Event Handler .321

XML.parentNode Property .322

XML.parseXML() Method .322

XML.previousSibling Property .323

XML.removeNode() Method .323

XML.send() Method .324

XML.sendAndLoad() Method .324

XML.status Property .325

XML.toString() Method .326

XML.xmlDecl Property .326

XMLnode Object .327

XMLSocket Object .327

XMLSocket.close() Method .328

XMLSocket.connect() Method .329

XMLSocket.onClose() Event Handler .330

XMLSocket.onConnect() Event Handler .331

XMLSocket.onData() Event Handler .332

XMLSocket.onXML() Event Handler .332

XMLSocket.send() Method .333

Glossary Terms .335

Index .337

11
Introduction

Overview of this guide
The LiveMotion 2.0 Scripting Guide is your guide to enhancing compositions created with the

LiveMotion user interface. By incorporating JavaScript code into your compositions, you can

control animations and responses to user events in ways that would be impossible or extremely

tedious to do with the user interface tools and menus alone. If you have created behaviors in

LiveMotion 1.0, you will soon recognize the power of scripting in LiveMotion 2.0. With some

practice and working with scripting language, you are bound to be a convert.

Early sections of this guide start with some simple examples to get you started with scripting

right away. Just understanding how to create a simple composition that uses scripts may be all

you need to know. Later sections take you through more advanced examples and cover the

highlights of scripting LiveMotion 2.0 compositions.

What you should know
This guide assumes that you have an understanding of JavaScript syntax. If you do, the transition

to writing scripts should be easy. The scripts that you write are JavaScript with a few differences

to support exporting your .liv file to the SWF file format. “JavaScript in LiveMotion” on page 17

points out some of these differences.

If you need to learn JavaScript language fundamentals, such as what operators, variables, and

looping mechanisms are, you will find a wealth of publications available online and at your local

bookstore.“Where to go for more information” on page 14 lists several publications and some

helpful Web sites.

12
Introduction
Organization of this guide
This guide is organized as follows:

• “Introduction” on page 11 acquaints you with the LiveMotion 2.0 Scripting Guide, tells you

what you should know before you start reading, summarizes section contents and organization,

lists all the hands-on examples and where they are located in this guide, and provides references

for additional information.

• “Overview” on page 15 introduces LiveMotion’s authoring environment, provides a high-level

description of objects and movie clips, and points out the advantages of using scripting in

LiveMotion compositions. In addition, this section identifies the extensions to JavaScript plus

what is not supported in JavaScript when creating compositions that can be exported as SWF

files.

• “Writing Scripts” on page 23 gets you up and running. It describes basic ways you can manip-

ulate objects through scripting. In the process, you learn where and how to add scripts to your

compositions. The chapter uses very simple scripting examples. It is meant to reach everyone

who will be writing scripts, including those who are very new to scripting.

• “Behaviors” on page 39 provides procedures for creating scripts for each of the LiveMotion 1.0

behaviors.

• “Movie Clips” on page 61 describes how create movie clips manually and programmatically,

how to use built-in movie clip methods and properties, how to create your own movie clip

methods and properties, how to reference movie clips in the object hierarchy, and finally how to

load and unload SWF files.

• “Movie Clip Events and Event Handlers” on page 89 describes how to write [system-based and

user-generated] event handlers. The section provides several hands-on examples showing ways

to create these handlers.

• “Dynamic Data” on page 105 describes how to create LiveMotion applications that dynami-

cally accept user input and respond with the results of user queries within the LiveMotion movie

clip or browser window.

• “Script Editor” on page 115 introduces and explains in detail how to use the Script Editor

features to help you with writing scripts

• “Debugger” on page 127 describes the Debugger and Console window in detail.

13ADOBE LIVEMOTION 2.0
Scripting Guide
• “Reference” on page 143 is the detailed reference to writing scripts. The chapter describes each

global variable and function, each object and its associated methods and properties in the JavaS-

cript extensions, and all the JavaScript core functions that are supported when writing scripts.

• “Glossary Terms” on page 335 defines terms used in this guide.

Hands-on examples in this guide
This guide provides hands-on examples to get you involved in writing scripts that exercise

pertinent concepts. You are encouraged to save your examples, but this is optional. A few of them

are used again, but in those cases, the examples let you know if you should save results.

Here is a list of all the hands-on examples and their locations in this guide:

“Writing Scripts”

• “Hands-on example 2_1: Writing a keyframe script to the composition timeline” on page 27

• “Hands-on example 2_2: Writing a keyframe script to a movie clip timeline” on page 30

• “Hands-on example 2_3: Creating a simple event handler” on page 33

• “Hands-on example 2_4: Initializing a movie clip property” on page 34

• “Hands-on example 2_5: Creating a bounds check” on page 35

• “Hands-on example 2_6: Creating a state script” on page 36

“Behaviors”

• “Hands-on example 3_1: Changing movie clip states” on page 47

• “Hands-on example 3_2: Creating a preloader” on page 54

“Movie Clips”

• “Hands-on example 4_1: Mouse trailer” on page 72

“Events and Event Handlers”

• “Hands-on example 5_1: Using system-based event handlers to rotate a movie clip” on page 91

• “Hands-on example 5_2: Programmatic bounce” on page 92

• “Hands-on example 5_3: Creating an onKeyDown event handler” on page 96

14
Introduction
• “Hands-on example 5_4: Creating a simple button event handler” on page 100

• “Hands-on example 5_5: Creating a toggle button” on page 101

• “Hands on example 5_6: Experimenting with automatically generated button handlers” on

page 103

Where to go for more information

For more information on LiveMotion

See the LiveMotion 2.0 User Guide for detailed information on using Adobe Online to access a

resources that will help you with using LiveMotion.

For information on JavaScript

Flanagan, David, JavaScript The Definitive Guide, Third Edition, O’Reilly & Associates, 1998

(ISBN: 1-56592-392-8)

Moncur, Michael, Teach Yourself JavaScript in 24 Hours, Second Edition, Sams, 2000

Goodman, Danny, JavaScript Bible, Fourth Edition, IDG Books, 2000

Smith, Dori and Tom Negrino, JavaScript For the World-Wide Web

Wyke, Gilliam, and Ting, Pure JavaScript, Sams, 1999

Web sites

Check http://www.adobe.com for updated lists of reference sites.

See http://www.moock.org for ActionScript help to assist you in learning about LiveMotion

scripting.

15
Chapter 1: Overview

Script authoring
LiveMotion 2.0 is a script authoring tool. It makes use of a JavaScript editor, interpreter, and

debugger, which enable you to create, preview, troubleshoot, and export the scripted contents of

your composition(.liv file).

Through the Script Editor you can write scripts to the composition and movie clip timelines. In

addition, you can write scripts that respond to events such as pressing a key or loading a movie

clip. The Script Editor provides guidance in using the JavaScript core syntax and extensions. It

lists all the current movie clips, labels, and states defined in your composition, provides you with

the ability to set breakpoints, and assists you in locating all the scripts that are currently written.

LiveMotion 2.0 also includes aDebugger that you can use in Preview mode to troubleshoot your

compositions before they are exported. The Debugger not only locates and identifies errors but

provides you with a number of significant debugging features including the ability to view

variable values, set script breakpoints, and step through lines of a script as they are executed.

When you are satisfied with the way a composition is working, you can export it to the SWF file

format for viewing in the standalone Flash Player or in the Flash Player plug-in installed in your

Netscape or Microsoft Internet Explorer browser. Exporting the.liv file causes the JavaScript it

contains to be converted to ActionScript and embedded in the exported SWF file.

LiveMotion objects
As you recall from the LiveMotion 2.0 User Guide, objects are the basic element of a composition,

and they have a hierarchical organization. Movie clips, the focus of this guide, are also objects.

And they can be manipulated manually in all the ways you have already learned about in the User

Guide, plus new ways.

Writing scripts to objects
You can manipulate objects through the JavaScript scripting language. This opens up all sorts of

new possibilities for handling objects. However, you can only write scripts to a certain type of

object, namely, the movie clip.

CHAPTER 116
Overview
A movie clip starts out as a “regular” (unscriptable) object. To access it through scripting, you

must convert the object into a movie clip. A movie clip has its own timeline so that it can play

independently of the composition timeline and independently of any parent timeline (in the case

of nested movie clips). When you add states to an object, LiveMotion automatically converts the

object into a movie clip for you. Movie clips are equivalent to the time-independent objects and

time-independent groups in LiveMotion 1.0.

Extending functionality
By writing scripts, you can perform many functions on a movie clip that are equivalent to those

you can perform without using scripting. You can, for example, set a movie clip’s vertical and

horizontal position properties. This capability is equivalent to setting the position stopwatch and

creating animation keyframes. By setting properties through scripts, you can perform functions

such as changing an object’s opacity, rotation, and scale—to name a few. However, this is just the

beginning of what you can do through scripting.

Scripting enables you to control how your composition responds to events when they occur, use

logic to compare values and make decisions based on those values, easily repeat long processes

using a variety of looping mechanisms, respond to user events such as mouse and keyboard

changes, and encapsulate tasks into functions that can be called by any number of movie clips

anywhere in a composition. Not only can you write scripts that interact with the user, you can

write scripts that interact with servers. Through scripting, you can get data from a server and

post data to the server. The information obtained from a server can be used to dynamically

update your composition. You will find it difficult, if not, impossible, to perform most these

tasks through the use of keyframes (and basic LiveMotion 1.0 behaviors). These programmatic

controls, available through the JavaScript language, extend what you can create with keyframes

and enable you to fine tune your composition.

17ADOBE LIVEMOTION 2.0
Scripting Guide
Script locations
You can attach scripts at different locations in your composition to achieve the result that you

are after, whether that be animation, user interaction, or interaction with a server. These

locations are:

• On keyframes

• In event handlers

• In state change handlers

Although using labels is not a script writing technique in and of itself, you typically use labels in

combination with scripts to redirect the flow of execution of a timeline to a frame with the

identifying label. For example, this script takes the playhead of myClip’s timeline to the frame

labeled “Start”:

myClip.gotoAndPlay("Start");

For more information on writing scripts to various locations in your composition, see “Writing

Scripts” on page 23. That section introduces you to script writing and provides short exercises

that you can work through.

JavaScript in LiveMotion
The LiveMotion scripting environment is based on JavaScript, but it also is compatible with

ActionScript and ECMA-standard JavaScript (with a few caveats). Table 1.1 describes these

caveats.

CHAPTER 118
Overview
Table 1.1 JavaScript as Implemented in LiveMotion, Compared to ActionScript and ECMA-
standard JavaScript

Characteristic ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaS-
cript vs. the JavaScript
implementation in Live-
Motion

Case In ActionScript, keywords are case sensitive, but vari-
ables and other identifiers are not. JavaScript as imple-
mented in LiveMotion behaves the same way.

ECMA-standard JavaS-
cript is entirely case sen-
sitive.

switch/case
construct

ActionScript does not support the switch/case
construct. JavaScript and the LiveMotion scripting
environment do.

ECMA-standard JavaS-
cript and JavaScript as
implemented in LiveMo-
tion both support the
switch/case syntax.

States With the movieClip.lmSetCurrentState()
method, LiveMotion supports the setting of states of
movie clips using scripting code. ActionScript does
not support this.

ECMA-standard JavaS-
cript has no language
facilities to deal with
states of objects in this
sense.

eval() global
function

The ActionScript and the LiveMotion scripting envi-
ronments implement the eval() global function in
the same way. (See “Reference” on page 143.)

ECMA-standard JavaS-
cript implements an
expanded eval() func-
tion.

Support for
Unicode

ActionScript and JavaScript as implemented in Live-
Motion do not support Unicode.

ECMA-standard JavaS-
cript supports Unicode.

Maximum
number of
nested with
statements.

ActionScript and JavaScript as implemented in Live-
Motion support a maximum of 8 levels of nested with
statements.

ECMA-standard JavaS-
cript supports any num-
ber of levels of nested
with statements.

Exception han-
dling

ActionScript and LiveMotion do not support excep-
tion handling.

ECMA-standard JavaS-
cript supports error
objects and exception
classes.

Function
constructor

ActionScript and LiveMotion do not support the
Function constructor. However, object-based func-
tions can be created. For example:

this.myFunction = function() {}

ECMA-standard JavaS-
cript supports the
Function constructor.

19ADOBE LIVEMOTION 2.0
Scripting Guide
Frame numbers In ActionScript, the following global functions and
movie clip methods accept either frames or labels as
arguments. In LiveMotion, only labels are used.

gotoAndPlay() global function
gotoAndStop() global function
movieClip.gotoAndPlay() method
movieClip.gotoAndPlay() method

In addition, the lmFrameofLabel() global function
is available in LiveMotion but not in ActionScript. In
LiveMotion, it is used to return the frame number of
the label that is passed in as an argument to the call.
lmFrameofLabel() on works for labels on the
_root timeline.

ECMA-standard JavaS-
cript has no language
facilities to deal with
frames or labels in this
sense.

Characteristic ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaS-
cript vs. the JavaScript
implementation in Live-
Motion

CHAPTER 120
Overview
Syntax JavaScript as implemented in LiveMotion supports
most ActionScript syntax. For a complete listing, see
“Reference” on page 143. The following ActionScript
syntax is not supported, either because it was depre-
cated in Flash 5, or for other reasons.

call() function
chr() function
getProperty() function
_highquality property
ifFrameLoaded() function
int() function
nextScene() function
prevScene() function
print() function
printAsBitmap() function
printAsBitmapNum() function
printNum() function
random() function
setProperty() function
set statement
setVariable() function
substring() function
tellTarget() function
toggleHighQuality() function
$version() function
Most common string operators (e.g., add and and)

Note that some deprecated Flash 5 calls can be dupli-
cated using JavaScript syntax. For example, the follow-
ing code shows how you can mimic getProperty()
and setProperty():

movieclip.property = value;
var value = movieclip.property

ECMA-standard JavaS-
cript and JavaScript as
implemented in LiveMo-
tion share the same
basic objects, proper-
ties, and methods, as
described in “Reference”
on page 143.

Note that in LiveMotion
a Date() object cannot
be constructed using a
text string to provide the
current date.

Characteristic ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaS-
cript vs. the JavaScript
implementation in Live-
Motion

21ADOBE LIVEMOTION 2.0
Scripting Guide
onClipE-

vent() movie
clip event han-
dlers

ActionScript supports the onClipEvent() movie
clip event handlers:

load
unload
enterFrame
mouseMove
mouseDown
mouseUp
keyDown
keyUp
data

LiveMotion supports the equivalents of the Action-
Script onClipEvent() movie clip event handlers:

onLoad
onUnload
onEnterFrame
onMouseMove
onMouseDown
onMouseUp
onKeyDown
onKeyUp
onData

Note that the onData event handler is not available
from _root.

ECMA-standard JavaS-
cript doesn’t support
movie clip events.

Characteristic ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaS-
cript vs. the JavaScript
implementation in Live-
Motion

CHAPTER 122
Overview
on() button
event handlers

ActionScript supports the on() button event han-
dlers for the button object:

press
release
releaseOutside
rollOver
rollOut
dragOver
dragOut

LiveMotion supports the equivalents of the Action-
Script on() button event handlers for all movie clips
(in LiveMotion, a button is simply another movie
clip—there is no separate button object):

onButtonPress
onButtonRelease
onButtonReleaseOutside
onButtonRollOver
onButtonRollOut
onButtonDragOver
onButtonDragOut

ECMA-standard JavaS-
cript doesn’t support
movie clip events.

Evaluating
undefined as
a number

In ActionScript, evaluating undefined as a number
returns 0. LiveMotion does the same.

In ECMA-standard Java-
Script, evaluating unde-
fined as a number
returns undefined.

Evaluating
undefined as
a string

In ActionScript, evaluating undefined as a string
returns "". LiveMotion does the same.

In ECMA-standard Java-
Script, evaluating unde-
fined as a string
returns NaN.

Boolean value
of non-empty
strings

In ActionScript, only strings that can be converted to
valid non-zero numbers convert to true.

In ECMA-standard Java-
Script, all non-empty
strings convert to true.

Characteristic ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaS-
cript vs. the JavaScript
implementation in Live-
Motion

23
Chapter 2: Writing Scripts

Introduction to script writing
This section introduces you to some simple examples of writing movie clip scripts. It emphasizes

where you place scripts, as script placement determines when a script gets called. Scripts are

placed at three locations. These are:

• Script keyframes

• Event handlers

• State change handlers

In addition, this section discusses labels, which are frequently used in conjunction with

scripting.

The section begins with a brief overview of the Script Editor user interface. To acquaint you with

the functionality provided by the Script Editor, each example is presented as an exercise that you

can work through yourself. You are also introduced to movie clip referencing and some basic

JavaScript syntax, although a tutorial on JavaScript basics is beyond the scope of this guide.

Understanding JavaScript is a prerequisite if you want to do any serious LiveMotion scripting.

CHAPTER 224
Writing Scripts
Script Editor overview
You will be using the Script Editor to write your scripts and to locate information. Figure 2.1

shows the Script Editor window. The callouts identify its main functionality.

Figure 2.1 Script Editor main window

Table 2.1 briefly describes each of the control buttons and windows shown in the Script Editor

window.

Table 2.1 Script editor buttons and windows

Button or window Description

Movie clip navigator Lists all the movie clips in a composition in hierarchical order.
Selecting a movie clip in this window allows you to see and edit
scripts on that movie clip.

Scripting syntax helper Lists the LiveMotion 1.0 Behaviors, ActionScript syntax, and Java-
Script syntax. Selecting an item in the list displays a brief descrip-
tion of the argument in the Description window. Double-clicking
a syntax entry adds the item's syntax to the current script.

25ADOBE LIVEMOTION 2.0
Scripting Guide
Composition browser Lists all the movie clips, labels, and states in the composition.
Selecting an item in the list displays the reference text that will be
entered in the Script window. Double-clicking a movie clip, label,
or state adds the respective movie clip reference, label name, or
state name to the current script.

Automation syntax helper Lists and describes all the global objects and properties in the
JavaScript core that are supported by automation scripting and
all predefined objects, their methods, and properties in the Auto-
mation scripting DOM. This button is available when the export
format is Live Tab when you are editing an automation script. For
details on automation scripts and Live Tabs, see the
LiveMotion 2.0 SDK.

Go to previous script Switches the script view to the previously edited script. This but-
ton works like the Back button in a Web browser.

Go to next script Switches the script view to the more recently edited script. This
button works like the Forward button in a Web browser.

Handler scripts Lists all the event handlers in the drop-down menu for which you
can write scripts. This button, as well as the State scripts and Key-
frame scripts buttons (described below), display a blue triangle
when they contain scripts.

State scripts Lists all states in the drop-down menu that are defined for the
current movie clip (movie clip selected in the Movie clip naviga-
tor). The list contains the normal state, and it can include the pre-
defined states over, down, and out, plus any custom states
defined for the movie clip.

Keyframe scripts Lists all script keyframes in the drop-down menu for the current
movie clip.

Drop-down menu Displays the keyframes, event handlers, or states for the current
movie clip. The contents displayed depend on which of the previ-
ous three buttons is selected. Items in this menu will display an
asterisk if scripts exist on them.

Find Opens a dialog for finding and replacing text strings in the cur-
rent script.

Syntax highlighting Turns syntax highlighting on and off.

Button or window Description

CHAPTER 226
Writing Scripts
Using labels

What is a label?

A label is a string identifier, or name, that references a frame in a timeline. You can use labels as

arguments in scripts that you write. You could, for example, create a label called "right here" on

a particular frame. With the label in place, you can write a script that sets the current frame of a

timeline to the frame marked with the label "right here." Labels don't have to be used in scripts;

they can be used simply to annotate a timeline. For example, you could apply the label “Accel-

erate” to a frame to identify where an object appears to pick up speed.

Guidelines for creating label names
To create a label name, follow these guidelines:

• The first character of a label name must be in this set [a-z, A-Z, _, $]. It must not be a number.

• The remaining characters include the characters in the above set plus the numbers 0 through 9.

Note: Labels names that start with invalid characters will automatically have an underscore (_)

character added to the beginning of the name.

How to create labels

To create a label:

1 Display the timeline to which you want to add a label.

2 Move the current-time marker to the frame to which you want to add a label.

Script window Displays existing scripts and new scripts that you write to the cur-
rent movie clip.

Description window Displays brief descriptions of the syntax listed in the Scripting
syntax helper.

Scripting helper window Displays contents of the Scripting Editor’s Movie clip navigator,
syntax helper, and browser buttons. The contents displayed are
dependant on which of the buttons is selected.

Button or window Description

27ADOBE LIVEMOTION 2.0
Scripting Guide
3 Click the Labels button in the timeline. See Figure 2.2.

4 Enter a name for the label in the text box and click OK.

The label name and icon appear on the timeline at that frame.

You can duplicate, rename, move, or delete labels. See the LiveMotion 2.0 User Guide for details.

Using a label in a script
For examples of using labels in scripts, see “Hands-on example 2_1: Writing a keyframe script to

the composition timeline” on page 27 and “Hands-on example 2_2: Writing a keyframe script to

a movie clip timeline” on page 30.

Using script keyframes

What are script keyframes?
A script keyframe is a frame in a timeline to which a script is added. When the player head enters

that frame during playback, the script executes.

How to create script keyframes

To add a script to a keyframe:

1 Navigate to the timeline where you want to add the script keyframe.

2 In the Timeline window, move the current-time marker to the specified frame.

Note: Optionally, click the Labels button, and enter a name for the point in time where the script will

be added to the timeline.

3 Click the Scripts button to the left of the timeline to create a script keyframe at the current-

time marker. This also opens the Script Editor.

Hands-on example 2_1: Writing a keyframe script to the composition timeline
This example uses script keyframes and a label. A script written to the composition timeline

moves a movie clip horizontally across the Composition window.

CHAPTER 228
Writing Scripts
To use script keyframes on the composition timeline:

1 Create a new document in LiveMotion. Save the file as Ex2_1.liv.

2 Bring up the Timeline window by choosing Timeline > Composition Window from the main

menu. Alternately, you can use Ctrl+T (Windows) or Command+T (Mac OS).

3 Create an ellipse in the Composition window, and select it.

Note: By default, the object is selected after you create it.

4 Choose Object > Movie Clip from the main menu to convert the object into a movie clip.

Alternately, you can click the “Make selected objects movie clips” button located at the bottom

of the Timeline window.

A movie clip icon appears to the left of the object name in the Timeline window.

Note: To be scriptable, an object must be converted into a movie clip!

5 Select the object name in the timeline, press Enter, and enter in the new name “Ball” into the

text box. Press OK.

Figure 2.2 Timeline window showing the movie clip icon to the left of Ball

6 In the Timeline window, be sure the current-time marker is set to frame 0.

7 Click the Scripts button to add a script keyframe at frame 0.

This also brings up the Script Editor. With the Script Editor window displayed, you can add

scripts to the script keyframe you just created.

8 Write a script to the script keyframe at frame 0 that will move Ball 5 pixels to the right. Here

is a script that does this:

_root.Ball._x += 5;

29ADOBE LIVEMOTION 2.0
Scripting Guide
In the script, _root.Ball is the absolute reference to the movie clip named Ball. _root repre-

sents the composition timeline. All movie clips placed on _root's timeline can be accessed by

name as properties of _root. Thus we can access Ball by saying _root.Ball. (For details on

_root and absolute references, see “Movie clip addressing” on page 66.) _x is the horizontal

position property of Ball. It is one of several built-in movie clip properties. (For details, see

“Movie clip properties and methods” on page 69.) The operator (+=) is just a shorthand way to

write the code:

_root.Ball._x = _root.Ball._x + 5;

9 With the current-time marker still at frame 0, click the Labels button in composition timeline.

Enter Start in the text box, and click OK to create a label named Start at frame 0.

Note: When you create the label on the timeline frame, do not enclose the label name in quotation

marks. However, when you provide the value for label (which is of type string) as a method

argument, you must enclose the name in quotation marks to specify it as a string literal. This is done

in step 13 of this example.

10 Move the current-time marker to frame 1.

11 Drag the endpoint of the composition timeline so that it ends at frame 1.

This also extends the endpoint of Ball’s duration bar so that it ends at frame 1.

12 Click the Scripts button to create a script keyframe at frame 1. See Figure 2.3. This also opens

the Script Editor window (if it is not already open).

Figure 2.3 Timeline window showing label and script keyframe at frame 1 and script keyframe at
frame 2

CHAPTER 230
Writing Scripts
13 Enter the following code in the Script window:

_root.gotoAndPlay("Start");

gotoAndPlay() is a movie clip method that jumps a movie clip’s timeline to a specific label and

plays the timeline from the frame associated with the label. In this case, it jumps to the label

“Start” on the composition timeline (_root).

Note: When you created the label on the timeline (step 9), you did not enclose the label name in

quotation marks. However, when you provide the string value for label to gotoAndPlay(), you

must enclose the name in quotation marks.

14 Preview the movie clip by switching to Preview mode or by exporting your composition to

the Flash Player.

When the composition is previewed, the script you added at frame 0 moves Ball 5 pixels to the

right on the screen. When execution reaches frame 1, the gotoAndPlay() statement moves the

current-time marker to the frame labeled "Start" (in this case frame 0) and plays the timeline. At

this point the script on frame 0 executes again.

You can adjust the speed of Ball by changing the value added to _x in the script to a new value.

This concludes your first scripted composition!

Hands-on example 2_2: Writing a keyframe script to a movie clip timeline
This example writes a script to the movie clip’s own timeline rather than to the composition

timeline. The results are the same as before. The difference is that, in the previous example,

_root moved the Ball movie clip. In this example, the movie clip moves itself.

To write a keyframe script to the timeline:

1 Repeat steps 1 through 5 of “Hands-on example 2_1: Writing a keyframe script to the compo-

sition timeline” on page 27 to create a movie clip named Ball. Save this file as Ex2_2.liv.

2 Double click Ball in the composition timeline to open its own timeline. In the movie clip’s

timeline, be sure the current-time marker is set to frame 0. See Figure 2.4.

3 Click the Scripts button in the Timeline window to insert a script keyframe at frame 0.

This also brings up the Script Editor.

31ADOBE LIVEMOTION 2.0
Scripting Guide
.

Figure 2.4 Ball movie clip timeline

4 Write this script in the Script window to move Ball 5 pixels to the right.

this._x += 5;

The following keyword in the above statement refers to the movie clip to which the script is

added—in this case, the movie clip Ball:

this

Thus, the statement is incrementing Ball's horizontal position property.

You can also use the absolute reference as you did in the previous example in “Hands-on example

2_1: Writing a keyframe script to the composition timeline” on page 27. The absolute reference

would appear as:

_root.Ball._x += 5;

If, however, the object hierarchy for Ball changes (that is, Ball is placed in a movie clip group),

the absolute reference would no longer be valid. (For details on how movie clip groups change

the object hierarchy, see “Effect of creating a movie clip and a movie clip group” on page 63.)

5 With the current-time marker still at frame 0 in the Timeline window, click the Labels button.

Enter Start in the text box, and click OK to add the label to frame 0.

6 Move the current-time marker to frame 1, and drag the end point of Ball’s timeline so that it

ends at frame 1.

7 Create a script keyframe at frame 1, and enter the following code in the Script window:

this.gotoAndPlay("Start");

CHAPTER 232
Writing Scripts
8 Preview the movie clip.

Ball moves across the screen just as it did in the previous example. The movie clip advances its

horizontal position with each successive execution of the script.

Using event handlers

What are event handlers?
An event handler is script that is run as a result of a user action or a system-based event. For

example, you can write an event handler that executes every time the user presses the mouse

button or passes the mouse cursor over the movie clip. System-based events such as onLoad and

onData occur as a result of composition playback or loading variables into a movie clip.

Table 2.2 lists all the event handlers and describes the events they handle.

Table 2.2 Movie clip events

Event handler Event

onLoad First appearance of a movie clip in the composition. You can write
scripts here to initialize and declare variables and functions.

onUnload The first frame after the movie clip is removed from the composition.

onEnterFrame Each time the playhead enters a frame, before the frame is rendered,
while the movie clip is in the composition.

onMouseMove Any movement of the mouse cursor while the movie clip is in the com-
position.

onMouseDown Pressing the mouse button while the movie clip is in the composition.

onMouseUp Releasing the mouse button while the movie clip is in the composition.

onKeyDown Pressing a key while the movie clip is in the composition.

onKeyUp Releasing a key while the movie clip is in the composition.

onData When the loading of variables into a movie clip is complete or a portion
of a loaded movie completes loading into a movie clip.

onButtonPress Clicking the mouse button while the mouse cursor is on the movie clip.

33ADOBE LIVEMOTION 2.0
Scripting Guide
How to add a script to an event handler

To add a script to an event handler:

1 Select a movie clip in the timeline or in the composition.

2 Choose Scripts > Script Editor to open the Script Editor. Alternately, you can use Ctrl+J

(Windows) or Command+J (Mac OS).

3 In the Script Editor, click the Handler scripts button to display the drop-down menu of events.

4 Select the handler name from the list for which you want to write a handler.

5 Write the script in the Script window.

Hands-on example 2_3: Creating a simple event handler
This hands-on example adds the same movement to the movie clip Ball as the previous keyframe

script examples did. See “Hands-on example 2_1: Writing a keyframe script to the composition

timeline” on page 27 and “Hands-on example 2_2: Writing a keyframe script to a movie clip

timeline” on page 30. However, it uses an event handler to call the script that moves Ball.

To create an event handler:

1 Repeat steps 1 through 5 of “Hands-on example 2_1: Writing a keyframe script to the compo-

sition timeline” on page 27 to create a movie clip named Ball. Save this file as Ex2_3.liv.

onButtonRelease Releasing the mouse button while the mouse cursor is on the
movie clip.

onButtonReleaseOutside After pressing the mouse button while the mouse cursor is on the movie
clip, moving the mouse cursor off the movie clip and releasing
the button.

onButtonRollOver Moving the mouse cursor on the movie clip.

onButtonRollOut Moving the mouse cursor off the movie clip.

onButtonDragOver After pressing the mouse button while the mouse cursor is on the movie
clip, moving the cursor off and then back on the movie clip.

onButtonDragOut After pressing the mouse button while the mouse cursor is on the movie
clip, moving the mouse cursor off the movie clip.

Event handler Event

CHAPTER 234
Writing Scripts
2 Choose Scripts > Script Editor to open the Script Editor.

3 In the Script Editor, click the Handler scripts button to display the drop-down menu of event

handler names.

4 Select the onEnterFrame handler, and enter this script to move Ball horizontally.

this._x += 5;

This onEnterFrame event handler script causes Ball to move itself each time the playhead enters

a frame.

5 Preview the composition. The ball moves horizontally across the Composition window.

6 Save this file for the next two hands-on exercises.

Hands-on example 2_4: Initializing a movie clip property
This example builds on the previous one. It uses Ball's onLoad event handler to explicitly set the

horizontal starting position of Ball and to initialize a property containing the speed that Ball will

move. For this example, open Ex2_3.liv.

To initialize a property:

1 Select Ball, and choose Scripts > Script Editor to open the Script Editor.

2 Click the Handler scripts button, and select the onLoad event. Enter this script:

this._x = 100; //sets the initial position of Ball
this.speed = 5;

The first statement in this onLoad event handler script sets the initial horizontal position of Ball

to 100. The second creates a new property of Ball called speed and assigns it the value 5.

3 With the Handler scripts button still toggled on, select the onEnterFrame handler from the

drop-down menu. This brings up the event handling script that moves Ball.

this._x += 5;

Change the script to:

this._x += speed;

4 Preview the results.

5 Save this file as Ex2_3.liv for use in the next hands-on exercise.

35ADOBE LIVEMOTION 2.0
Scripting Guide
Except for setting Ball’s initial position, the behavior is the same as in the previous exercise. Ball

moves horizontally across the Composition window.

Hands-on example 2_5: Creating a bounds check
As another variation on the previous example, you can modify the onEnterFrame event handler

to do a bounds check to be sure Ball doesn't move out of the Composition window.

To create a bounds check:

1 Open the file Ex2_3.liv that you created in a previous exercise.

2 Select Ball in the Timeline window, and choose Scripts > Script Editor to open the Script

Editor.

3 Click the Handler scripts button, and select onEnterFrame from the drop-down menu of

event handlers. This brings up Ball’s event handling script:

this._x += speed;

4 To this script, add these if statements.

if(this._x > 550)
this.speed = -5;

if(this._x < 0)
this.speed = 5;

5 Preview.

Ball moves back and forth horizontally across the Composition window. You should adjust the

value 550 to reflect your Composition window’s actual width. Check Composition Settings to

determine the width.

Using state scripts

What are state scripts?

Thus far, the examples in this section have illustrated adding scripts to:

• The composition timeline using its Labels and Scripts buttons

• Movie clip timelines using its Labels and Scripts buttons

CHAPTER 236
Writing Scripts
• Event handlers

From working with the LiveMotion 1.0 user interface, recall that you can create rollover states

for an object. Scripts also can be added to these states. The state script is executed each time the

object changes to the state to which the script is added.

How to add scripts to states

To add a script to a state:

1 Select the object.

2 Open the States palette to view the movie clip states.

3 In the States palette, select the movie clip state to which you want to add a script.

4 Click the Scripts button in the palette.

This opens the Script Editor with the correct state script displayed.

5 Write the script in the Script window.

Hands-on example 2_6: Creating a state script
This example is similar to the keyframe examples you have created so far. Using the States palette,

you create an over state, which, for effect, you can change to a different color. Then you write a

script that moves the Ball one direction in the normal state and another, in the over state.

To create the state script:

1 Repeat steps 1 through 5 of “Hands-on example 2_1: Writing a keyframe script to the compo-

sition timeline” on page 27 to create a movie clip named Ball.

2 Using the States palette, create an over state for the movie clip. Give it a different fill color, so

you can more easily recognize the movement in the over state during playback.

3 In the States palette, select the over state.

37ADOBE LIVEMOTION 2.0
Scripting Guide
Figure 2.5 States palette with over state selected

4 Click the Scripts button at the bottom of the palette.

This opens the Script Editor at the location where you can add a script for the over state.

5 Enter the following code to move the movie clip 5 pixels to the right:

this._x += 5;

6 Select normal from the Script Editor’s drop-down menu of states, and enter the

following code:

this._y += 20;

This moves the movie clip vertically.

7 Preview the composition.

Ball first appears in its normal state. It does not move until you first pass the mouse over it. Try

this a few times. Each time the mouse is moved over Ball, it moves five pixels to the right. Moving

the mouse off Ball causes the movie clip to return to its normal state. Each time Ball enters its

normal state, it moves vertically downward 20 pixels.

CHAPTER 238
Writing Scripts

39
Chapter 3: Behaviors

Introduction to behaviors
This section describes how you can create LiveMotion 1.0 behaviors in LiveMotion 2.0. It is

meant to help you move on to a new way of looking at what behaviors really are.

In LiveMotion 1.0, behaviors did everything from playing and stopping compositions to enter-

taining the viewer with a looping movie clip while a lengthy, complex animation is loading.

Traditionally, behaviors executed when either a movie clip reached a certain point on its timeline

or when a movie clip entered a certain state. In LiveMotion 2.0, behaviors have evolved into

JavaScript code. To assist you in your transition to writing scripts, this section explains where you

can add scripts and the implications of adding the scripts in these locations. It provides an

overview of how to add, open, and remove scripts. Then for each LiveMotion 1.0 behavior, the

section provides a procedure for implementing that behavior in LiveMotion 2.0. As additional

help, you are provided guidance using the Scripting syntax helper to access the LiveMotion 1.0

behaviors and the LiveMotion 2.0 code to which each behavior maps.

Even if you are new to LiveMotion, it will benefit you to read this section to learn how

LiveMotion 1.0 behaviors are implemented in JavaScript, because you can incorporate their

functionality into any scripts that you write. You are not required to know anything about

LiveMotion 1.0 behaviors to create the examples in this chapter, which can instead serve as

simple examples to start you down the road to scripting.

Working with scripts that replace behaviors
This section provides procedures for adding, opening, and deleting scripts from keyframes and

states.

Note: In LiveMotion 2.0, you also can write scripts to handle events. Event handling is made possible

in LiveMotion 2.0 because of its support for scripting. For details on creating event handlers, see

“Movie Clip Events and Event Handlers” on page 89.

CHAPTER 340
Behaviors
The effect of writing scripts to movie clip timelines versus movie clip states
You can write scripts to movie clip timelines or to movie clip states, depending on the effect that

you are after. To prepare you for working with scripts, you should understand these concepts:

• Timelines have script keyframes (that is, script icons on timeline frames)

• States have timelines

When you write a script to a movie clip timeline, you write that script to a specific timeline

frame. The frame is called a script keyframe. During execution of the .liv file in Preview mode

or on export of the SWF file, the script keyframe executes at a specific frame in the lifetime of the

movie clip—that is, when the playhead reaches that script keyframe. A timeline can have

multiple script keyframes.

All objects have a normal state by default. You also can add any of the predefined states (over,

down, or out) to a movie clip in the States palette, or you can define custom states with their own

names. Each movie clip state contains its own independent timeline, and each of these timelines

can contain keyframes scripts.

When you write a script to a state, the script executes only when the movie clip enters that state,

not at a preset point in the movie clip’s lifetime. Say, for example, the user presses the mouse

button on a movie clip for which you have defined a down state. This would execute any script

you may have written for that state. You can write scripts to any or all states that you define for

a movie clip. You also can write multiple scripts to the timeline of a single defined state by adding

script keyframes.

Accessing scripts
You can access scripts from:

• Script keyframes in a timeline. Clicking the script keyframe opens the Script Editor and

displays the script added to that frame on the timeline.

• The Scripts button towards the bottom of the States palette. Clicking the scripts button opens

the Script Editor on the state currently selected in the States palette.

In LiveMotion 1.0, the Scripts button was called the Behaviors button. For your general

reference, the following four figures show you the LiveMotion 1.0 and LiveMotion 2.0 Timeline

windows and States palettes.

41ADOBE LIVEMOTION 2.0
Scripting Guide
Figure 3.1 shows the LiveMotion 1.0 Timeline window with a behavior added to a keyframe in a

timeline. LiveMotion 1.0.

Figure 3.1 LiveMotion 1.0 Timeline window

Figure 3.2 shows the LiveMotion 2.0 Timeline window. In place of the Behaviors button, the

Scripts button is used to create new scripts on timeline script keyframes. A separate Labels

button is used to create labels on a timeline. The figure shows a label on a script keyframe.

Figure 3.2 LiveMotion 2.0 Timeline window

CHAPTER 342
Behaviors
Figure 3.3 shows the LiveMotion 1.0 Rollovers palette. The Behaviors button adds behaviors to

object states and allows the user to access the behaviors. In the figure, the behaviors icon on the

over state indicates that a behavior has been added to that state.

Figure 3.3 LiveMotion 1.0 Rollovers palette

Figure 3.4 shows LiveMotion 2.0’s States palette. This is very similar to the LiveMotion 1.0

Rollovers palette. However, you use a Scripts button to add new scripts to, and to access existing

scripts on, object states. Like the LiveMotion 1.0 Rollovers palette, the script icon on the over

state in the figure indicates that a custom script has been added to that state.

Figure 3.4 LiveMotion 2.0 States palette

43ADOBE LIVEMOTION 2.0
Scripting Guide
(Advanced users) You can access scripts by selecting Scripts > Script Editor from the main menu.

Alternately, you can use the keyboard shortcut Ctrl + J (Windows) or Command + J (Mac OS).

Then, select the movie clip whose script you want to access in the Script Editor’s Movie clip

navigator. This takes you to that movie clip's scripts, but not necessarily to the script that you

want. You must then navigate to the event handler, state, or script keyframe containing the script

you want to access.

Adding Scripts

To add a script to a movie clip state:

Note: The first three steps of this procedure also open a script on a state. Compare steps 1 to 3 below

to the procedure in “To open a script from a movie clip state:” on page 45.

1 In the Timeline window, select the movie clip to which you want to add a state script.

2 Open the States palette to view that movie clip’s states.

3 In the States palette, select the movie clip state to which you want to add a script.

4 Click on the Scripts button at the bottom of the States palette. See Figure 3.4.

This opens the Script Editor and displays the state’s Script window.

5 Click the Scripting syntax helper button to open the list of LM 1.0 behaviors. Select the desired

script by its LM 1.0 behavior name, and press Enter (or double click the name).

The script for the behavior is added to the Script window, as shown in Figure 3.5. For details on

the Scripting syntax helper, see “Script Editor” on page 115.

CHAPTER 344
Behaviors
6 Replace any parameters the script requires with their values.

Figure 3.5 Scripting syntax helper open to LM 1.0 behaviors with the play behavior selected

To add a script to a movie clip timeline:

1 Navigate to the timeline where you want to add the script keyframe.

2 In the Timeline window, move the current-time marker to the frame to which you want to

add a script. Optionally, click the Labels button (see Figure 3.2), and enter a name for the point

in time where the script will be added to the timeline.

3 Click the Scripts button on the timeline to create a script keyframe at the current-time marker.

This also opens the Script Editor.

Note: If a script keyframe already exists on the specified frame, clicking the Scripts button simply

opens the Script Editor and displays the scripts on that keyframe.

4 Click the Scripting syntax helper button to open the list of LM 1.0 behaviors. See Figure 3.5.

Select the desired behavior by its LM 1.0 name, and press Enter (or double click the name).

The script for the behavior is added to the Script window.

5 Replace any parameters the script requires with their values.

45ADOBE LIVEMOTION 2.0
Scripting Guide
Opening scripts

To open a script from a movie clip state:

1 Open the States palette to view movie clip states.

2 In the States palette, select the movie clip state with the script you want to open.

3 Click the Scripts button in the palette.

This brings up the Script Editor and displays the script for that movie clip state in the Script

window.

To open a script from the timeline:

1 Locate the script icon for the script you want to view, and double-click.

Deleting scripts

To delete a script from a movie clip state:

1 Open the States palette to view movie clip states.

2 In the States palette, select the movie clip state with the script you want to delete.

3 Click the Scripts button in the palette.

This brings up the Script Editor and displays the script for that movie clip state in the Script

window.

4 Select the script implementing the behavior you want to delete, and press Delete.

To delete a script from the timeline:

1 Locate the script icon for the script you want to view, and double-click.

2 Select the script implementing the behavior you want to delete, and press Delete.

Creating LiveMotion 1.0 behaviors using LiveMotion 2.0 scripts
This section provides details on how you create scripts that duplicate LiveMotion 1.0 behaviors.

For your reference, Table 3.1 lists the LiveMotion 1.0 behaviors supported and the LiveMotion

2.0 scripts to which they map.

CHAPTER 346
Behaviors
Table 3.1 LiveMotion 1.0 Behaviors and their corresponding scripts

LM 1.0 Behavior script Description

Change State movieClip.lmSetCurrentState(state); Change the state of the
specified movie

Go to Relative
Time, Backward 1
Frame

movieClip.prevFrame(); Go to the movie clip's rela-
tive time backward 1 frame

Go to Relative
Time, Forward 1
Frame

movieClip.nextFrame(); Go to the movie clip's rela-
tive time forward 1 frame

Go to URL getURL(url,window); Open a URL in the specified
browser window or frame

Go to Label (and
stop)

movieClip.gotoAndStop(label); Go to the specified label
and stop

Go to Label (and
play)

movieClip.gotoAndPlay(label); Go to the specified label
and play

Load Movie loadMovieNum(url,levelNum); Load the specified URL into
the specified SWF file level

Run JavaScript getURL("javascript:code") Run the javascript specified

Stop All Sounds stopAllSounds(); Stop all sounds from play-
ing, but do not stop the
movie

Unload Movie unloadMovieNum(levelNum); Unload the specified movie

Wait For Down-
load

if (this._framesloaded <
lmFrameOfLabel(finishLabel))

{

 this.gotoAndPlay(repeatLabel);

}

Loop the composition time-
line to a certain label until
all the frames up to a speci-
fied label on the composi-
tion timeline have loaded

Play movieClip.play(); Start playing the specified
movie

Stop movieClip.stop(); Stop playing the specified
movie

47ADOBE LIVEMOTION 2.0
Scripting Guide
Creating Change State scripts
The Change State script changes the state of the specified movie clip.

To change the state of a movie clip:

1 Navigate to the location where you want to add the state change. See “Adding Scripts” on

page 43.

2 In the Script Editor, click the Scripting syntax helper button. Select Change State from the LM

1.0 behaviors list, and press Enter (or double click the name).

The appropriate script appears in the Script window:

movieClip.lmSetCurrentState(state);

3 Replace the arguments described below with the appropriate values.

movieClip is a reference to the movie clip whose state you want to change.

state is a string containing the name of the state you want to set.

You can use the Script Editor’s Scripting syntax helper (Description window), to obtain brief

definitions of the script contents, and the Composition browser, to help fill in the values. For

details on using the Script Editor features, see “Script Editor” on page 115.

Hands-on example 3_1: Changing movie clip states
In this exercise, you will create two movie clip (buttons) that control the state of a third movie

clip.

To create this example:

1 Create a new composition. Save the file as Ex3_1.liv.

2 In the Composition window, create two ellipses. Give one a red fill color and the other, a

blue fill.

3 Create a down state for each ellipse in the States palette.

This converts each ellipse to a movie clip.

CHAPTER 348
Behaviors
4 In the Composition window, create a rectangle. Give the rectangle a fill color, such as yellow

(not red or blue).

Figure 3.6 Composition window with two ellipses and a rectangle

5 In the States palette, give the rectangle two custom states: red and blue.

This converts the rectangle into a movie clip.

6 For each of the custom states, give the rectangle the appropriate fill color: provide a blue fill

for the blue state and red fill, for the red.

7 Open the Timeline window.

8 Select the rectangle, press Enter, and give it the new name Box. Press OK.

9 Select the red ellipse.

10 In the States palette, select the down state, and click the Scripts button to open the Script

Editor.

11 Click the Scripting syntax helper button, and expand the list of LiveMotion 1.0 behaviors.

12 Select the Change State behavior, and press Enter (or double click the behavior name).

The following script is generated in the Script window:

movieClip.lmSetCurrentState(stateName);

49ADOBE LIVEMOTION 2.0
Scripting Guide
Replace movieClip with the absolute reference to Box, and replace stateName with the custom

state "red". You can use the Composition browser in the Script Editor to help fill in the values

for movieClip. and stateName. For details on using the Script Editor features, see “Script

Editor” on page 115.

With these two parameters replaced, the script should appear as:

_root.Box.lmSetCurrentState("red");

13 Close the Script Editor.

14 In the Composition window, select the blue ellipse. Repeat steps 8 through 12, opening the

script for the down state of the blue ellipse, but set the state of Box to blue instead of to red. With

the parameters replaced, the script should appear as:

_root.Box.lmSetCurrentState("blue");

15 Preview.

Clicking the red ellipse changes the color of box to red. Clicking the blue ellipse changes the color

of box to blue.

Creating scripts to manipulate a movie clip timeline
These scripts can be used to manipulate a timeline:

• Play

• Stop

• Go To Relative Time, Backward 1 Frame

• Go To Relative Time, Forward 1 Frame

• Go To Label (and stop)

• Go to Label (and play)

The Play and Stop scripts play or stop a specified timeline. You can, for example, add scripts to

the first frame of a composition timeline to stop the timelines of all the movie clips it contains.

Although the movie clip timelines will be stopped, the composition timeline will continue

playing, enabling you to run individual movie clips as needed using the script for Play.

CHAPTER 350
Behaviors
In LiveMotion 2.0, the Go To Relative Time scripts only support going forward or backward one

frame; whereas, the LiveMotion 1.0 behavior supported going forward or backward a specified

number of frames. To achieve the same result as Go To Relative Time in LiveMotion 1.0, you can

use the Go To Label script.

The Go to Label (and stop) script moves the animation to a specific label in a timeline and stops

the timeline.

The Go to Label (and play) script sends the playhead of a movie clip’s timeline to the specified

frame or label to play the timeline at that frame.

To add a Play or Stop script:

1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 43.

2 In the Script Editor, click the Scripting syntax helper button. Select Stop or Play from the LM

1.0 behaviors list, and press Enter (or double click the behavior name).

The appropriate script appears in the Script window:

movieClip.stop();

or

movieClip.play();

3 Replace the movieClip argument described below with the appropriate value.

movieClip is a reference to the movie clip you want to start or stop at it's current frame. If the

movie clip is stopping or playing itself, use this for the movie clip, for example,

this.stop();

or

this.play();

play() and stop() are movie clip methods that are equivalent in functionality to the respective

LiveMotion 1.0 Play and Stop behaviors.

You can use the Script Editor’s Scripting syntax helper (Description window), to obtain brief

definitions of the script contents, and the Composition browser, to help fill in the values. For

details on using the Script Editor features, see “Script Editor” on page 115.

51ADOBE LIVEMOTION 2.0
Scripting Guide
To add a Go to Relative Time script:

1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 43.

2 Click the Scripting syntax helper button. Select Go to Relative Time, Backward 1 Frame or Go

to Relative Time, Forward 1 Frame from the LM 1.0 behaviors list, and press Enter (or double

click the behavior name).

The appropriate script appears in the Script Editor Composition window:

movieClip.prevFrame();

or

movieClip.nextFrame();

3 Replace the movieClip argument described below with the appropriate value.

movieClip is a reference to the movie clip you want to move backward or forward 1 frame.

You can use the Script Editor’s Scripting syntax helper (Description window), to obtain brief

definitions of the script contents, and the Composition browser, to help fill in the values. For

details on using the Script Editor features, see “Script Editor” on page 115.

To add a Go to Label (and stop) script:

1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 43.

2 Click the Scripting syntax helper button. Select Go to Label (and stop) from the LM 1.0

behaviors list, and press Enter (or double click the behavior name).

The script appears in the Script Editor Composition window:

movieClip.gotoAndStop(label);

Replace the movieClip and label arguments described below with the appropriate values. You

can use the Scripting syntax helper and the Composition browser in the Script Editor to help fill

in these values. For details on using the Script Editor features, see “Scripting Tools” on page 95.

movieClip is a string containing the label name associated with the frame on the movie clip’s

timeline to which the playhead will be sent and stopped.

label is a string associated with the frame on the movie clip’s timeline to which the playhead

will be sent and stopped.

Here is an example script with the values filled in:

_root.gotoAndStop("end");

CHAPTER 352
Behaviors
Note: When you create the label on a timeline frame, do not enclose the label name in quotation

marks. However, when you fill in the value for label (which is of type string) in the script, you must

enclose the label name in quotation marks, as shown in this example script.

To add a Go to Label (and play) script:

1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 43.

2 Click the Scripting syntax helper button. Select Go to Label (and play) from the LM 1.0

behaviors list, and press Enter (or double click the behavior name).

The script appears in the Script Editor Composition window:

movieClip.gotoAndPlay(label)

3 Replace the movieClip and label arguments described below with the appropriate values.

movieClip is the name of the movie clip that you want to go to label and play.

label is a string containing the label name associated with the frame on the movie clip’s timeline

to which the playhead will be sent and played.

You can use the Script Editor’s Scripting syntax helper (Description window), to obtain brief

definitions of the script contents, and the Composition browser, to help fill in the values. For

details on using the Script Editor features, see “Script Editor” on page 115.

Creating Wait For Download scripts
The Wait For Download script is a special case of timeline manipulation. It is used to loop part

of the composition timeline until all the items placed on the timeline up to a specified frame have

been downloaded. A Wait For Download script can be used to prevent poor performance for

compositions that include large objects, or for lengthy and complex movie clips.

The script only works in a script keyframe on the composition timeline and is useful only in

compositions that are later loaded with the loadMovie() movie clip method or global function.

The first SWF file in the Flash Player is always downloaded completely before playback begins.

Wait For Download consists of three items on the main timeline: two labels with a script in

between. These items work together to loop the timeline until all the content up to a certain

frame has been downloaded.

53ADOBE LIVEMOTION 2.0
Scripting Guide
The first label on the timeline identifies the first timeline frame that is part of the waiting loop.

The second label, and last item on the timeline, identifies the timeline frame that is being waited

upon to finish downloading. Situated in between the labels on the timeline is a script keyframe

to which the Wait For Download script is added. The script keyframe marks the last frame of the

waiting loop. Upon execution, the script tests to see if the frame on the timeline containing the

second label has loaded. If it has, the composition timeline plays forward; otherwise, the

playhead of the composition timeline is placed back at the location of the first label where it

repeats playing the frames between the first label and the script keyframe.

This looping pattern continues until all the content on the composition timeline—up to and

including the location of the second label—has been loaded. All the objects to download must

be placed on the timeline after the script keyframe containing the Wait For Download code and

before the second label.

To add a Wait For Download script:

1 Move the current-time marker to the location on the composition timeline where you want

your waiting loop to begin. Create the first label here.

2 Move the current-time marker to the location on the composition timeline after all the large

objects that you want to wait to download have appeared on the timeline. Create the second label

here.

3 Move the current-time marker to a location between the two labels where you want your

waiting loop to end.

This point must be before the large objects waiting to be downloaded have appeared on the

timeline.

4 Create a script keyframe here. This also opens the Script Editor.

5 In the Script Editor, click the Scripting syntax helper button.

6 Select Wait For Download from the LM 1.0 behaviors list, and press Enter (or double click the

behavior name).

This script appears in the Script Editor Composition window:

if (this._framesloaded < lmFrameOfLabel(finishLabel))
{
 this.gotoAndPlay(repeatLabel);
}

CHAPTER 354
Behaviors
lmFrameOfLabel() is a global function that converts a label on the composition timeline into

the corresponding frame number on export.

7 Replace the finishLabel and repeatLabel arguments described below with the appro-

priate values.

repeatLabel is a string containing the name of the first label, created in step 1.

finishLabel is a string containing the name of the second label, created in step 2.

You can use the Composition browser in the Script Editor to help fill in the values for repeat-

Label and finishLabel. For details on using the Script Editor features, see “Script Editor” on

page 115.

Hands-on example 3_2: Creating a preloader

This example creates a preloader that loops a piece of the main timeline until sufficient frames

(containing large items) of the main timeline have loaded.

A preloader of this style consists of three parts:

• Two labels and a keyframe script that implement Wait for Download

• The large item to download

• The content that to be displayed during the waiting loop

This example uses an image from the Library palette as the large item to be downloaded and a

text object that reads "Loading" as the content displayed during the waiting loop. However, you

can do whatever you want during the wait for download "pause." For example, you could create

a small animation to entertain the viewer or a status bar showing the progress of the download.

To create the Wait for Download:

1 Create a new composition in LiveMotion, and save it as Ex3_2.liv.

2 Open the Timeline window

3 Move the current-time marker to frame 0 on the composition timeline, and create a label.

Name it “loading.”

4 Drag the endpoint of the composition timeline to frame 10.

5 Move the current-time marker to frame 10, create a label, and name it “end.”

55ADOBE LIVEMOTION 2.0
Scripting Guide
6 Move the current-time marker to frame 5 on the composition timeline, and click the Scripts

button to create a script keyframe.

7 In the Script Editor, click the Scripting syntax helper button, and expand the LM 1.0 behaviors

list.

8 Double click the behavior, Wait for Download. The script for this behavior appears in the

Script Editor Composition window:

if (this._framesloaded < lmFrameOfLabel(finishLabel))
{
this.gotoAndPlay(repeatLabel);
}

8) Replace finishLabel with the string "end" as shown in Figure 3.7.

9) Replace repeatLabel with the string "loading" as shown in Figure 3.7.

Figure 3.7 Script with label strings filled in

To place the rocket image:

1 Move the current-time marker to frame 6.

2 Open the Library palette, select the rocket image, and place it in the Composition window.

3 Adjust the duration bar of the rocket image so that it starts at frame 6 and ends at frame 10.

CHAPTER 356
Behaviors
To create the waiting content:

1 Move the current-time marker to frame 0.

2 Choose the text field tool from the Tools palette, and create a rectangle in the Composition

window.

3 Enter “Loading...” as the text.

4 Adjust the duration bar of the text object so that it starts at frame 0 and ends at frame 5.

Figure 3.8 Timeline window showing text and rocket image duration bars

5 Preview.

Creating scripts to command the Flash Player
Three scripts create commands to the Flash Player. These are:

• Load Movie

• Unload Movie

• Stop All Sounds

Load Movie loads and plays a SWF file that can either replace the existing SWF file, or play in

another level of the Flash Player. Unload Movie removes an already-loaded SWF file from the

player. Stop All Sounds stops all sounds in the player, including event sounds.

To load a SWF file:

1 Navigate to the location where you want to add the script to load a SWF file. See “Adding

Scripts” on page 43.

2 Click the Scripting syntax helper button. Select Load Movie from the LM 1.0 Behaviors list,

and press Enter (or double click the behavior name).

57ADOBE LIVEMOTION 2.0
Scripting Guide
The behavior script appears in the Script Editor Composition window:

loadMovieNum(url,number);

3 Replace the arguments described below with the appropriate values.

url is a string containing an absolute or relative reference to the external SWF file.

These are examples:

"http://www.mydomain.com/loadedMovie.swf"

or

"loadedMovie.swf"

number is a non-negative integer specifying the player level into which the SWF file will be loaded.

Your default composition is considered to be level number 0. If the level already contains a SWF

file, it is replaced by the one being loaded. For details on document level, see “Levels of the Flash

Player” on page 86.

To unload a SWF file:

1 Navigate to the location where you want to add the script to unload a SWF file. See “Adding

Scripts” on page 43.

2 Click the Scripting syntax helper button. Select Unload Movie from the LM 1.0 Behaviors list,

and press Enter (or double click the behavior name).

The behavior script appears in the Script Editor Composition window:

unloadMovieNum(number);

3 Replace the argument described below with the appropriate value.

number is a non-negative integer specifying the document level of the SWF file to be unloaded.

For details on document levels, see “Levels of the Flash Player” on page 86.

To stop all sounds:

1 Navigate to the location where you want to add the script to stop all sounds. See “Adding

Scripts” on page 43.

2 Click the Scripting syntax helper button. Select Stop All Sounds from the LM 1.0 behaviors

list, and press Enter (or double click the behavior name).

CHAPTER 358
Behaviors
The script appears in the Script Editor Composition window:

stopAllSounds();

Creating scripts to control the Web browser

There are two browser command scripts. These are:

• Run JavaScript

• Go to URL

Run JavaScript executes JavaScript code in the user's browser. The Go to URL script opens a

specified URL in the user’s browser and loads it into the browser at the specified target.

To run JavaScript:

1 Navigate to the location where you want to add the script to execute JavaScript. See “Adding

Scripts” on page 43.

2 Click the Scripting syntax helper button. Select Run JavaScript from the LM 1.0 behaviors list,

and press Enter (or double click the behavior name).

The script appears in the Script Editor Composition window:

getURL("javascript:code");

3 Replace the code argument with your code, as illustrated by the example below:

getURL("javascript: window.alert('hello world');");

This code displays the string ‘hello world’ in the browser window.

To add a Go to URL script:

1 Navigate to the location where you want to add the Go to URL script. See “Adding Scripts” on

page 43.

2 Click the Scripting syntax helper button. Select Go to URL from the LM 1.0 behaviors list, and

press Enter (or double click the behavior name).

The script appears in the Script Editor Composition window:

getURL(url,window);

3 Replace the url and window arguments described below with the appropriate values.

url is a string containing the URL you want to load.

59ADOBE LIVEMOTION 2.0
Scripting Guide
window is a string specifying the browser location to load the URL into—either a custom frame

name or one of the four standard values: _blank, _parent, _self, or _top.

Here is an example:

getURL("http://www.adobe.com", "_blank");

CHAPTER 360
Behaviors

61
Chapter 4: Movie Clips

Introduction to movie clips
A movie clip is a LiveMotion object that you can manipulate programmatically through

scripting. Movie clips are JavaScript objects. Like other JavaScript objects, movie clips have

properties and methods, and they can be assigned to variables and placed in arrays.

Movie clips have, in addition, a set of built-in properties and methods that are defined by the

Flash Player. A movie clip’s built-in properties describe the physical features of a movie clip, for

example its height, width, position, and the number of frames on its timeline. You can set the

values of these built-in properties to programmatically control the appearance and behavior of

a movie clip throughout its lifetime. A movie clip’s built-in methods include functionality that

you can perform on movie clips such as creating copies, loading and unloading movie clips, and

playing and stopping movie clips. In addition, you can use built-in methods to obtain infor-

mation about a movie clip such as its size, the number of bytes loaded, and whether it intersects

with other movie clips at specified points. You can also define your own methods and properties

for movie clips, as described in “Creating movie clip properties and methods” on page 76.

In addition to having the characteristics of standard JavaScript objects, movie clips have the

ability to handle user- and system-generated events such as pressing a key or loading a movie

clip. For a movie clip to respond to an event, you must write an event handler for that event on

that movie clip; the handler is then executed whenever the event occurs. For details on movie clip

event handling, see “Movie Clip Events and Event Handlers” on page 89.

Unlike other JavaScript objects, movie clip objects cannot be instantiated: that is, you cannot

create a new, original movie clip programatically. A movie clip has no constructor, and cannot

be instantiated using the new operator.

So, you might ask, how do I create a movie clip instance? The simplest method, and the one to

work with first, is to create the movie clip manually in the Composition window. Later, this

section describes two other methods that programatically create copies of existing movie clips.

CHAPTER 462
Movie Clips
How to create a movie clip using LiveMotion
LiveMotion objects start out as “regular” (unscriptable) objects. To write scripts to an object, you

must convert the object into a movie clip or a movie clip group. The exception is objects for

which you have defined additional states (besides the normal state, which all objects have by

default). In such a case, LiveMotion automatically converts the object into a movie clip. As an

indication that an object or a group of objects has been turned into a movie clip, the movie clip

icon is displayed to the left of the movie clip or the movie clip group name on the timeline.

Conversion gives the movie clip its own timeline so that it can play independently of the main

composition timeline and independently of any parent timeline, if the movie clip is nested.

Movie clips are equivalent to the time-independent objects and time-independent groups in

LiveMotion 1.0.

Basic methods

You can manually create movie clips in two basic ways: by converting an object to a movie clip

and by creating movie clip groups. Movie clip groups differ from movie clip objects in that a

movie clip group contains one or more child objects (movie clips or regular objects). A movie

clip is not a group and, as such, cannot contain a child object.

To convert an object to a movie clip:

Select one object in the timeline, and click the “Make selected objects movie clips” button at the

bottom of the Timeline window, or choose Object > Movie Clip from LiveMotion’s main menu.

To create a movie clip group:

Select one or more objects in the timeline, and click the “Group objects and make movie clip”

button at the bottom of the Timeline window, or choose Object > Make Movie Clip Group from

LiveMotion’s main menu. Make Movie Clip Group first groups the selected objects. Then it turns

the group into a movie clip with its own independent timeline. Movie clip groups can contain

regular (unscriptable) objects, and movie clips, as well as other movie clip groups.

You also can create a movie clip group using this two-step approach:

1 Select one or more objects, and choose Select Object > Group from the main menu. Alter-

nately, you can press Ctrl+ G (Windows) or Command+G (Mac OS).

2 Click the “Make selected objects movie clips” button at the bottom of the timeline, or choose

Object > Make Movie Clip from LiveMotion’s main menu.

63ADOBE LIVEMOTION 2.0
Scripting Guide
Effect of creating a movie clip and a movie clip group

When you create a movie clip group, you add an extra timeline between the objects in the movie

clip group and the main composition timeline. This is the timeline of the movie clip group

object. Figure 4.1 compares what happens before and after making a movie clip to what happens

before and after making a movie clip group.

Immediately after creating a movie clip group, the movie clip group name is displayed in the

Timeline window. To view the group’s contents, you must expand the movie clip group’s

timeline.

Figure 4.1 Before and after creating a movie clip and creating a movie clip group

_root

object

_root

object

_root

object

_root

movieClipGroup

object

Movie Clip

Make Movie Clip Group

CHAPTER 464
Movie Clips
Movie clip hierarchy
All movie clips in a composition are arranged in a hierarchy. At the top of the hierarchy is the

composition timeline (also referred to as the _root movie clip or, simply, _root).

Note: The _root movie clip is a slightly special case of a movie clip, because you don’t create or name

it. It is there by default when you create a composition, and it functions like other movie clips with

the exception of a few built-in methods and properties, which do not apply. For details, see “Movie

clip properties and methods” on page 69.

In Figure 4.2, movieClipGroupA is a child of _root. _root also has a second child, movieClipE.

Because movieClipGroupA and movieClipE share the same parent, they are referred to as

siblings. movieClipB and movieClipC are children of movieClipGroupA.

Figure 4.2 Movie clip hierarchy and z-order

In LiveMotion, you create a parent-child relationship any time you place (or create) a movie clip

or movie clip group on the timeline of another movie clip group or _root. The movie clip group

becomes the parent of the movie clips it contains. For details on creating movie clip groups, see

“How to create a movie clip using LiveMotion” on page 62.

Relationship of movie clip hierarchy to z-order
In the movie clip hierarchy shown in Figure 4.2, a parent appears above its children. This

hierarchy fails to demonstrate the z-order that you see reflected in the Timeline window,

however. (Recall that z-order is the order in which objects overlap. For details, see the LiveMotion

2.0 User Guide.) To see the z-order of a movie clip group’s children, you open the group's

timeline.

_root _root

 movieClipGroupA

 movieClipB

 movieClipC

 movieClipE

movieClipGroupA movieClipE

movieClipC

hierarchy

movieClipB

z-order

65ADOBE LIVEMOTION 2.0
Scripting Guide
Ignoring programmatically generated movie clips for the moment, the visual result in the

Composition window of the Timeline z-order window is determined by the order of the movie

clip groups and the order of the movie clips within them. This is still true when programmati-

cally generated movie clips are added to a composition, as described in “What the programmatic

stack does to the movie clip hierarchy” on page 82. The order just takes on some more detail.

If, for example, you were to open the Timeline window for the composition shown in Figure 4.2,

z-order would show the composition timeline at the top and movieClipGroupA, above

movieClipE. But because movieClipGroupA is just a movie clip group containing movieClipB

and movieClipC, the movie clips would appear from front to back in this order in the Compo-

sition window: movieClipB, movieClipC, movieClipE.

Note: To be able to refer to child movie clips in scripting, siblings must have unique names.

Otherwise, you will only be able to access the redundant child name that is topmost in z-order.

How to access movie clips in the hierarchy
In scripting language, children are accessed as properties of their parent using dot (.) notation.

For example, movieClipGroupA can access its child movieClipB as:

_this._movieClipB

A child can access its parent using the movie clip _parent property. For example, this is how

movieClipGroupA can access _root:

this._parent

The keyword this refers to the movie clip to which a script is added. The above script is inter-

preted to mean: “From this movie clip’s position in the object hierarchy, go up one level in the

hierarchy to access the parent of this, which happens to be _root.”

In Figure 4.2 movieClipB is a grandchild of _root. Here is how _root is accessed from

movieClipB using the _parent property:

this._parent._parent

CHAPTER 466
Movie Clips
Movie clip addressing
You most likely will be changing the object hierarchy as you develop your composition. It is

important that you understand movie clip addressing, so you can make the appropriate changes

to movie clip references in your scripts as a result of object hierarchy changes. This section

describes movie clip addressing and makes suggestions on addressing choices, depending on

your situation.

There are two types of movie clip addresses:

• Absolute reference

• Relative reference

This section uses the movie clip object hierarchy shown in Figure 4.3 to illustrate the addressing

types.

Figure 4.3 Movie clip addressing

What is an absolute reference?
An absolute reference is a reference to a movie clip that begins at the top of the composition, and

walks down through the object hierarchy— parent to child—until reaching the movie clip of

interest. An absolute reference always starts with _root, and uses dot (.) notation to access the

children of _root, and the children's children, and so on until it obtains the movie clip being

referenced. The absolute reference is the same regardless of where in the movie clip hierarchy the

source movie clip (movie clip making the reference) is located.

_root

movieClipGroupA movieClipGroupE

movieClipGroupFmovieClipDmovieClipB movieClipC

movieClipG

67ADOBE LIVEMOTION 2.0
Scripting Guide
Absolute reference example
For example, the absolute reference to movieClipB is:

_root.movieClipGroupA.movieClipB

_root is always at the top of the hierarchy and starts in the absolute reference. In this example,

movieClipGroupA is at the level just above movieClipB. The reference ends with movieClipB,

the movie clip being referenced.

What is a relative reference?
A relative reference is a reference that begins with the source movie clip (movie clip making the

reference) and walks through the movie clip hierarchy, each step being parent-to-child or

child-to-parent until it reaches the movie clip of interest. Relative references always start with

this, and access the next movie clip in the reference—either as a child, or through the _parent

property—until it obtains a reference to the desired movie clip. A relative reference is dependent

on the relationship between the source movie clip and the movie clip it is referencing and varies

from source to source.

Note: Although using 'this' is optional in the relative reference, this scripting guide begins all

relative references with 'this' so you can more easily distinguish between absolute references and

relative references.

Relative reference examples
Here is an example of the relative reference from movieClipGroupA (shown in Figure 4.3) to

movieClipGroupE:

this._parent.movieClipGroupE

this refers to movieClipGroupA.

_parent is movieClipGroupA’s parent (in this case, _root) which is up one level in the object

hierarchy from movieClipGroupA. From _root the reference leads down one level to

movieClipGroupE.

This is the relative reference from movieClipC to _root:

this._parent._parent

In this example, _root is movieClipC’s grandparent.

CHAPTER 468
Movie Clips
When to use an absolute or a relative reference
You can access all the movie clips in a composition using either type of reference for movie clip

addressing. However, in most cases one reference style makes more sense than the other.

Here are two rules of thumb:

• Choose the reference style that you believe is least likely to change during your editing process.

• The simpler reference is usually the better one.

If, for example, you know that the location of the movie clip that you want to access is not going

to change in the object hierarchy, but you are not sure where the source movie clip that is

accessing it is going to be, it is probably better to use an absolute reference. Then, regardless of

where the source movie clip is located in the hierarchy, the reference to the target will be correct.

If you know that the relationship between two movie clips in the hierarchy is not going to change,

but you are not sure where these movie clips will be located relative to _root, it is probably better

to use a relative reference. If you're still uncertain about the relationship of the movie clips,

choose the simpler reference. For example, it makes more sense for movieClipG to refer to

movieClipF as this._parent than as _root.movieClipGroupE.movieClipF.

More examples of movie clip addressing
This section provides additional examples of movie clip addresses. It identifies all the references

from the objects in Figure 4.4 to movie clip movieClipD.

Figure 4.4 Object hierarchy for examples

There is only one absolute reference to movieClipD:

_root.movieClipGroupA.movieClipD

_root

movieClipGroupA movieClipGroupE

movieClipFmovieClipDmovieClipB movieClipC

movieClipG

69ADOBE LIVEMOTION 2.0
Scripting Guide
Table 4.1 shows all the relative references to movieClipD from each of the other movie clips in

Figure 4.4.

Table 4.1 Relative references to movieClipD

Movie clip properties and methods

Built-in movie clip properties
As illustrated in the previous example, you can manipulate a movie clip’s properties to create

effects such as animation. Movie clips come with a large number of built-in properties. You can

use these properties to modify the physical features of a movie clip, such as changing its size or

opacity or changing its location.

Table 4.2 lists all the built-in movie clip properties. The built-in property names start with the

underscore (_) character to distinguish them from properties that you might define yourself.

Note: The _root movie clip works with all of these properties except _name and _parent.

Table 4.2 Movie clip built-in properties

Source Relative reference to movieClipD

movieClipGroupA this.movieClipD

movieClipB this._parent.movieClipD

movieClipC this._parent.movieClipD

movieClipD this

movieClipGroupE this._parent.movieClipGroupA.movieClipD

movieClipF this._parent._parent.movieClipGroupA.movieClipD

movieClipG this._parent._parent._parent.movieClipGroupA.movieClipD

Property Description

_alpha Opacity of the movie clip on a scale of 0 (transparent) to 100 (opaque).

_currentframe Position of the playhead in the movie clip's timeline.

CHAPTER 470
Movie Clips
_droptarget Absolute reference (in slash notation) of a movie clip over which a
movie clip passes during drag operations performed by the user.

_framesloaded Number of the movie clip frames that have been loaded.

_height Height of the movie clip in pixels.

_name Name of the movie clip. This property does not work with _root.

_parent Movie clip containing this movie clip. This property does not work
with _root.

_rotation Rotation angle of the movie clip in degrees.

_target Absolute reference of the movie clip in slash notation.

_totalframes Number of frames in the movie clip.

_url URL of the SWF file that this movie clip is a part of.

_visible Boolean indicating whether the movie clip is visible.

_width Width of the movie clip in pixels.

_x Horizontal location of the movie clip in pixels relative to the anchor
point of the movie clip's parent.

_xmouse Horizontal location of mouse pointer in pixels relative to the anchor
point of the movie clip.

_xscale Horizontal percentage scale factor of the movie clip (100% is full size).

_y Vertical location of the movie clip in pixels relative to the anchor point
of the movie clip's parent.

_ymouse Vertical location of mouse pointer in pixels relative to the anchor
point of the movie clip.

_yscale The vertical percentage scale factor of the movie clip (100% is full
size).

Property Description

71ADOBE LIVEMOTION 2.0
Scripting Guide
Built-in movie clip methods
Movie clip methods are functions attached to the movie clip object and are called using ().

Scripting provides a set of built-in movie clip methods that you can use to control a movie clip

in various ways. Included are methods with which you can affect the behavior of a movie clip,

change or find out about a movie clip’s characteristics, load additional SWF files, and program-

matically create duplicates of a movie clip. (Programmatically creating movie clips is described

at length in “Creating movie clips programmatically” on page 77.)

Table 4.3 lists the built-in movie clip methods and describes their functions. See“Reference” on

page 143 for details on the arguments to each of these methods.

Note: The _root movie clip works with all of these methods except duplicateMovieClip(),

removeMovieClip(), and swapDepths().

Table 4.3 Movie clip built-in methods

Method Description

attachMovie() Attach the named movie clip (passed in as an argument) to the movie
clip. For details see “Static and programmatic stacks” on page 78.

duplicateMovieClip() Duplicate this movie clip. For details see “Movie clip global func-
tions that use _leveln as an argument” on page 87. This method
does not work with _root.

getBounds() Return bounds of the movie clip. The returned object contains the
values in the properties xMin, XMax, yMin, and yMax.

getBytesLoaded() Return the number of bytes already loaded if the movie clip is exter-
nal (loaded with MovieClip.loadMovie()). If the movie clip is
internal, the number returned is always the same as that returned by
MovieClip.getBytesTotal().

getBytesTotal() Return the size of the movie clip in bytes. When running under the
preview tool in LiveMotion, this number is always 1000.

getURL() Load the URL into the browser.

globalToLocal() Convert the given global point to the movie clip's coordinate space.

gotoAndPlay() Go to the specified label and play. Also a global movie clip method.

gotoAndStop() Go to the specified label and stop. Also a global movie clip method.

hitTest() Return a Boolean value indicating whether the movie clip intersects
with a given clip (passed in as an argument) or given x,y coordinates.

CHAPTER 472
Movie Clips
Hands-on example 4_1: Mouse trailer
This example creates a mouse trailer. It uses the following movie clip properties and methods:

_x
_y
_xmouse
_ymouse

lmSetCurrentState() Change the state of the movie. The LiveMotion state of the movie
must already be defined and appear in the state browser.

loadMovie() Load an external SWF file into the movie clip. The contents of the
movie clip are replaced with the contents of the SWF file.

loadVariables() Load variables into the movie clip fetched from the specified URL. The
movie clip’s onData handler is called when the variables have been
loaded.

localToGlobal() Convert a point in the movie's coordinate space to global coordi-
nates.

nextFrame() Go to the next frame and stop playing. Also a global movie clip
method.

play() Start playing.

prevFrame() Go to the previous frame and stop playing.

removeMovieClip() Delete a duplicated or attached instance. This method does not
work with _root.

startDrag() Start dragging a movie clip. Also a global movie clip method.

stop() Stop playing.

stopDrag() Stop any drag operation in progress.

swapDepths() Swap the movie clips’s depth with that of another movie clip. For
details on depth, see “Movie clip global functions that use _leveln
as an argument” on page 87.This method does not work with
_root.

unloadMovie() Unload a movie that was previously loaded with loadMovie().

valueOf() Returns the absolute reference to the movie in absolute terms using
dot (as opposed to slash) notation.

Method Description

73ADOBE LIVEMOTION 2.0
Scripting Guide
_xscale
_yscale
duplicateMovieClip()
gotoAndPlay()

The _xmouse and _ymouse movie clip properties establish the position of the mouse relative to

the movie clip position. Each mouse movement causes the manually created movie clip and

several programmatically generated and scaled duplicates to follow the mouse. The _xscale and

_yscale movie clip properties progressively scale the duplicates from smallest to largest as they

are generated in the Composition window.

To create a mouse trailer:

1 Create a new composition. Save the file as Ex4_1.liv.

2 Create an object in the Composition window.

The object will be the base of your mouse trailer. The size of this object will be the size of the

largest object in your trailer. After completing the code for this example, you can go back later

and edit the object to change the appearance of your mouse trailer.

3 Select the object in the Timeline window, convert it into a movie clip, and name it Base0.

4 Select Base0, and make it a movie clip group by choosing Object > Make Movie Clip Group

from the main menu.

With Base0 inside of a movie clip group, the timeline object hierarchy is:

_root
(Movie clip group) Group of 1 objects

(Movie clip) Base0

5 Select the newly created Group of 1 objects, and name it MouseTrailer. The timeline object

hierarchy changes to:

_root
(Movie clip group) MouseTrailer

(Movie clip) Base0

6 Expand MouseTrailer’s timeline. Drag the end marker of MouseTrailer’s duration bar to

frame 2. Be sure that the endpoint of Base0’s duration bar also is at frame 2.

Both duration bars should be three frames long, as shown in Figure 4.5.

7 Place the current-time marker at frame 0.

CHAPTER 474
Movie Clips
8 Click the Scripts button to create a script keyframe at frame 0. This also opens the Script

Editor. In the Script window, enter the code:

this.trailers = new Array; //an array of objects that trail the mouse

//create 9 more objects for the trailer

var i;
for (i = 1; i < 10 ; i++)
{

// create the new object, give it a unique name, and
// place it at a unique depth

this.Base0.duplicateMovieClip("Base" + i, i);

// put the new object in the array

this.trailers[i] = this["Base" + i];

// change the scale of the new object

this.trailers[i]._xscale = 100 - i*10;
this.trailers[i]._yscale = 100 - i*10;

}

// put the original in the array

this.trailers[0] = this.Base0;

This code sets up the mouse trailer. It creates a series of duplicates of Base0, places each duplicate

in the array, and scales the objects such that the topmost is the smallest, and the bottommost is

the largest.

9 Close the Script Editor window.

10 In the Timeline window, move the current-time marker to frame 1, and create a label. Name

the label “repeat.”

This example uses labels so that, if you change the frame rate of the composition, the mouse

trailer still works.

11 At frame 1, create a script keyframe. In the Script Editor, enter the code:

/* update the position of the trailers
place the topmost trailer at the position of the mouse

75ADOBE LIVEMOTION 2.0
Scripting Guide
*/

this.trailers[9]._x = this._xmouse;
this.trailers[9]._y = this._ymouse;

/*
update the position of the rest of the objects, placing the object
halfway between its current position and the position of the object
in front of it.
*/

var i = 0;
for(i = 0; i< 9 ; i++)
{

this.trailers[i]._x += (this.trailers[i+1]._x - this.trailers[i]._x)/2;
this.trailers[i]._y += (this.trailers[i+1]._y - this.trailers[i]._y)/2;

}

Each time this code is called, it updates the position of Base0 and each of the duplicates of Base0.

12 Close the Script Editor window.

13 Move the current-time marker to frame 2, and click the Scripts button to create a script

keyframe.

This also opens the Script Editor. Figure 4.5 shows how the MouseTrailer timeline should appear

at this point.

14 In the Script window, enter the code:

this.gotoAndPlay("repeat");

CHAPTER 476
Movie Clips
Each time this code is called, it resets the current-time marker to the frame labeled “repeat,”

which is where the code to update the positions is located.

Figure 4.5 Mouse trailer timeline with script keyframes and repeat label

15 Preview.

16 Export this file, and save it as Ex4_1.swf.

Creating movie clip properties and methods
You can create your own movie clip properties and methods. To do so, navigate to the timeline

of the movie clip for which you want to create a property or method, open the Script Editor. You

can enter the code for the definitions in the movie clip’s onLoad handler.

This example creates the movie clip property toggle, which returns a boolean value. The

example uses toggle in the blink() method to change the movie clip’s opacity:

// define the toggle property

this.toggle = true;

// define the blink method

this.blink = function()
{

if(this.toggle == true)
{

this._alpha = 50; // change opacity value to 50
this.toggle = false;

}
else
{

77ADOBE LIVEMOTION 2.0
Scripting Guide
this._alpha = 100; // change opacity value to 100
this.toggle = true;
}

}

You can call the methods that you created in the same way that you call a method on any object.

Provide the name of the movie clip and the method name. The call to blink() appears as:

this.blink(); // calling the blink method

Creating movie clips programmatically
You can create movie clips manually or programmatically. As previously described, you can

manually create movie clips or movie clip groups by creating regular objects using LiveMotion’s

tools in the Composition window and then converting those objects to movie clips or to movie

clip groups. Besides creating a movie clip manually in the Composition window, you can create

a movie clip programmatically using the built-in movie clip methods: attachMovie() and

duplicateMovieClip().

Note: Simple movie clips cannot have children: this includes static and programmatic children.

Using attachMovie() to create movie clip copies
The attachMovie() movie clip method creates a new copy of an attachable movie clip. The

movie clip copy is attached as a child of movieClip at the specified depth in movieClip’s

programmatic stack. The syntax of this method is:

movieClip.attachMovie(exportName, newName, depth);

exportName Sharing name assigned to the movie clip in the Export palette. For details
on creating sharing names for use with the attachMovie() method, see
“Making shareable movie clips (and shareable sounds)” on page 83.

newName New name given to the attached movie clip to differentiate it from other
movie clips in the SWF file.

depth Integer that tells where in movieClip’s programmatic stack to place the
movie clip copy.

CHAPTER 478
Movie Clips
Using duplicateMovieClip() to create movie clip copies
The movie clip method duplicateMovieClip() instructs a movie clip to create a copy of itself.

The copy becomes a sibling of the original. The syntax of this method is:

movieclip.duplicateMovieClip(newName, depth);

You can also call duplicateMovieClip() as a global function. Instead of copying itself, the

global function copies a movie clip passed as an argument. The syntax of this function is:

duplicateMovieClip(target, newName, depth);

Static and programmatic stacks
Note: Because the children of a movie clip group also can themselves be parents (that is, movie clip

groups) with their own children, this guide uses the term ‘movie clip’ for simplicity in most cases. If

the movie clip has children, by definition it really is a movie clip group.

Movie clips have two stacks: a static stack and a programmatic stack. A movie clip’s static stack

contains its manually created children. A manually created movie clip starts as a regular object

that you create in the Composition window and then convert into a movie clip. A movie clip has

a programmatic stack that contains its programmatically generated children.

Figure 4.6 illustrates the static and programmatic stacks of manually created movie clip A.

newName String indicating the name of the movie clip copy.

depth Integer that tells where in the programmatic stack of the original's parent
to place the movie clip copy.

target Path or reference to a movie clip or a string indicating the location of the
movie clip to copy.

newName String indicating the name of the movie clip copy.

depth Integer that tells where in the programmatic stack of the original's parent
to place the movie clip copy.

79ADOBE LIVEMOTION 2.0
Scripting Guide
A’s static stack contains its manually created children. Manually created movie clips become the

children of a manually created parent when you create a movie clip group that contains them. In

Figure 4.6, A is the name of the movie clip group that contains the manually created movie clips

X and Y in its static stack.

Immediately above A’s static stack is its programmatic stack. The programmatic stack is where

programmatically generated movie clips are placed. Although there can be many levels to the

programmatic stack, for simplicity Figure 4.6 depicts four, with depth values: 0, 1, 2, and 3. Each

level of movie clip A’s programmatic stack can contain a programmatically generated movie clip

that is a child of movie clip A. In the programmatic stack, the movie clip with the highest

numeric depth value is the topmost movie clip overlapping all others when the movie clip

executes in the Composition window in Preview mode or in the exported SWF file. The movie

clip with the next highest numeric depth value overlaps the movie clip with next highest numeric

depth value, and so on.

Figure 4.6 A’s programmatic and stack stacks

Every movie clip—even those that are created programmatically—makes space for a program-

matic stack.

Manipulating the stack depth with attachMovie() and duplicateMovieClip()
When you create a movie clip programmatically with attachMovie() or duplicateMov-

ieClip(), you assign it a depth value. depth can be any integer value that is 0 or higher. You

are not required to assign the depth values to movie clips generated in any particular order.

Assume for this example that movie clip A has no programmatic children. You can attach movie

clip instances to movie clip A to create, say, movie clips E, B, and C by making calls to the

attachMovie() method as shown here:

A.attachMovie(exportName, "E", 3);
A.attachMovie(exportName, "B", 0);

Programmatic stack

Static stack

depth3

depth2

depth1

depth0
X

Y

A

CHAPTER 480
Movie Clips
A.attachMovie(exportName, "C", 1);

Figure 4.7 (1) depicts the placement of the programmatically generated movie clips in movie clip

A’s stack after these three calls.

Figure 4.7 Using attachMovie()

A subsequent call to attachMovie() specifying a depth already occupied just replaces the

current movie clip with a new one. So if you call attachMovie() again as shown here:

A.attachMovie(exportName, "N", 1);

Movie clip N will replace movie clip C, as shown in Figure 4.7 (2).

The duplicateMovieClip() method also creates movie clip copies. However the copies are

placed in the programmatic stack of the caller’s parent. The new movie becomes a sibling of the

movie from which it was duplicated.

Here is an example of the manually created movie clip X creating a duplicate movie clip D:

X.duplicateMovieClip("D", 2);

(1) (2)

E

depth2

C

B
X

Y

A E

depth2

N

B
X

Y

A

81ADOBE LIVEMOTION 2.0
Scripting Guide
Movie clip D is placed in movie clip A’s programmatic stack, because it is a sibling of movie clip

X, as shown in Figure 4.8

Figure 4.8 Using duplicateMovieClip()

Using swapDepths() to swap movie clip positions in the programmatic stack
You can use the swapDepths() method to swap the positions of two movie clips. For this

method to work, both movie clips must be siblings. The syntax is either of two forms:

movieClip.swapDepths(target);
movieClip.swapDepths(depth);

When called with the target argument, the method swaps depths of movieClip and target,

provided that the movie clips share the same parent.

When called with the depth argument, the method places movieClip in a new position in the

programmatic stack of its parent. If that position is occupied, the movie clip occupying it is

moved to movieClip’s old position.

target Path or reference to a movie clip or a string indicating the name of the
movie clip to swap depths with movieClip..

depth Integer that tells where to place movieClip. in the programmatic stack of
movieClip’s parent.

E

D

N

B
X

Y

A

CHAPTER 482
Movie Clips
What the programmatic stack does to the movie clip hierarchy
So far you have viewed a composition from the perspective of its movie clip hierarchy and its

relationship to z-order for movie clips that are created manually. For details, see “Relationship

of movie clip hierarchy to z-order” on page 64. Figure 4.9 illustrates what happens to the

hierarchy when you add programmatically generated movie clips. You can’t view this order in

the Composition window, however, unless you are in Preview mode or you export the compo-

sition to a SWF file. The programmatically generated movie clips appear during the course of

execution at the time they are generated.

Figure 4.9 represents the order of manually and programmatically created movie clips. The

dashed lines separate the parent and children movie clips. Movie clips A and B are manually

created. Movie clip A has two manually created children, W and X. Like A, movie clip B has two

manually created children, Y and Z. Figure 4.9 (left) shows the manually created movie clips.

Figure 4.9 (right) shows the location of the programmatic stack for _root, movie clip A, and

movie clip B.

Figure 4.9 Manually and programmatically created movie clips

Here are two examples that show how attaching and duplicating a movie clip compare. Say that

you create movie clip P with attachMovie() as shown here:

A.attachMovie(exportName, "P", depth);

Movie clip P is placed at the specified depth in A’s programmatic stack. Movie clip P is a

programmatic child of movie clip A.

_root

A

W
X

Y
Z

B

_root

A

W
X

Y
Z

B

_root's programmatic stack

_root's static stack

A's programmatic stack

A's static stack

B's static stack

B's programmatic stack

83ADOBE LIVEMOTION 2.0
Scripting Guide
Now, you create a movie clip L with duplicateMovieClip(), as shown here:

A.duplicateMovieClip("L", depth);

Movie clip L is placed at the specified depth in _root’s programmatic stack, because it is a

sibling of movie clip A.

Table 4.4 illustrates some more examples of programmatically generated movie clips and

indicates the stack in which the movie clips are placed.

Table 4.4 Placement of programmatically generated movie clips

In Table 4.4, Z’s programmatic stack would be represented as a fourth view of the composition

shown in Figure 4.9. If Z had manually created children, they would appear in Z’s manual stack

just below its programmatic stack.

Making shareable movie clips (and shareable sounds)
This section describes how to make movie clips available for use with attachMovie(), so they can

be shared in compositions that you create or in compositions created by other people. The procedures

for setting up the mechanism that makes movie clip sharing possible also applies to sharing sounds.

LiveMotion supports sharing movie clips (and sounds) that you and other users can reuse and

make copies of in external SWF files. You can share movie clips with LiveMotion and other appli-

cations that export to the SWF file format. This feature enables you to leverage content from the

vast number of existing SWF files. To make a movie clip shareable, you have to set them up in

your composition as described below.

Method call Stack and depth where movie clip is placed

A.attachMovie(exportName, "R", 1); R is placed in A’s programmatic stack at depth 1.

B.duplicateMovieClip("M", 0); M is placed in _root’s programmatic stack at
depth 0.

B.attachMovie(exportName, "N", 4); N is placed in B’s programmatic stack at depth 4.

Y.duplicateMovieClip("P", 4); P is placed in B’s programmatic stack at depth 4,
replacing movie clip N.

Z.attachMovie(exportName, "Q", 2); Q is placed in Z’s programmatic stack at depth 2 (not
shown in Figure 4.9);

CHAPTER 484
Movie Clips
Setting up shareable movie clips in your composition

To make a movie clip sharable in your composition:

1 Create any simple object in the Composition window, and convert it to a movie clip.

2 Select the movie clip’s name in the Timeline window.

3 Choose File > Export Settings... or Window > Export to bring up the Export palette.

4 In the Export palette menu, select Macromedia Flash (SWF) from the drop-down menu of file

types at the top of the palette.

5 Click the Animation tab (with the bouncing ball icon) shown in Figure 4.10.

6 To activate the fields and checkboxes beneath the Frame Rate drop-down menu in this tab,

click the Object export settings button at the bottom of the tab. See Figure 4.10.

Note: Do not click the Multiple selections button next to Object export settings. It may cause scripts

to execute abnormally.

7 Check the Attachable checkbox, and enter a sharing name for the movie clip in the text box

just below it, as shown in Figure 4.10.

Figure 4.10 Export palette filled out to make myMovieClip shareable

With the Export palette set up as described, you can make more copies of the movie clip using

the attachMovie() method. Here is the syntax:

movieClip.attachMovie(exportName, newName, depth);

If you are attaching a sound instead, this is the syntax of the sound object method:

85ADOBE LIVEMOTION 2.0
Scripting Guide
soundObj.attachSound(exportName);

To use either of these methods, fill in the shareable name for exportName, and provide a unique

name for the copy that you are going to make. The depth argument to attachMovieClip() is

described in detail in “Creating movie clips programmatically” on page 77.

If you don’t want the shareable movie clip to appear (or sound to be heard) in your SWF file until

it is accessed by scripting code, you can hide it by turning off its eye icon (movie clip) or its

speaker icon (sound) in the timeline. The movie clip or sound will be included in the exported

SWF file but will not be visible (or audible) until it is accessed dynamically in a script.

Figure 4.11 Timeline showing the eye icon toggled on for ellipse

Accessing movie clips and sounds in an external SWF file

To access a shareable movie clip (or sound) in an external SWF file, you first create a “place-

holder” movie clip in your own composition that you give a sharing name. Then when you

export your composition to SWF file format and play it in the Flash Player, your placeholder is

replaced by the movie clip in the external file that has the same sharing name.

What is important here is that you must know in advance the sharing name of the movie clip in

an external file that you want to use in place of your “placeholder” movie clip. This is a feature

from which you can really leverage, because if sophisticated movie clips exist that can be reused,

there is little reason to reconstruct them when they can be swapped into a SWF file during

playback. Here are the details of the procedure for accessing movie clips in external files.

To access a movie clip (or sound) in an external SWF:

1 Create a simple object such as an ellipse and convert it to a movie clip.

2 Give the movie clip a sharing name by repeating steps 1 through 6 in “To make a movie clip

sharable in your composition:” on page 84. This procedure uses the sharing name Bob.

3 In the Export palette Animation tab, check the Use external asset checkbox. See Figure 4.10.

4 In the Path: field, enter the absolute reference to the external SWF file containing a movie clip

that also has the sharing name Bob.

CHAPTER 486
Movie Clips
When you export your SWF file to the Flash Player, your placeholder movie clip named Bob is

replaced with movie clip named Bob in the external SWF. If you want to create more copies of

Bob from the external SWF file, you can call attachMovie() and provide Bob as the value of the

first argument or, if you are working with sounds, call attachSound() and provide the sharing

name of the sound from an external SWF file as the sole argument to this object method.

Levels of the Flash Player
In addition to a programmatic stacking order, there is a stacking order that determines the

overlapping of SWF files when multiple files are loaded into the Flash Player. The first file loaded

is placed in the lowest level of the stack (_level0). If additional SWF files are loaded, you can

place them at any numeric player level above _level0. You can also replace the current SWF file

at any level, including _level0. The contents of the SWF file at the highest level appears in front

of all other SWF files in the player. The contents of the SWF file in the next lower level appears

behind the highest, and so forth. A complete SWF file stack can consist of multiple SWF files,

each of which can contain multiple movie clips with movie clip duplicates and attached movie

clips, each with its own programmatic stack. Figure 4.12 illustrates SWF file stacking order.

87ADOBE LIVEMOTION 2.0
Scripting Guide
Figure 4.12 Stacking order of SWF files

_leveln (where n represents 0 or is a non-negative integer value) is a global property that you

can use to refer to a SWF file when multiple SWF files are loaded into the Flash Player. It is also

an argument to the global functions for loading and unloading SWF files described below. For

more information, see the description of this property in “Reference” on page 143.

Movie clip global functions that use _leveln as an argument
You can load SWF files into the Flash Player and unload them from the player using the respective

loadMovie() and unloadMovie() global functions.

_root's programmatic stack

movieclip1's programmatic stack

movieclip1's static stack
_level2

SWF

_level1

SWF

_level0

SWF

movieclip2's programmatic stack

movieclip2's static stack

_root's programmatic stack

movieclip1's programmatic stack

movieclip1's static stack

movieclip2's programmatic stack

movieclip2's static stack

_root's programmatic stack

movieclip1's programmatic stack

movieclip1's static stack

movieclip2's programmatic stack

movieclip2's static stack

CHAPTER 488
Movie Clips
Using loadMovie() to load a SWF file
You can use the loadMovie() global function to replace the contents of a movie clip or SWF file

level with the SWF file. It replaces an occupied SWF file level or fills an empty one. The syntax is:

loadMovie(url, target);

Using unloadMovie() to unload a SWF file
You can use the unloadMovie() global function, which removes a movie clip or a SWF file. The

function takes a target parameter. The syntax is:

unloadMovie(target);

url String specifying the location of an external SWF file to load.

target Path or reference to a movie clip indicating the name of the movie clip or
Flash Player level into which the SWF file is loaded.

target Path or reference indicating the name of the movie clip or Flash Player
level to remove from the player.

89
Chapter 5: Movie Clip Events and
Event Handlers

Introduction to events
Events are actions that take place at indeterminate times during the playback of a composition.

They are said to occur asynchronously because they occur at any time, not as a result of reaching

a particular keyframe on a timeline. Events include such actions as pressing a key, clicking a

mouse, and loading a movie clip into the Composition window. For the purposes of this chapter,

a state change also is treated as a type of event.

Event types

LiveMotion supports two basic types of events: movie clip and state change events.

Movie clip events are associated with movie clips. They can be further broken down into system

key, mouse, and button events. System-based movie clip events occur as a result of composition

playback or loading variables into a movie clip. Key, mouse, and button events occur as a result

of a user action such as moving the mouse or pressing a key.

State change events are associated with states. A state change event occurs when a movie clip

enters a new state as the result of a call to lmSetCurrentState(). The call could be part of a

remote rollover, part of some user-defined script, or part of the default button handler scripts

added to the movie clip's button handlers when predefined states (over, down or out) are added

to the movie clip.

Event handlers

If you intend to have something occur in your composition as a result of an event that takes place,

you must write an event handler. An event handler contains the code that you want to execute in

response to the event. When the event occurs, the interpreter in the Flash Player checks if there

is a handler written for that event. If there is, the interpreter executes the event handler code.

CHAPTER 590
Movie Clip Events and Event Handlers
Each movie clip event handler has a unique name that describes the action to which that handler

responds. For example, onKeyPress, onMouseDown, and onLoad are the names of movie clip

event handlers that respond to the respective actions: key press, mouse down stroke, and movie

clip loading. The event handler names themselves do nothing until you write the code to

implement them. A user can click the mouse forever, and nothing special will happen if there is

no code written for onMouseDown events. The code you write causes the interpreter to execute

that code each time a mouse click is detected.

A state change handler responds to the action of changing to the state for which that handler is

written. The interpreter executes the handler code whenever the movie clip enters that state.

System-based events and event handlers
System-based events are actions that are generated by the Flash Player. Table 5.1 lists the names

of the system-based event handlers that LiveMotion supports.

Table 5.1 System-based event handlers and events

onData
A data event can be caused by either of two unrelated situations. One occurs when all variables

are loaded into the movie clip that were sent by a server-side application as a result of a call to

loadVariables(). The onData handler can notify the composition that the variables are

available for use.

Event handler Event causing the handler to be called

onData Either of two unrelated situations: Completion of variables loading into
a movie clip or receipt of a portion of an external SWF file by a host
movie clip.

onLoad First appearance of a movie clip in the Composition window.

onEnterFrame Each time the playhead enters a frame, before the frame is rendered.

onUnload Removal of a movie clip from the Composition window.

91ADOBE LIVEMOTION 2.0
Scripting Guide
The second situation occurs when a SWF file, or a specific portion of one, is completely loaded

into a movie clip or a specified SWF file level with the loadMovie() function. For information

on SWF file levels, see “Levels of the Flash Player” on page 86.

Note: The following event handlers are mutually exclusive: only one handler can execute on any

given frame.

onLoad
A load event marks the first appearance of a movie clip in the composition. The onLoad event

handler executes only once in the lifetime of a movie clip. It occurs on the first frame of a movie

clip when the movie clip appears in the composition. If the movie clip executes in a loop that

causes its first frame to be replayed, this would not constitute a load event. If, however, a movie

clip is unloaded, reloading it again is a new lifetime, and a load event occurs on the movie clip’s

first frame.

onEnterFrame
An enter frame event occurs when the playhead enters a frame. The onEnterFrame handler

executes on every frame except the first frame, when the onLoad event handler of the movie clip

executes.

onUnload
An unload event occurs when a movie clip is removed from the Composition window. The

onUnload event handler executes on the first frame after the movie clip is removed.

Hands-on example 5_1: Using system-based event handlers to rotate a
movie clip

This hands-on example illustrates how to use the onLoad and onEnterFrame handlers to define

and call a movie clip method that causes a movie clip to rotate itself on every frame.

To rotate a movie clip:

1 Create a new composition, and save it as Ex5_1.liv.

2 Create an object in the Composition window, and give it a fill color.

3 Select the object, and choose Object > Movie Clip from the main menu to convert it into a

movie clip.

CHAPTER 592
Movie Clip Events and Event Handlers
4 Open the Script Editor by choosing Scripts > Script Editor from the main menu.

5 Click the system-based even handler onLoad, in the drop-down menu of handlers.

6 Write an onLoad event handler that defines a function to rotate the movie clip when it is

called. Here is a script that does this:

function rotate(){
this._rotation += 40;

}

7 Click the system-based event onEnterFrame, in the drop-down menu.

8 Write an onEnterFrame event handler that calls the rotate() function. Here is the call:

this.rotate();

This function is called to rotate the movie clip on every frame.

9 Preview.

Hands-on example 5_2: Programmatic bounce
This example creates a programmatic bouncing ball. Like the previous example, it uses onLoad

and onEnterFrame event handlers. This example uses onLoad, to initialize conditions, and

onEnterFrame, to update conditions as the playhead enters each frame. The example also

demonstrates the use of the hitTest() and getBounds() movie clip methods.

To create a programmatic bounce:

1 Create a new composition, and save it as Ex5_2.liv.

2 Choose Edit > Composition Settings, and set the frames per second to 20.

3 To create the ground, create a rectangle in the Composition window, and position it where

you would like the ground to be.

4 Convert the rectangle into a movie clip, and name it Ground.

5 To create the ball, create an ellipse in the Composition window, and position it at the location

from which you would like it to fall.

6 Convert the ellipse into a movie clip, and name it Ball.

93ADOBE LIVEMOTION 2.0
Scripting Guide
The movie clips in the Composition should appear something like the ones that are shown in

Figure 5.1.

Figure 5.1 Composition window showing Ground and Ball

7 Move the anchor point of Ball to the bottom of the ellipse.

The anchor point is the position of the object in scripting. This example sets Ball’s position by

its bottom.

8 Double click Ball in the Timeline window, and open the Script Editor.

9 Click the Handler scripts button (if not already toggled on). Then select the onLoad event

handler, and enter this code:

this.dx = 0; // initial velocity in x direction pixels/frame
this.dy = 0; // initial velocity in y direction pixels/frame
this.gravity = 2000; //in pixels/frame^2
this.dt = 1/20; //the amount of time that passes between each frame
// with the frame rate is 20 fps.

This code initializes the velocity of Ball, the value of gravity, and the time between frames. The

initial velocity of Ball is 0 in the x and y directions. The value of gravity is 2000

pixels/frame/frame. The time between frames is 1/20 of a second, because the composition is set

to 20 frames/second.

CHAPTER 594
Movie Clip Events and Event Handlers
10 Click onEnterFrame in the drop-down menu of event handlers, and enter this code for the

handler:

// move the ball in the x direction
this._x = this._x + this.dx * this.dt;

// move the ball in the y direction
this._y = this._y + this.dy * this.dt + .5*this.gravity*this.dt*this.dt;

// if it hits the ground
if(this.hitTest(_root.Ground))
{

//get the bounds of the ground
var bounds = _root.Ground.getBounds(_root);
//set the ball at ground level
this._y = bounds.yMin;
//reverse the direction of the y velocity
this.dy = -(this.dy + this.gravity * this.dt);

}
//otherwise
else
{

//increase the velocity
this.dy += this.gravity * this.dt;

}

This code updates the position and velocity of Ball on every frame. It also checks to see if Ball has

hit the ground. If the movie clip intersects the ground, it is moved to be on top of the ground,

and its y velocity reverse 'bounces' it.

11 Export and open in your browser.

Key events and event handlers
Key events are triggered by key actions that are performed by the user while the movie clip is in

the Composition window. Unlike button events, key events are not tied to the mouse cursor

being over an area of the movie clip for the key handlers to execute. See “Button events and event

handlers” on page 98. The only requirement is that the movie clip timeline to which the event

handler is added is in the Composition window. Table 5.2 lists the names of the key event

handlers supported by LiveMotion.

95ADOBE LIVEMOTION 2.0
Scripting Guide
Table 5.2 Key event handlers and events

onKeyDown
The key down event is generated by pressing a key on the keyboard. The onKeyDown event

handler simply indicates that a key has been pressed.

onKeyUp
The key up event is generated by releasing a key on the keyboard. The onKeyUp event handler

simply indicates that a key has been released.

Using key event handlers

Because the key event handlers just tell you that a key has been pressed or released (but not which

key), you generally use a key event handler in combination with the Key object.

Key object

There is only one Key object. The Key object is a built-in object that provides four built-in

methods that, when used in combination with a key event handler, can be used to get infor-

mation about which keyboard keys were pressed, are held down, and are locked down.

Methods that handle the last key pressed

The getAscii() and getCode() methods return information about the last key pressed

whether or not that key is still pressed. These are useful if you want to know the last key pressed

only. To ensure that you have captured the last key pressed, the methods are only useful when

called in an onKeyDown event handler.

The getAscii() method returns the ASCII value of the last key pressed. Values exist for

uppercase (shifted state) and lowercase characters.

Event handler Event causing the handler to be called

onKeyDown Pressing a key while the movie clip is in the Composition window.

onKeyUp Releasing a key while the movie clip is in the Composition window.

CHAPTER 596
Movie Clip Events and Event Handlers
Each key on the keyboard has a numerical value assigned to it. This value is the keycode. The

getCode() method returns the keycode of the last key pressed. At the time this method is called,

the key may no longer be down.

Note: Using the ASCII value alone is less portable than using the keycode, as character codes may

differ across different keyboards. If you are writing scripts for international or cross-platform use, the

keycode may be more useful.

Methods that handle keys pressed at the time the method is called

The isDown() and isToggled() methods handle keys that are pressed when the methods are

called regardless of the key last pressed. If, for example, you press ‘a’ and then press ‘b’, the event

handler onKeyDown detects ‘b’ as the last key pressed. However calling isDown() on ‘a’ still

returns true. These methods are useful in many places such as in onKeyDown, onKeyUp, and

onEnterFrame handlers.

The isDown() method determines if a specific key is currently pressed. isToggled() deter-

mines whether Caps Lock, Num Lock, or Scroll Lock is toggled on or off.

Hands-on example 5_3: Creating an onKeyDown event handler
The onKeyDown handler in this example uses the isDown() method to determine which Arrow

key is being pressed and takes the appropriate action, depending on the key.

To create an onKeyDown event handler:

1 Create a new composition, and save it as Ex5_3.liv.

2 Create a simple shape in the Composition window, and give it a fill color.

3 Select the object. Choose Object > Movie Clip from the main menu to convert it into a movie

clip, and name it Mover.

4 Select Mover in the Timeline window, and choose Scripts > Script Editor to open the Script

Editor.

5 Expand the drop-down menu of events, and click the onKeyDown event in the list.

97ADOBE LIVEMOTION 2.0
Scripting Guide
6 In the Script window, enter the following code for the onKeyDown handler:

if (Key.isDown(Key.LEFT))
_root.Mover._x -= 10;

if (Key.isDown(Key.RIGHT))
_root.Mover._x += 10;

if (Key.isDown(Key.UP))
_root.Mover._y -= 10;

if (Key.isDown(Key.DOWN))
_root.Mover._y += 10;

7 Preview.

Click your mouse cursor on the Composition window to make it the active window. Then, use

the arrow keys to move Mover around the window.

Mouse events and event handlers
Mouse events are triggered by mouse actions that are performed by the user while the movie clip

is in the Composition window. Unlike button events, mouse events are not tied to the mouse

cursor being over an area of the movie clip for the handlers to execute. See “Button events and

event handlers” on page 98. The only requirement is that the movie clip timeline to which the

event handler is added is in the Composition window. Table 5.3 lists the names of the mouse

event handlers supported by LiveMotion.

Table 5.3 Mouse event handlers and events

Event handler Event causing the handler to be called

onMouseMove Any movement of the mouse cursor while the movie clip is in the Com-
position window.

onMouseDown Pressing the mouse button while the movie clip is in the Composition
window.

onMouseUp Releasing the mouse button while the movie clip is in the Composition
window.

CHAPTER 598
Movie Clip Events and Event Handlers
onMouseMove
A mouse move event occurs when the mouse position changes. The onMouseMove event

handler detects mouse position changes by repeatedly issuing events while the mouse is being

moved. You can use the onMouseMove handler to display a mouse trailer. To create a mouse

trailer, see “Hands-on example 4_1: Mouse trailer” on page 72.

onMouseDown

The onMouseDown event handler is the mouse counterpart to onKeyDown. It detects pressing

the mouse button. Mouse down events can be detected only when the mouse cursor is in the

Composition window.

onMouseUp
The onMouseUp event handler is the mouse counterpart onKeyUp. It detects releasing the

mouse button. Mouse up events can be detected only when the mouse cursor is in the Compo-

sition window.

Button events and event handlers
Button event handlers execute only when the mouse cursor is on the movie clip in the Compo-

sition window. Table 5.4 lists the names of the button event handlers supported by LiveMotion.

Note: _root does not support button events, because the composition as a whole cannot not be

a button.

Table 5.4 Button event handlers and events

Event handler Event causing the handler to be called

onButtonPress Clicking the mouse button while the cursor is on the movie clip.

onButtonRelease Releasing the mouse button while the cursor is on the movie clip.

onButtonReleaseOutside After pressing the mouse button and holding the cursor on the movie
clip, moving the mouse cursor off the movie clip and releasing the but-
ton.

onButtonRollOver Moving the mouse cursor on the movie clip.

onButtonRollOut Moving the mouse cursor off the movie clip.

99ADOBE LIVEMOTION 2.0
Scripting Guide
onButtonPress
Button press events occur on the downstroke of a button click. The onButtonPress handler

should be used when the user must be decisive. As soon as the button is pressed, the onButton-

Press event handler executes.

An onMouseDown event also is triggered for a button press event if an onMouseDown handler

is defined.

onButtonRelease

Button release events occur on the upstroke of a button click. Use the onButtonRelease handler

when the user should be allowed to change his mind by keeping a button pressed until

completely off the button.

An onMouseUp event also is triggered for a button release event if an onMouseUp handler is

defined.

onButtonReleaseOutside
An event in which the button is released outside is one in which the button must initially be

pressed while the mouse cursor is on the movie clip. The event is then generated by holding the

mouse button down and moving off the movie clip before releasing the button. The onButton-

ReleaseOutside event handler detects this type of action.

An onMouseUp event also is triggered for a button release outside event if an onMouseUp

handler is defined.

onButtonRollOver

A button rollover event occurs when the mouse cursor is moved onto the movie clip (but not

pressed). This action is handled by the onButtonRollOver handler.

onButtonDragOver After pressing the mouse button while the mouse cursor is on the movie
clip, moving the cursor off and then back on the movie clip.

onButtonDragOut After pressing the mouse button while the mouse cursor is on the movie
clip, moving the mouse cursor off the movie clip.

Event handler Event causing the handler to be called

CHAPTER 5100
Movie Clip Events and Event Handlers
An onMouseMove event also is triggered for a button rollover event if an onMouseMove handler

is defined.

onButtonRollOut
A button rollout event occurs when the mouse is moved off the movie clip (but not pressed).

This action is handled by the onButtonRollOut handler.

An onMouseMove event also is triggered for a button rollout event if an onMouseMove handler

is defined.

onButtonDragOut

A button drag out event is similar to a button rollout event except the mouse button is pressed

while the mouse is moved off the movie clip. An onButtonDragOut handler should be written

to handle this action.

An onMouseMove event also is triggered for a button drag out event if an onMouseMove handler

is defined.

onButtonDragOver
A button drag over event starts with the mouse button pressed while on the movie clip. Then the

mouse is moved off the movie clip (generating the onButtonDragOut event) and moved back on

again—all movement taking place while the mouse button is pressed. An onButtonDragOver

handler should be written to handle this action.

An onMouseMove event also is triggered for a button drag over event if an onMouseMove

handler is defined.

Hands-on example 5_4: Creating a simple button event handler

It is important to understand that a button is simply a movie clip that has a button event handler

defined for it. This example creates a button.

To create a button event handler:

1 Create a new composition, and save it as Ex5_4.liv.

2 Create an object in the Composition window, and give it a fill color.

3 Select the object, and choose Object > Movie Clip from the main menu to convert it into a

movie clip.

101ADOBE LIVEMOTION 2.0
Scripting Guide
4 Name the movie clip Rotate_button.

5 Open the Script Editor by choosing Scripts > Script Editor from the main menu.

6 In the Script Editor, click the Handler scripts button if the button is not already toggled on.

7 Expand the drop-down menu of events, and click the onButtonPress event.

8 Enter this code for the onButtonPress event handler:

this._rotation += 30;

The code causes Rotate_button to rotate itself 30 degrees each time the user presses the button.

9 Preview.

Hands-on example 5_5: Creating a toggle button

For LiveMotion 1.0 users, recall that you created a “button” by applying predefined or custom

states to an object in the Rollovers palette. This example creates a simple toggle button that has

two states: normal and on. By clicking the button, it switches between these states. This example

is very useful for creating user interface elements such as radio buttons and check boxes.

To create a toggle button:

1 Create a new composition, and save it as Ex5_5.liv.

2 Create an ellipse in the Composition window.

3 Give the ellipse the color red.

Figure 5.2 Composition with ellipse

4 In the States palette, give the object a custom state, and name the state “on.”

This automatically converts the object to a movie clip.

CHAPTER 5102
Movie Clip Events and Event Handlers
5 Select the “on” state, and give it the color blue.

6 In the Timeline window, select your newly created movie clip, press Enter, and name it Toggle.

7 With Toggle still selected, open the Script Editor by choosing Scripts > Script Editor from the

main menu.

8 Click the Handler scripts button (if not already toggled on).

9 Click the onLoad event in the drop-down menu of events, and enter this script:

toggleState = false;

This onLoad event handler code creates the variable toggleState, and initializes it to false.

The variable will track the state and value of Toggle.

10 In the Handler scripts drop-down menu, click the onButtonPress event, and enter the

following script:

if (toggleState == false)
{

this.lmSetCurrentState("on");
toggleState = true;

} else {
this.lmSetCurrentState("normal");
toggleState = false;

}

This onButtonPress event handler code creates a simple toggle effect. It switches the current state

of Toggle between “normal” and “on,” depending on the value of toggleState.

11 Preview.

12 Click on Toggle to switch between its normal state and on states.

State change events and handlers
State change events are triggered when the state of a movie clip changes. All state changes are the

result of a call to lmSetCurrentState(). However this call could be part of a remote rollover,

part of some user defined script, or part of the default button handler scripts associated with the

predefined button states (normal, over, down, and out) that give them their default button

behavior. For additional information on the default button handlers, see the next section.

103ADOBE LIVEMOTION 2.0
Scripting Guide
Automatically generated button event handlers
LiveMotion automatically generates code in the movie clip's button handlers to implement the

default button behavior for the predefined states. These automatically generated button event

handlers are set up to change the state of the movie clip in responses to the appropriate button

event. The method used to change the state of the movie clip is lmSetCurrentState(). This is

the same method that you can use anywhere in your scripts to change state. If, for example, you

define the over state for an object, LiveMotion automatically generates this code to set the state

to the over state when the mouse cursor is over the movie clip. LiveMotion generates this code

to return the movie clip to the normal state when the mouse cursor is no longer over the

movie clip.

Hands on example 5_6: Experimenting with automatically generated button
handlers
This example creates a predefined state for a button, which causes LiveMotion to automatically

generate button handlers. Then it comments out the automatically generated code to demon-

strate that the state change will not occur.

To automatically generate a button handler:

1 Create a new composition, and save it as Ex5_6.liv.

2 Create an ellipse in the Composition window.

3 Give the ellipse the color red.

4 In the States palette, add the over state to the ellipse.

This automatically converts the object to a movie clip.

5 Select the over state, and give it the color blue.

6 In the Timeline window, select your newly created movie clip, and name it Button.

7 Open the Script Editor by choosing Scripts > Script Editor from the main menu.

8 Click the Handler scripts button (if not already toggled on).

CHAPTER 5104
Movie Clip Events and Event Handlers
9 Click the arrow to the right in the drop-down menu to display all the event handlers. The

asterisk (*) to the left of these button handlers in the list indicates that code (shown here) has

automatically been generated.

10 Select the onButtonRollover event. The script associated with this event is:

this.lmSetCurrentState("over");

11 Preview the rollover to verify that it is working.

Button should turn blue when the mouse cursor is over it.

12 Exit Preview mode.

13 Open the Script Editor, and click the Handler scripts button.

14 Select the onButtonRollover event, and comment out the automatically generated code, as

shown here.

// this.lmSetCurrentState("over");

15 Preview.

When you pass the mouse cursor over Button, its color does not change from its normal state

color to the blue color you gave it for the over state, because you disabled the over state change.

The LiveMotion button behaviors of the predefined states are the default. You don’t need to

retain these behaviors. You can easily define a new button behavior style. Just comment out

LiveMotion’s button handler code as you did in this example and write your own. For example,

you could create a toggle behavior for the down state such that clicking the button places it in the

down state until such time that the button is clicked again to place it in the normal state.

Be aware that if you simply delete the LiveMotion state change script instead of commenting it

out, you may not recall why a behavior is not working as it was originally defined.

button handler code generated

onButtonRollover this.lmSetCurrentState("over");

onButtonRollOut this.lmSetCurrentState("normal");

onButtonDragOut this.lmSetCurrentState("normal");

105
Chapter 6: Dynamic Data

In LiveMotion, dynamic data refers to the ability to dynamically take data input from a user to

set variables and to respond based on the user’s specific query. This usually involves communi-

cation with a remote Web server or a database. Communications occur over standard Web

browser protocols (HTTP or HTTPS) or over TCP/IP sockets. Responses are displayed within a

LiveMotion movie clip or within a browser window.

Forms and text fields
Dynamic data applications are usually based on forms. LiveMotion makes it easy to create

powerful forms. A well-designed form ensures that you are soliciting the right information from

the user. A form may consist of a single text field into which the user enters information, or it

may consist of dozens of text fields strategically laid out on the screen so that it’s crystal clear to

see how to fill out the form.

Dynamic data user input occurs via the mouse or the keyboard. Mouse input is handled by

LiveMotion’s onMouseMove, onMouseDown, and onMouseUp event handlers. Keyboard input

can also be handled entirely via the event system using the Key object, but for most dynamic data

applications it is handled using LiveMotion text fields in conjunction with on-screen buttons.

Text field properties

Text fields are used to create forms and to display information received from remote sources.

This information can be updated by the user and returned in the same—now updated—text

field variables.

LiveMotion allows you to set a variety of text field properties. This occurs through the Properties

palette. For example, dynamic text fields can have the Password flag set from the Properties

palette pop-up menu (shown in Figure 6.1), which prevents characters from being displayed

when the user types in his password.

CHAPTER 6106
Dynamic Data
Figure 6.1 Properties palette pop-up menu

Another important property that is set from the text field Properties palette is the variable name

assigned to the text field. The variable name is typed into the Var field (see Figure 6.2). For

example, in the following code, display is the name of the text field, and "My first text

field" is the string value associated with it.

_root.display = "My first text field";

Figure 6.2 Properties palette

The contents of the display variable can be updated by the user, and/or sent to a remote appli-

cation, and/or modified and returned by a remote application. These tasks are usually accom-

plished using the loadVariables(), loadVariablesNum(), loadMovie(), loadMovieNum(),

and getURL() global functions and the loadVariables(), loadMovie(), and getURL()

MovieClip object methods to send and (in the case of the loadVariables() calls) receive

variables over the network.

107ADOBE LIVEMOTION 2.0
Scripting Guide
Two other important properties that are set from the text field properties palette are whether the

text field allows users to enter text when it is exported as a SWF file, and whether the text in the

text field is interpreted as HTML code. Both of these properties are important to keep in mind

when creating text fields for dynamic data applications.

To create a text field:

1 Select the text field tool.

2 Click and drag to create the bounding box of the text field.

3 Type into the text field to add default text (initialize the text field with a value).

4 In the Timeline window, select the text field (named Dynamic Text by default).

5 Choose Object >Edit Name from the main menu, and enter a new name for the text field.

6 Choose Window >Properties. In the Properties palette, enter a variable name in the Var field

as shown in Figure 6.2. Then set any other properties of the text field you wish to specify.

Once you assign a variable name to a text field, the text in that text field becomes the value of the

variable. The text field is of type string. Even if there are only numbers in the text field, it is still

considered a string. If you want to work with the data as numbers, use the parseInt() global

function. After the text field has been initialized with a string, any value that you enter into the

text field—or any modification that you make to the text in the text field—causes the value of

the variable to change. In addition, through the scripting language, text field variables can be

manipulated like any other variables. Note that when the text field is exported or when it is

previewed, any changes to it are automatically saved. Also, there is no real need for a form’s

“enter” or “submit” button other than to move the user to the next text field or to submit the text

field variables to the server.

You will probably want to set the Show Border\Background option in the pop-up menu of the

Properties palette (see Figure 6.1). This places borders around your text fields so that they are

easy to see. In addition, the Properties palette allows you to set the text font and size, and to

indicate which fonts to embed.

CHAPTER 6108
Dynamic Data
loadVariables(), loadMovie(), and getURL()
Taking user input is one way of using dynamic data variables. Other ways include using the

loadVariables(), loadVariablesNum(), loadMovie(), loadMovieNum(), and getURL()

global functions and the loadVariables(), loadMovie(), and getURL() movie clip methods.

These functions and methods allow you to interact with an external data source, usually an appli-

cation running on a Web server. The loadVariables() and loadVariablesNum() global

functions and the movieClip.loadVariables() method allow you to send and receive variable

values. The other global functions and movie clip methods only allow you to send variables and

their values—the results may then be sent back by the application as a SWF file (loadMovie())

or an HTML page (getURL()).

Note: The loadVariables() global function, the loadVariablesNum() global function, and the

movieClip.loadVariables() method are asynchronous in nature—the variables aren’t loaded

immediately. The timeline continues progressing while data is being retrieved and loaded, at the end

of which the onData event is raised. The _root movie clip, however, has no onData event, so an

immediate child of _root is usually used.

To send variables, you must specify whether the GET or POST HTTP method is used. For example,

the last argument of the loadVariables() global function is used to specify the HTTP method:

loadVariables("http://www.myServer.com/cgi-bin/stockdata.pl",this,"GET");

For all of the loadVariables(), loadMovie(), and getURL() calls, the HTTP method

argument is always the last argument and is optional; in each case this argument also indicates

that you want to send the variables. If provided, the argument causes LiveMotion to send all of

the movie clip’s user-defined variables, including the text field variables, according to the

method indicated. The Flash Player automatically URL-encodes the outgoing variable strings.

The GET method has a 1024-character limit and sends the variables tacked onto the URL that is

used to contact the remote application (see the loadVariables() invocation above). The POST

method is used for larger amounts of data; this data is sent separately from the URL, and thus

data sent via POST is not visible to the user of the application, so is more secure. For more infor-

mation regarding the syntax used to send and receive variables, see “Reference” on page 143.

Note: Repeated use of GET with the same variables and their values might cause the Web browser to

cache the data that’s supposed to be returned. To avoid this, use POST.

109ADOBE LIVEMOTION 2.0
Scripting Guide
In addition to encoding outgoing variable strings, the player decodes incoming variable strings.

To encode and decode, the Flash Player uses the application/x-www-form-urlencoded MIME

format. During encoding, this format:

• Replaces spaces with a plus (+) sign;

• Replaces non-alphanumeric characters by %HH where HH are two hexadecimal digits repre-

senting the ASCII code of the character;

• Represents line breaks (for multi-line text fields) as CR LF pairs—%0D%0A;

• Lists fields in the order that they appear with the variable name separated from the value by an

equal sign (=) and from each other by an ampersand (&).

Table 6.1 summarizes how variables are sent and received using LiveMotion.

Table 6.1 Calls for Remote Transmission and Reception of Variables

Global Function or Movie Clip
Method

Use

loadVariables() global
function

Sends and receives variables. Loads received variable values into a
movie clip identified by player level, path, or movie clip reference.

loadVariablesNum() glo-
bal function

Same as loadVariables() global function except that variable
values can only be loaded into a movie clip identified by player
level.

loadMovie() global func-
tion

Sends variable values. Receives a SWF file, possibly generated
based on the values supplied. This file can then be loaded into
either a player level or a movie clip, replacing existing contents.

loadMovieNum() global
function

Same as loadMovie() global function except that the SWF file
can only be loaded into a player level.

getURL() global function Sends variable values. Receives results as an HTML file for display
in a browser window. Also allows you to execute JavaScript and
VBScript code and to execute the fscommand global function.

movieClip.loadVari-
ables() method

Same as loadVariables() global function except that variable
values can only be sent from and loaded into movieClip.

movieClip.loadMovie()
method

Same as loadMovie() global function except that the variables
can only be sent from and the SWF file can only be loaded into
movieClip.

movieClip.getURL()
method

Same as getURL() global function except that variable values can
only be sent from movieClip.

CHAPTER 6110
Dynamic Data
On the server side, the application that receives and sends variables and values can be written in

any of a variety of server side scripting languages. The SWF file format is not dependent upon

server technology. Some of the more common scripting languages are Perl, Microsoft Active

Server Pages (ASP), and PHP. The scripting languages used to create server-side applications that

send and receive data have built-in facilities for handling the types of communications described

above. The exception is an application that can generate SWF files “on the fly.” Typically, such an

application is highly customized.

How to create a form and send its data to a server
Use the following steps as a guideline for developing a form that takes user input, sends the input

to a server, and receives data back. The steps can be modified to create and populate a form that

is updated by the user; the contents of the updated text field variables would then be sent to the

server.

To create a dynamic data form in LiveMotion:

1 Start a new composition.

2 Create a text field.

3 Give the text field the variable name input and set the Allow Input option.

4 Create a button with three predefined states—normal, over, and down.

5 Select the text field and the button and make them into a movie clip group.

6 Give the movie clip group the name formGroup.

To create a form to receive data from a server:

1 Create a text field.

2 Give the text field the variable name output.

3 Select the text field, and make it a movie clip group with the name outputGroup.

To send data to a server:

1 Double click on formGroup in the Timeline window.

2 Select the button.

111ADOBE LIVEMOTION 2.0
Scripting Guide
3 In the States palette, select the down state.

4 In the Timeline window, double click on the down state for the button to open the Timeline

window for the down state. Then click on the Scripts button.

5 Enter the following:

loadVariables("http://www.myserver.com/processForm.asp",
"_root.outputGroup","POST");

The final step adds the down state button code that will load variables from the formGroup

movie clip and post them to the ASP page on www.myserver.com. This code also causes the

loading of the variables from processForm.asp. Those variables are then placed into the movie

clip outputGroup. If those variables already exist in outputGroup, then they are updated.

Otherwise, new variables are created that are actually properties of the outputGroup movie clip

(to be accessed in the same way as any other movie clip properties or movie clip variables).

The ASP file can specify any number of variable-value pairs. Each pair must be separated with

an ampersand and spaces must be URL-encoded so they are replaced with a + sign, as described

above where the rules for the application/x-www-form-urlencoded MIME format are outlined.

For example:

output=the+form+submitted+correctly&additionalData=valid&eof=1

XML communications
LiveMotion also supports transmission and reception of eXtensible Markup Language (XML)

files. Using XML, a LiveMotion application can take input from the user, generate an XML file,

and send the file to a server application that parses the XML and stores the data. The application

then responds with either an XML file for processing by a movie clip or with an HTML file for

display in a Web browser window.

The LiveMotion XML class enables you to load, parse, send, build, and manipulate XML

document trees. Unlike HTML, which uses a defined set of tags, XML allows you to define your

own document tags. For example, the following code shows a simple XML document:

<?xml version=’1.0’?>
<doc>
<p>Text</p>
<p>More text</p>
<p>See also <xref doc="bestDoc.xml"/></p>

CHAPTER 6112
Dynamic Data
</doc>

LiveMotion allows you to either build an XML document from scratch or read in and modify an

existing XML document.

Only version r41 and above of the Flash 5.0 Player support XML (r41 was released in December,

2000). Use the getVersion() global function to get the version of the Flash Player that you

currently have installed. Use of XML with the Flash Player is not dependent on the browser; your

browser does not need to support XML to use this capability.

The LiveMotion XML class’s send(), load(), and sendAndLoad() methods are used to send and

retrieve XML documents to/from URLs. Table 6.2 provides a brief description of each method.

The difference between send() and sendAndLoad() is that the Web server’s response to send()

is an HTML file, whereas the response to sendAndLoad() is an XML document. Since they tend

to be too large for the GET method, the POST HTTP method is usually used for sending and

receiving XML documents. To support parsing of the data returned from the XML methods, the

methods also work in Preview mode. The table below summarizes the XML class’s methods used

to send and retrieve XML documents. See “Reference” on page 143 for further details.

Table 6.2 XML Class Methods for Sending and Receiving XML Data

XML socket communications
LiveMotion also supports XML socket-based communications. Communications using XML

sockets are implemented using the XMLSocket class.

The XMLSocket class implements a client socket that allows the Flash Player to communicate

with a server using an “open” connection. A connection using a socket is useful because it

remains open—that is, an IP connection doesn’t have to be made between the client and the

server each time communications occur between the Flash Player and a server, as is required

when the HTTP protocol is used. A “permanent,” two-way, TCP/IP link is set up instead. This

Method Description

load() Get an XML file from a URL.

send() Send an XML file to a URL; expects the server to respond with an HTML
page for display in a browser window.

sendAndLoad() Send an XML file to a remote URL; expects the server to respond with an
XML file for processing and display in a LiveMotion movie clip.

113ADOBE LIVEMOTION 2.0
Scripting Guide
enables the Flash Player to listen for incoming messages and process them as they come in. On

the server side, this creates a connection where the server can push data directly down to the

Flash Player. Real-time communications are enabled.

Only the XMLSocket object uses a full-duplex, continuous, TCP/IP connection. The getURL(),

loadVariables(), loadMovie(), XML.send(), XML.load(), and XML.sendAndLoad() calls

use the HTTP or HTTPS protocol.

The primary characteristics of an XML socket-based application between a Flash Player movie

clip and a server are the following:

• There must be a server-side application to wait for the socket connection request and respond

to the Flash Player.

• XML messages are sent over a full-duplex TCP/IP connection.

• Each XML message is a complete XML document, terminated by a zero byte (ASCII null

character).

• An unlimited number of XML messages can be sent and received over a single connection.

If these are not requirements of your application, use LiveMotion’s other dynamic data

functions, objects, and methods, already discussed in this chapter.

The XMLSocket implementation in LiveMotion is event-based. These events are coded

separately (and do not use) the built-in event handlers in the LiveMotion scripting environment.

The implementation uses four event handlers that use user-defined callback functions to

respond to activity on the socket-based connection. The implementation’s three core methods

are used to set up a connection and to send XML files. The XMLSocket methods are summarized

in Table 6.3. The XMLSocket event handlers are summarized in Table 6.4. See “Reference” on

page 143 for further details.

Table 6.3 XMLSocket Class methods

Method Description

close() method Close an open socket connection.

connect() method Create a socket connection to a specified server.

send() method Send an XML object to the server.

CHAPTER 6114
Dynamic Data
Table 6.4 XMLSocket event handlers

The application on the server side of an XML connection is more sophisticated than a standard

Perl or ASP application. These tend to be applications that work well over UNIX sockets connec-

tions on TCP/IP networks and they are often written in Java. They usually host custom-written

front ends tuned to handle stringent XML translation and generation.

Processing incoming data

The following is an example of XMLSocket code used to process incoming data.

function showData(dataXML) {
 // act on the XML from the socket
 trace(dataXML.firstChild.nodeValue);
}
// define the socket
dataSocket = new XMLSocket();
// connect to the server at a specified port
dataSocket.connect("http://www.adobeServerOrSomething.com/",1024);
dataSocket.onXML = showData;

Event Handler Description

onClose() event handler Callback function that is called when a connection is closed
by the server.

onConnect() event handler Callback function that is called when a connection is cre-
ated.

onData() event handler Callback function that is called when data is received but has
not yet been parsed as XML.

onXML() event handler Callback function that is called when data has been received
and parsed into an XML object hierarchy.

115
Chapter 7: Script Editor

Introduction to the Script Editor
This section provides details on LiveMotion’s Script Editor. It describes the capabilities of each

physical component and explains how you can use the functionality to assist you in developing

your scripts. Every hands-on example in this guide uses the Script Editor at a very high level. You

learned how to open the Editor to write scripts to timelines and to movie clip states. This section

takes you through all the Script Editor functionality. As you start to create more advanced scripts,

you can refer to this section to take advantage of the Script Editor’s features.

Exploring the Script Editor
The Script Editor enables you to write and maintain scripts for your composition while you are

in the LiveMotion application. To access the Script Editor you must have a new or an existing

composition open in LiveMotion.

Script Editor window

Figure 7.1 shows the Script Editor window.

Figure 7.1 Script Editor window

CHAPTER 7116
Script Editor
The title bar of the Script Editor window displays a reference to the movie clip whose scripts you

are currently editing.

The Script Editor main window is further divided into three main informational views.

Clockwise starting with the top left in Figure 7.1, these are:

• Scripting helper window

• Script window

• Description window

The Scripting helper window displays the tools that can assist you in developing scripting code.

These are: Movie clip navigator, Scripting syntax helper, and Composition browser. The

Automation syntax helper is not available for creating scripts to be exported to the Flash Player.

The Script window is where you write JavaScript code clip, or view existing scripts, for the

current movie clip. To enter code, you can select code from the Scripting syntax helper, or you

can simply insert the cursor in this window and start writing code.

The Description window displays descriptions of syntax that you select using the Scripting

syntax helper button (described below).

You can adjust the size of the Script Editor’s windows. By placing your mouse cursor on the

vertical frame between the upper windows, you can drag the frame left or right to expand or

contract window width. By placing your mouse cursor on the horizontal frame separating the

upper windows from the lower and dragging the mouse up or down, you can expand or contract

window height.

Script Editor buttons
The Script Editor displays a row of buttons just beneath the title bar. Table 7.1 summarizes the

functionality of each of these buttons. Details on these buttons follow the table summary.

Table 7.1 Script editor buttons and windows

Button or window Description

Movie clip navigator Lists all the movie clips in a composition in hierarchical order.
Selecting a movie clip in this window allows you to see and edit
scripts on that movie clip.

117ADOBE LIVEMOTION 2.0
Scripting Guide
Scripting syntax helper Lists the LiveMotion 1.0 Behaviors, ActionScript syntax, and Java-
Script syntax. Selecting an item in the list displays a brief descrip-
tion of the argument in the Description window. Double-clicking
a syntax entry adds the item's syntax to the current script.

Composition browser Lists all the movie clips, labels, and states in the composition.
Selecting an item in the list displays the reference text that will be
entered in the Script window. Double-clicking a movie clip, label,
or state adds the respective movie clip reference, label name, or
state name to the current script.

Automation syntax helper Lists and describes all the global objects and properties in the
JavaScript core that are supported by automation scripting and
all predefined objects, their methods, and properties in the Auto-
mation scripting DOM. For details on automation scripts, see the
LiveMotion 2.0 SDK. This button is available when the export for-
mat is Live Tab when you are editing an automation script.

Go to previous script Switches the script view to the previously edited script. This but-
ton works like the Back button in a Web browser.

Go to next script Switches the script view to the more recently edited script. This
button works like the Forward button in a Web browser.

Handler scripts Lists all the event handlers in the drop-down menu for which you
can write scripts.

This button, as well as the State scripts and Keyframe scripts but-
tons described below, display a blue triangle when they contain
scripts. The contents displayed in the drop-down menu (handler
or state names, or keyframe numbers) depend on which of the
three buttons is selected. Items in this menu display an asterisk if
scripts exist on them.

State scripts Lists all states in the drop-down menu that are defined for the
current movie clip. The list contains the normal state, and it can
include the predefined states over, down, and out, plus any cus-
tom states defined for the movie clip.

Keyframe scripts Lists all script keyframes in the drop-down menu for the current
movie clip.

Button or window Description

CHAPTER 7118
Script Editor
Movie clip navigator
The Movie clip navigator indicates which movie clip timeline you are on. When you first open

the Script Editor, the Movie clip navigator button is toggled on, and its contents are displayed to

the Scripting helper window. Initially, the window displays an expanded list of all the manually

created movie clips in hierarchal order.

Note: If any movie clip names in your composition contain invalid JavaScript characters such as

spaces or punctuation, they are displayed in red in the Movie clip navigator window.

In the Movie clip navigator, the movie clips on the composition timeline are one indent from the

left margin. Any movie clips on the timelines of these movie clips are two indents from the left

margin, and so on. Figure 7.2 shows the movie clip hierarchy for the mouse trailer that you

created in“Levels of the Flash Player” on page 86. The movie clip icon is displayed to the left of

each movie clip name.

Drop-down menu Displays the keyframes, event handlers, or states for the current
movie clip. The contents displayed depend on which of the previ-
ous three buttons is selected. Items in this menu will display an
asterisk if scripts exist on them.

Find Opens a dialog for finding and replacing text strings in the cur-
rent script.

Syntax highlighting Turns syntax highlighting on and off.

Script window Displays existing scripts and new scripts that you write to the cur-
rent movie clip.

Description window Displays brief descriptions of the syntax listed in the Scripting
syntax helper.

Scripting helper window Displays contents of the Scripting Editor’s Movie clip navigator,
syntax helper, and browser buttons. The contents displayed
depend on which of the buttons is selected.

Button or window Description

119ADOBE LIVEMOTION 2.0
Scripting Guide
Figure 7.2 Movie clip navigator

Expanding and collapsing movie clips

By clicking the triangle to the left of a movie clip group name in the Movie clip navigator, you

can expand or collapse the movie clip children in that group. For example, if you were to click

the triangle next to MouseTrailer shown in Figure 7.2, Base0 is no longer displayed. Clicking

Composition collapses everything in the movie clip hierarchy below the composition timeline.

Navigating the hierarchy

The Movie clip navigator can assist you in locating the correct movie clip to add new scripts to

or to locate existing scripts. To access a movie clip’s scripts, for example, select the movie clip

name in the hierarchy. This takes you to the movie clip’s timeline and also updates the contents

of the Script Editor’s title bar to display the absolute reference to that movie clip. If a movie clip

has states defined for it, and a state other than normal is selected when the Script Editor is open,

that state appears in parentheses to the right of the movie clip reference. To access the children

of movie clip groups, just click the triangle next to the group to expand it as necessary, until you

locate the child whose scripts you want to access. Once you have accessed the movie clip that you

want, you can either select the type of script you want to write, or you can open an existing script

you want to access by using the Handler scripts, State scripts, or Keyframe scripts buttons.

Scripting syntax helper

The Scripting syntax helper assists you with creating the syntax for the LiveMotion 1.0 behaviors,

the ActionScript syntax (that is, the extensions to JavaScript that enable you to manipulate movie

clips), and the JavaScript core syntax. With the Scripting syntax helper button toggled on, the

window displays these syntax groups. By clicking the triangle to the left of a group name, the

contents of that group are expanded and displayed to the Scripting helper window. The LM 1.0

Behaviors group lists all the LiveMotion 1.0 behaviors by behavior name. The ActionScript

Syntax Helpers group lists the names of all JavaScript extensions for writing movie clip scripts.

The JavaScript Syntax Helpers group lists the JavaScript core utilities.

CHAPTER 7120
Script Editor
Syntax helper group entries

The ActionScript and JavaScript groups contain entries with of their own with triangles next to

them that you can click to expand to another level of entries. Clicking the triangle next to the

Movie Clip Methods entry in the ActionScript Syntax Helpers group, for example, expands the

entry to show an alphabetical list of all the movie clip methods. See the Scripting helper window

in Figure 7.3.

Selecting a movie clip method name causes a brief description of that movie clip method to be

displayed in the Description window, as shown in Figure 7.3. The information briefly describes

what that method does, what the syntax of the method is, and what each argument to the method

is. This is helpful when you want quick access information about how to use the method. For

detailed descriptions of all the scripting interfaces that LiveMotion supports, see “Reference” on

page 143.

Selecting the method name and pressing Enter (or double clicking the method) generates the

syntax for the method in the Script window, as shown in Figure 7.3.

Figure 7.3 Generating the syntax for the duplicateMovieClip() method

121ADOBE LIVEMOTION 2.0
Scripting Guide
The Scripting syntax helper generates the syntax, but it is up to you to fill in the necessary

argument values and anything else that would make the script complete. In the example shown

in Figure 7.3, you would need to provide values for the arguments, newName and depth. Use the

descriptions displayed to help you determine what these arguments represent. If you know the

reference to the movie clip making the call, you can fill that in. Otherwise, you can use the

Composition browser, described next.

Composition browser
The Composition browser assists you with generating the correct reference to a movie clip, state,

or label. At any time, you can click the Composition browser button to open the browser in the

Scripting helper window. The window displays all the movie clips in a composition in hierar-

chical order. The movie clips on the composition timeline are one indent from the left margin.

Any movie clips on the timelines of these movie clips are two indents from the left margin, and

so on. Just below the movie clip name, the browser displays the movie clip’s states and any label

names on its timeline. At the bottom of the Scripting helper window, two radio buttons allow

you to choose between generating the absolute or relative reference for a movie clip.

Clicking once on a movie clip name, on a label, or on a state generates the respective movie clip

reference (in the style specified by the radio button), label name, or state name in the Description

window. This information is generated in this window for your information only. You do not

need to delete it. Clicking once on another movie clip name, label, or state removes the current

information and generates information for the movie clip, label, or state that you just clicked.

This feature enables you to use the Composition browser to examine for possible use the movie

clip references, labels, and states at any time as you write scripts.

Double clicking a movie clip name, label, or state generates the respective the reference to that

movie clip (in the style specified by the radio button), label name, or state name in the Script

window at the position of the cursor. If you decide not to use the syntax elements you generated,

you must select and delete them from the window.

Using the Composition browser with the Scripting syntax helper

You also can use the Composition browser in combination with the Scripting syntax helper to

fill in placeholders or arguments requiring a movie clip reference, label name, or state name.

When you double click an item from the Scripting syntax helper, the code that gets passed into

the editing area (Script window) may not be complete. You may be required to fill in argument

values and movie clip references. The procedure below uses the duplicateMovieClip() movie

clip method as an example.

CHAPTER 7122
Script Editor
To complete a call to the duplicateMovieClip() method:

1 Click the Scripting syntax helper to display the ActionScript syntax helpers in the Scripting

helper window.

2 Expand the Movie Clip Methods list, and double click the movie clip method duplicateMov-

ieClip(). (Do not double click the global method by the same name for this example.)

The code that gets displayed in the Script window appears as:

.duplicateMovieClip(newName, depth)

If you check the Description window, you will see that the complete syntax for using the dupli-

cateMovieClip() method requires that you provide a reference to the movie clip that you want

to duplicate. This is indicated by the movieclip “placeholder” in the complete syntax, which is

shown here:

movieclip.duplicateMovieClip(newName, depth)

3 To correctly form the reference, click the Composition browser button to display its contents

in the Scripting helper window.

4 Click the radio button at the bottom of the Scripting helper window to select the absolute or

relative reference to the movie clip. (This procedure uses the absolute reference.)

5 Place the mouse cursor in the Script window to the left of the dot (.) in the syntax.

6 In the Composition browser, select the movie clip that you want to reference. Then press

Return.

The correct reference to the movie clip is inserted before the dot, for example:

_root.myMovieClip.duplicateMovieClip(newName, depth)

To complete this script, you would provide the appropriate values for the arguments (newName

and depth), and add a semicolon to the end of the statement. You can use the Description

window to help you with the meanings of arguments. Here is an example of a completed

statement:

_root.myMovieClip.duplicateMovieClip("movieClipA", 3);

123ADOBE LIVEMOTION 2.0
Scripting Guide
Go to previous script and Go to next script buttons
These buttons take you to the previous and next scripts. Go to previous script behaves like the

Back button in a browser. It traces the history of where you have been. Each time you press the

button, it displays the script that was displayed just before the script that currently is being

displayed. The Go to next script button does just the opposite: pressing the button displays the

script after the current script, and so on. If either of these buttons is active, that means there is

another script to go to in that direction. When a button dims, you have reached the last script in

the direction you are going. Using these buttons enables you to navigate back and forth through

the scripts you have displayed.

Handler scripts button
The Handler scripts button is used to write event handler scripts to a movie clip and to access

existing handlers that have been written. To quickly check if the current movie clip has any event

handlers written to it, see if the Handler scripts button has a blue triangle in the top right corner

(as shown in Figure 7.4). If it does, that means event handlers are present.

To quickly see which event handlers have code written for them, see if an asterisk appears in front

of the handler’s name in the Handler drop-down menu. This indicates that scripts have been

written for that handler. Figure 7.4 shows the Handler scripts button activated. The asterisk

indicates that an event handler is written for onLoad. Event handler scripts may be written for

any number of the handlers listed in the drop-down menu.

To edit an existing handler, or to write a new handler for current movie clip:

1 Click the Handler scripts button to display the current movie clip's handlers in the drop-down

menu.

2 Expand the drop-down menu, and select the event handler name from the list.

3 Write or edit the handler code in the Script window.

You can use the Scripting syntax helper and the Composition browser to help you.

Figure 7.4 Handler scripts button activated

CHAPTER 7124
Script Editor
State scripts button
The State scripts button is used to write scripts to movie clip states and to access existing state

scripts. If the State script button has a blue triangle in the top right corner (as shown in

Figure 7.5), one or more states has scripts written for them.

To quickly see which states have code written for them, see if an asterisk appears in front of the

state’s name in the state script drop-down menu. This indicates that scripts have been written for

that state. The Script Editor window in Figure 7.5 shows the States scripts button activated and

an asterisk indicating that a script is written to the down state.

To edit an existing state script or to write a new script to a state to the current movie clip:

1 Click the State scripts button to display the current movie clip's states as the contents of the

drop-down menu.

Note: States must be defined for a movie clip before they can be edited in the Script Editor.

2 Select the state name in the drop-down menu.

3 Write or edit the script in the Script window.

You can use the Scripting syntax helper and the Composition browser to help you.

Figure 7.5 States scripts button activated

Keyframe scripts button
The Keyframe scripts button is used to write scripts to script keyframes in a movie clip’s timeline

and to access existing keyframe scripts. A quick way to tell if a movie clip's timeline contains

script keyframes is to look for a blue triangle in the top right corner of the keyframe scripts

button (as shown in Figure 7.6). If present, this means script keyframes with custom scripts exist

on the timeline.

125ADOBE LIVEMOTION 2.0
Scripting Guide
To quickly see which frames have code written for them, see if an asterisk appears in front of the

frame number in the in the drop-down menu of frame numbers. This indicates that scripts have

been written for that frame. The Script Editor window in Figure 7.6 shows the keyframe scripts

button toggled on and an asterisk indicating that a keyframe script is written to frame number 2.

To edit a keyframe script:

1 Click the Keyframes scripts button to display the current movie clip's script keyframes as the

contents of the drop-down menu.

Note: Script keyframes must be added on the movie clip's timeline before they can be edited in the

Script Editor.

2 Select the script keyframe from in the drop-down menu.

3 Write or edit the script in the Script window.

You can use the Scripting syntax helper and the Composition browser to help you.

Figure 7.6 Keyframe scripts button activated

CHAPTER 7126
Script Editor
Find button
The Find button enables you to find and replace text in a script. Clicking the Find button displays

a text box in which you can enter the text you are looking for. You have several options for

performing your search, including the direction of the search and whether the search should be

case sensitive. You can replace the text with text you enter in the Replace with: text box. Click the

Close button to end a search.

Note: Only the currently displayed script is searched, not all scripts in the composition.

Figure 7.7 Find text box

Syntax highlighting button
The Syntax highlighting button is for your coding convenience. If, for example, you want to see

all reserved words and values in your code, you can toggle the button to turn on or off the blue

font for reserved words and the red font for values.

In addition to these buttons, keyboard shortcuts in the online Help file can assist you in making

selections and navigating through code.

127
Chapter 8: Debugger

Introduction to the Debugger
LiveMotion has an integrated JavaScript source Debugger that enables you to troubleshoot

scripts while you are in the LiveMotion application. This section describes the capabilities of the

Debugger’s physical components. It explains how you can use the functionality to assist you in

troubleshooting your scripts, and it includes short examples illustrating its features. It also

describes how the Debugger can be used in combination with the Script Editor and the Script

Console window to check output at various points during the execution of the scripts. As you

start to create more advanced scripts, you can refer to this section to review ways to take

advantage of the Debugger’s powerful features.

Exploring the Debugger

Bringing up the Debugger
To bring up the Debugger, you must have a composition open. You can choose if and when to

activate the Debugger by selecting the appropriate menu item from the Script Editor menu (in

LiveMotion’s main menu). The Script menu provides three options:

These Debugger modes also are available from a drop-down menu in the Debugger window

Figure 8.3 so that you can change modes during a debugging session.

Scripts > Don’t Debug Disables the Debugger.

Scripts > Debug on Errors Brings up the Debugger when it detects an error during exe-
cution of your composition.

Scripts > Debug at Start Brings up the Debugger when you start Preview mode.

CHAPTER 8128
Debugger
Debugger window

Main informational views

The main Debugger window is further divided into three main informational views. Clockwise

starting with the top left in Figure 8.1, these are:

• Call stack window

• Variable window

• Source window

You can adjust the size of the windows by dragging your mouse on the window frames. By

dragging your mouse on the vertical frame between the Call stack and Variable windows, you can

move the frame left or right to expand or contract window width. Dragging your mouse up or

down on the horizontal frame separating the upper windows from the Source window expands

or contracts window height.

Figure 8.1 Debugger window

129ADOBE LIVEMOTION 2.0
Scripting Guide
The Call Stack window contains a list of functions that are in the process of being executed. The

call stack gets deeper as functions call other functions. As functions complete, they are no longer

displayed.

The Variable window displays the following types of information:

• Arguments to functions

• Current movie clip object and detailed information about this object’s properties

• Local variables

• User expressions

• Debugger messages

Figure 8.2 Variable window

By expanding the triangles next to entries in this window, you can view additional window

content. Figure 8.2 shows the types and values of arguments and local variables in the Source

code shown in Figure 8.1.

The Source window displays the JavaScript source when a script is stopped. The position

indicator (red arrow in the column on the left side of the window in Figure 8.1) indicates where

execution has most recently stopped. For example, Figure 8.1 shows the position indicator just

before a call to the trace() function.

CHAPTER 8130
Debugger
Debugger buttons
Just beneath the Debugger window title bar, there is a row of Debugger buttons. These buttons

are shown in Figure 8.3.

Figure 8.3 Debugger buttons

Table 8.1 summarizes the functionality of each of the Debugger buttons. Details on these buttons

follow the table.

Table 8.1 Debugger buttons

Run

The Run button plays a composition until it reaches one of the following:

• The next script to execute

• The next breakpoint

• The next error encountered

You can halt execution by clicking the Stop button or exiting Preview mode.

Button Description

Run Plays a script.

Stop Halts execution.

Kill Terminates script execution and the Debugger.

Step Single-steps through instructions.

Step Into Single-steps through instructions, and enters each function
call that is encountered.

Step Out Executes the code out of a function call, and stops on the
instruction immediately following the call to the function in
the calling script.

(+) Adds variables and calculations entered in the Variable field to
the User Expressions list.

131ADOBE LIVEMOTION 2.0
Scripting Guide
Stop

The Stop button halts execution of the current script. When the button is active, it displays in red.

Kill

The Kill button terminates the debugging session, closes the Debugger, and returns to your

normal editing session. Terminating a debugging session clears all variable values that may have

been set during the session. However, it does not clear breakpoints you may have set in the

Editor. For details, see “Setting breakpoints” on page 133.

Step

The Step button single-steps through instructions. Clicking Step at a method call executes the

entire method rather than executing one instruction at a time with each click of the button. Say,

for example, the Source window shows the position indicator arrow to the left of the blink()

method, as shown here:

-> _root.Ellipse.blink();

This location is immediately before the call to blink(). Assuming that there are no errors or

breakpoints in blink(), clicking Step executes the entire blink() method, and moves the

position indicator arrow to the next script instruction following the method call.

Step Into

The Step Into button single-steps through instructions in the code, and enters each function call

that is encountered. The blink() method definition shown below illustrates how this button

works:

_root.Ellipse.ctr = 0; // make ctr an Ellipse movie clip property

// Define the blink method
->_root.Ellipse.blink = function(){

this.ctr++;
// _alpha is a built-in movie clip property
if(this.ctr % 2 == 0)

this._alpha = 50;
else

this._alpha = 100;
}

CHAPTER 8132
Debugger
When the position pointer is to the left of the function call, as shown here, clicking Step Into

takes you to the first statement inside the blink() method:

-> _root.Ellipse.blink();

The first statement in blink() is:

// Define the blink method
_root.Ellipse.blink = function(){
-> this.ctr++;
.
.
.

Each additional click of the Step Into button executes the next instruction in blink().

Step Out

The Step Out button executes the code out of a function call, and stops on the instruction

immediately following the call to the function. Using this button, you can quickly finish

executing the current function after determining that a bug is not present. Say, for example, that

you are clicking Step Into to execute each line of code in blink() to monitor the value of ctr

(as described in “Watching variables” on page 133). If you find that the value is correct, you can

click Step Out. Doing so executes the remainder of the code in blink(), and places the position

pointer at the beginning of the next instruction to execute.

(+) button
The (+) button accepts the names of variables and expressions that you enter into the Variable

field to the immediate left of this button. It displays the current values in the Variable window.

If an expression has not yet been defined, the Variable window displays “undefined.”

133ADOBE LIVEMOTION 2.0
Scripting Guide
Watching variables
While executing code in the Debugger, you can enter the names of variables and expressions

whose values you want to monitor in the Variable window.

Figure 8.4 Variable window with ctr variable

To watch a variable:

1 Click your cursor in the expression entry field to the immediate left of the (+) button

2 Enter the name of a variable or an expression whose value you want to monitor.

3 Click the (+) button (or press Enter) to display the variable and its current value in User

Expressions in the Variable window.

To save multiple variables in the Variable window, click the (+) button instead of pressing Enter.

Pressing Enter does not save a variable in the window. The variable is replaced by the next one

that you enter.

See Figure 8.4. As long as a variable exists inside the scope of the currently executing function,

its value is updated and displayed in the Variable window. If execution takes the Debugger

outside of the function, the variable goes out of scope and is no longer displayed.

Setting breakpoints
A breakpoint is a signal to the interpreter to stop execution at that location, and to enter the

Debugger. You can set breakpoints to verify that the values of variables, the current display in

your composition, and so forth are what you expect at that point during execution. Breakpoints

can be set in two locations: in the Script Editor and in the Debugger.

CHAPTER 8134
Debugger
To set a breakpoint in the Script Editor:

1 Open the Script Editor, and navigate to the script where you want to set a breakpoint.

2 Click your cursor in the gray column to the left of the code line at which you want execution

to halt.

A breakpoint appears as a red dot in the column. Figure 8.5 shows a breakpoint to the immediate

left of the call to gotoAndPlay().

Figure 8.5 Setting a breakpoint in the Script Editor

Executing to the breakpoint set in the Script Editor

To execute to the breakpoint just set in the previous section, begin Preview mode. Execution

halts at the breakpoint, bringing up the Debugger.

135ADOBE LIVEMOTION 2.0
Scripting Guide
Figure 8.6 shows the Debugger display after execution has stopped as a result of the breakpoint

set in the Script Editor. After executing code to a breakpoint, you can perform whatever checks

you need such as noting the values of variables you entered into the Variable window or

observing changes in the Composition window.

Figure 8.6 Debugger display after setting a breakpoint in the Script Editor

To set a breakpoint in the Debugger:

1 Click your cursor in the column to the immediate left of the code line where you want

execution to halt.

2 Optionally, enter into the Variable window the names of any variables or expressions whose

values you would like to examine after executing to the breakpoint.

Clearing breakpoints
To clear a breakpoint, click the red dot again. You can clear a break point from either the Script

Editor or the Debugger regardless of where it was set.You can also disable breakpoints by Alt

clicking them (Windows) or Opt clicking them (Mac OS). This changes them from red to grey.

Setting a breakpoint in the MouseTrailer onLoad script
This example leverages on the MouseTrailer hands-on example that you created in“Levels of the

Flash Player” on page 86. The code for executing the MouseTrailer is given in that section.

CHAPTER 8136
Debugger
To set a breakpoint in MouseTrailer:

1 Open your MouseTrailer composition in LiveMotion (Ex4_1.liv).

2 From the Scripts menu, select the Debugger mode, Debug on Start.

3 Preview.

When the Debugger first opens, it displays the MouseTrailer’s onLoad() handler code in the

Source window.

4 Click in the gray column to the left of this statement in the onLoad handler:

this.trailers[i]._xscale = 100 - i * 10;

This sets a breakpoint just before the statement, as shown in Figure 8.7.

Figure 8.7 Setting a breakpoint in the Debugger

137ADOBE LIVEMOTION 2.0
Scripting Guide
To examine variable values in the Mouse Trailer example:

1 After setting the break point in the previous steps, click the Run button to execute to the

breakpoint.

Figure 8.8 shows the result of executing to the breakpoint.

Figure 8.8 Checking results up to the breakpoint

2 Click the cursor in the expression entry field, and enter this expression:

this.trailers[1]

3 Click the (+) button to insert the expression into the User Expressions in the Variable window.

4 By clicking the triangle next to this.trailers[1] in the Variable window, you find the

values for all of Base1’s properties.

CHAPTER 8138
Debugger
Figure 8.9 shows just some of the information about a movie clip that you can track in the

Debugger.

Figure 8.9 Variable window showing values of Base1’s properties

Using the Console window
The Console window displays script output and the results of trace() statements. The types of

output displayed include string values, numeric values, and object types. You can keep the

window open to monitor results as you preview your composition or execute it in the Debugger.

139ADOBE LIVEMOTION 2.0
Scripting Guide
Exploring the Console window
To open the Console window, choose Window > Script Console from LiveMotion’s main menu.

Figure 8.10 Console window

To write to the Console window using a trace() statement:

1 Open the Script Editor, and navigate to the location where you want to insert a trace()

statement.

2 Insert a trace() statement in your script for each variable value that you want to be displayed

to the Console window.

For example, to view the values of a counter variable in a for loop, you would insert a trace()

statement as shown here:

var i;
for (i = 1; i < 10 ; i++)
{

trace (i);
.
.
.

By playing back your composition in Preview mode or executing through the code in the

Debugger, each argument to a trace() statement is printed to the Console window followed by

a new line character. Each time that you display values to the Console window, the results are

appended to the previous output.

3 To clear the display, click the trash icon at the bottom of the window.

CHAPTER 8140
Debugger
Using the Console window with the Debugger

You can use the Console window along with the Debugger to watch your variable values. Say for

example, you set a breakpoint in your code. Up to that point, you can insert trace() statements

to monitor the values of certain variables until you want to see a more detailed view of the

variable values in the Debugger. trace() statements to the Console also can be used to record

multiple values that a variable takes on during the course of a script execution.

Comparing Console window output to Debugger output

Although the Console window displays a continuous stream of output for trace() statements

that are evaluated, it provides less detailed output than you can obtain by watching the evalu-

ation of expressions in the Debugger’s Variable window. You can choose which type of output

that you want to examine, depending on your needs.

This section looks at the for loop code in MouseTrailer’s onLoad handler. For details on Mouse-

Trailer, see “Levels of the Flash Player” on page 86.

The code below creates the trailers array and fills the array elements with duplicated movie

clips. Two trace() statements have been added to the code shown here. One will display the

value of the counter i, and the other, the value of the array element this.trailers[i]:

for (i = 1; i < 10 ; i++)
{

trace (i);
// create the new object, give it a unique name, and
// place it at a unique depth

this.Base0.duplicateMovieClip("Base" + i, i);

// put the new object in the array

this.trailers[i] = this["Base" + i];
trace (this.trailers[i]);

// change the scale of the new object

this.trailers[i]._xscale = 100 - i*10;
this.trailers[i]._yscale = 100 - i*10;

}

The Console window shown in Figure 8.11 displays the trace() statement output after five

iterations of the for loop.

141ADOBE LIVEMOTION 2.0
Scripting Guide
Figure 8.11 Console output

This is less information than you would get had you entered the counter i and

this.trailers[i] into the Debugger Variable window and stepped through the for loop five

times. When you expand the triangle next to this.trailers[i], the Debugger displays

detailed information about the current movie clip, some of which is shown in Figure 8.12.

Figure 8.12 Variable window showing the results of evaluating i and this.trailers[i]

CHAPTER 8142
Debugger

143
Chapter 9: Reference

Introduction
This chapter lists and describes all syntax (keywords, statements, operators, objects, methods,

properties, and globals) recognized by the LiveMotion scripting engine.

Keywords and Statement Syntax
Table 9.1 lists and describes all keywords and statements recognized by the LiveMotion scripting

engine.

Table 9.1 Keywords and Statement Syntax

Keyword/Statement Description

break Standard JavaScript construct. Exit the currently executing loop.

continue Standard JavaScript construct. Cease execution of the current loop iteration.

do - while Standard JavaScript construct. Similar to the while loop, except loop condi-
tion evaluation occurs at the end of the loop.

false Literal representing boolean false.

for Standard JavaScript loop construct.

for - in Standard JavaScript construct. Provides a way to easily loop through the
properties of an object.

function Used to define a function.

if/if - else Standard JavaScript conditional constructs.

#include Standard JavaScript directive used to import files located elsewhere.

null Assigned to a variable, array element, or object property to indicate that it
does not contain a legal value.

return Standard JavaScript way of returning a value from a function or exiting a
function.

CHAPTER 9144
Reference
Operators
Table 9.2 lists and describes all operators recognized by the LiveMotion scripting engine.

Table 9.3 shows the precedence and associativity for all operators.

Table 9.2 Description of Operators

switch Standard JavaScript way of evaluating an expression and attempting to
match the expression's value to a case label.

this Standard JavaScript method of indicating the current object.

true Literal representing boolean true.

undefined Indicates that the variable, array element, or object property has not yet been
assigned a value.

var Standard JavaScript syntax used to declare a local variable.

while Standard JavaScript construct. Similar to the do - while loop, except loop
condition evaluation occurs at the beginning of the loop.

with Standard JavaScript construct used to specify an object to use in ensuing
statements.

Operators Description

new Allocate object.

delete Deallocate object.

typeof Data type.

void Returns undefined value.

. Structure member.

[] Array element.

() Function call.

++ Pre- or post-increment.

-- Pre- or post-decrement.

Keyword/Statement Description

145ADOBE LIVEMOTION 2.0
Scripting Guide
- Unary negation or subtraction.

 ~ Bitwise NOT.

! Logical NOT.

* Multiply.

/ Divide.

% Modulo division.

+ Add.

<< Bitwise left shift.

>> Bitwise right shift.

>>> Unsigned bitwise right shift.

< Less than.

<= Less than or equal.

> Greater than.

>= Greater than or equal.

== Equal.

!= Not equal.

& Bitwise AND.

^ Bitwise XOR.

| Bitwise OR.

&& Logical AND.

|| Logical OR.

?: Conditional (ternary).

= Assignment.

+= Assignment with add operation.

-= Assignment with subtract operation.

Operators Description

CHAPTER 9146
Reference
Table 9.3 Operator Precedence

*= Assignment with multiply operation.

/= Assignment with divide operation.

%= Assignment with modulo operation.

<<= Assignment with bitwise left shift operation.

>>= Assignment with bitwise right shift operation.

>>>= Assignment with bitwise right shift unsigned operation.

 &= Assignment with bitwise AND operation.

 ^= Assignment with bitwise XOR operation.

 |= Assignment with bitwise OR operation.

, Multiple evaluation.

Operators (Listed from highest precedence —top row—to lowest) Associativity

[], (), . left to right

new, delete, -(unary negation), ~, !, typeof, void,++, -- right to left

*, /, % left to right

+, -(subtraction) left to right

<<, >>, >>> left to right

<, <=, >, >= left to right

==, != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

?: right to left

Operators Description

147ADOBE LIVEMOTION 2.0
Scripting Guide
Reference for Objects, Methods, Properties, and Globals
The remainder of this chapter lists and describes all predefined identifiers recognized by

LiveMotion.

Arguments Object

Description

The Arguments object provides two types of information about an executing function:

• the name of the function itself, and

• the arguments that were passed to the function.

The Arguments object is a static object—to use the object, do not create an instance using a

constructor. With square bracket notation, the object can be used as an array to access the values

of the arguments passed to the function.

Properties

Methods

None.

=, /=, %=, <<=, >>=, >>>=, &=, ^=, |=, +=, -=, *= right to left

, left to right

callee See “Arguments.callee
Property” on page 148.

Name of the currently executing function.

length See “Arguments.length
Property” on page 148.

Number of parameters passed to the currently executing func-
tion. This value can be used to access the individual parameters
themselves.

Operators (Listed from highest precedence —top row—to lowest) Associativity

CHAPTER 9148
Reference
Arguments.callee Property
arguments.callee

Description

The callee property holds a reference to the currently executing function. This property can

only be read.

Example

function selfReferenceTest()
{
if (arguments.callee == selfReferenceTest)

trace("true");
else

trace("false");
};

selfReferenceTest();//prints "true"

Arguments.length Property
arguments.length

Description

The length property stores an integer specifying the number of parameters passed to the

currently executing function. The property can be used to access the names of the individual

arguments themselves, using the arguments object as an array. The length property, however,

is not zero-based, so always has a value of one greater than the largest index into the array. This

property can only be read.

Example

function baseball(glove, bat)
{

trace(arguments.length);
trace(arguments[0]);
trace(arguments[1]);

};

149ADOBE LIVEMOTION 2.0
Scripting Guide
baseball("catchers", "wooden");
//prints
//2
//catchers
//wooden

Array Object

Description

The Array object provides the ability to create and manipulate arrays of data. If the Array

constructor is invoked with a single integer value, the value sets the array length. If two or more

values are used, they become the initial values of the array elements, and the array length is deter-

mined by the number of values provided. Similarly, a single non-numeric value can be used to

initialize the array with a single element with that value.

To call the Array object’s methods, you must create a new object using the constructor. Alterna-

tively, you may use the square bracket syntax (e.g., var x = [a,b] populates the first two

elements of the array with the values a and b). If the Array constructor is invoked without

passing arguments to Array, then an empty array is created with zero elements.

Constructor

new Array()
new Array(length)
new Array(element0, ...elementn)

Parameters

Properties

length A non-negative integer indicating the number of elements in the
array.

element0, ...elementn One or more values that are assigned as array elements.

length See “Array.length Prop-
erty” on page 152.

Number of elements in the array.

CHAPTER 9150
Reference
Methods

Array.concat() Method
arrayObj.concat(value1, ...valuen)

Description

The concat() method concatenates elements to an existing array to create a new array. The

original array is left unmodified. If an array is provided as a parameter to concat(), each of its

elements are appended as separate array elements to the end of the new array.

concat() See “Array.concat()
Method” on page 150.

Concatenate elements to an existing array to create a new
array.

join() See “Array.join()
Method” on page 151.

Join all elements of the array into a string.

pop() See “Array.pop()
Method” on page 153.

Pop the last element in the array (return the value and
remove from the array).

push() See “Array.push()
Method” on page 153.

Push an array element onto the end of the array (add an ele-
ment).

reverse() See “Array.reverse()
Method” on page 154.

Reverse the order of the elements in the array in place (last
element becomes first; first element becomes last).

shift() See “Array.shift()
Method” on page 155.

Same as pop()except the first element is returned and
removed from the array.

slice() See “Array.slice()
Method” on page 156.

Copy a subset of an existing array to create a new array con-
sisting of just those elements.

sort() See “Array.sort()
Method” on page 157.

Sort the elements of the array in place.

splice() See “Array.splice()
Method” on page 158.

Add or delete array elements.

toString() See “Array.toString()
Method” on page 160.

Convert an array to a string of comma-delimited values (can
also be achieved using join() without a parameter).

unshift() See “Array.unshift()
Method” on page 160.

Add one or more elements to the beginning of the array and
return the new length of the array.

151ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

Returns

A new array formed by the concatenation of the specified values or arrays to the current array.

Example

var a=[1,2,3];
b = a.concat(4,5);
c = b.concat([5,6]);
d = c.concat([7,8],[9,10]);
e = 0;
for(i=0; i<d.length;i++)
{

e = e + d[i];
};
trace(e);//prints 60

See also

“Array.push() Method” on page 153, “Array.pop() Method” on page 153, “Array.shift() Method”

on page 155, “Array.unshift() Method” on page 160

Array.join() Method
arrayObj.join()
arrayObj.join(delimiter)

Description

The join() method joins all elements of the array into a string; each element is separated by

delimiter.

value1, ...valuen Any number of values to be added to the end of the array. Can also be
arrays to be concatenated to the current array.

CHAPTER 9152
Reference
Parameters

Returns

The string containing the joined elements and delimiters.

Example

baseball = new Array("bat","ball");
baseballString = baseball.join();
trace(baseballString);// prints "bat,ball"
newString = baseball.join(" + ");
trace(newString);// prints "bat + ball"

See also

“Array.toString() Method” on page 160, “String.split() Method” on page 297, “Array.sort()

Method” on page 157, “Array.reverse() Method” on page 154

Array.length Property
arrayObj.length

Description

The length property is a positive integer that represents the length of the array. Since array

indices start with 0 (zero-based indexing), length is one greater than the last index value of the

array. length is initialized when the array is created. This property can be read or written.

Example

baseball = new Array();
trace(baseball.length);// prints 0
moreBaseball = new Array("bat", "ball");
trace(moreBaseball.length);// prints 2
moreBaseball[2] = "glove";
trace(moreBaseball.length);// prints 3

delimiter (Optional) A string to separate each element of the array. If omitted, the array ele-
ments are separated with a comma and results are the same as those achieved with
arrayObj.toString().

153ADOBE LIVEMOTION 2.0
Scripting Guide
Array.pop() Method
arrayObj.pop()

Description

The pop() method pops the last element of the array, returns the value of the element, removes

the element from the array, and decreases length by 1.

Returns

The value of the deleted array element.

Example

var stack = [1,2,3];
trace(stack.pop());//stack is now [1,2] and pop prints 3

See also

“Array.push() Method” on page 153, “Array.shift() Method” on page 155, “Array.unshift()

Method” on page 160, “Array.concat() Method” on page 150

Array.push() Method
arrayObj.push(value1, ...valuen)

Description

The push() method appends one or more values onto the end of the array and increases length

by n.

Parameters

Returns

The new length of the array.

value1, ...valuen Any number of values to be pushed onto the end of the array.

CHAPTER 9154
Reference
Example

var stack = [1,2,3];
trace(stack.push(4,5));//stack is now [1,2,3,4,5] and push() prints 5
for(i=0; i<stack.length;i++)
{

trace(stack[i]);
};
//prints
//1
//2
//3
//4
//5

See also

“Array.pop() Method” on page 153, “Array.shift() Method” on page 155, “Array.unshift()

Method” on page 160, “Array.concat() Method” on page 150

Array.reverse() Method
arrayObj.reverse()

Description

The reverse() method reverses the order of the elements in the array in place (last element

becomes first; first element becomes last).

Example

var baseball = ["bat", "ball", "glove", "base"];
for(i=0; (i != 4); ++i)
{
trace(baseball[i]);
};
//prints
//bat
//ball
//glove
//base
baseball.reverse();
for(i=0; (i != 4); ++i)
{

155ADOBE LIVEMOTION 2.0
Scripting Guide
trace(baseball[i]);
};
//prints
//base
//glove
//bat
//ball

See also

“Array.sort() Method” on page 157

Array.shift() Method
arrayObj.shift()

Description

The shift() method is the same as pop() except the first element is returned and removed from

the array. As a result, the array length is reduced by 1.

Returns

The value of the deleted array element.

Example

fish = ["shark", "guppy", "red fish", "blue fish"];
trace(fish.shift()); //prints "shark"
i=0;
while (fish[i] != "blue fish")
{
trace(fish[i]);
++i;
};
trace(fish[i]);
//prints
//guppy
//red fish
//blue fish

CHAPTER 9156
Reference
See also

“Array.push() Method” on page 153, “Array.pop() Method” on page 153, “Array.unshift()

Method” on page 160, “Array.concat() Method” on page 150

Array.slice() Method
arrayObj.slice(start)
arrayObj.slice(start, end)

Description

The slice() method copies a subset of an existing array to create a new array consisting of just

those elements. start and end are indices into the array (zero-based indexing). The slice begins

with start and continues up to, but not including, end. If start or end is a negative number,

the index is equal to the total number of elements in the array minus the number.

Parameters

Returns

A new array that begins with array element start and contains all array elements between start

up to, but not including, array element end of the original array.

Example

function printArray(arrayId)
{

for(i=0; i<arrayId.length; i++)
{

trace(arrayId[i]);
}

};
var a = [1,2,3,4,5];
b = a.slice(0,3);
printArray(b);//prints 1,2,3

start The array index at which to begin the slice. Can also be a negative number.

end (Optional) The array index at which to end the slice. The slice does not include this
element. If this argument is not present, the slice extends all the way to the end of
the array. Can also be a negative number.

157ADOBE LIVEMOTION 2.0
Scripting Guide
b = a.slice(3);
printArray(b);//prints 4,5
b = a.slice(1,-1);
printArray(b);//prints 2,3,4
b = a.slice(-3,-2);
printArray(b);//prints 3

See also

“Array.splice() Method” on page 158

Array.sort() Method
arrayObj.sort()
arrayObj.sort(userFunction)

Description

The sort() method sorts the elements of arrayObj in place. If no argument is provided, the

elements are sorted in alphabetical order. To sort the array in any other order, you have to supply

a function that compares two array elements and returns a value indicating how they should be

sorted. For userFunction(a,b), if the return value is:

• less than 0, then b is sorted to a lower index than a;

• 0, then a and b are left unchanged with respect to each other, but are sorted with respect to

all different elements;

• greater than 0, then b is sorted to a higher index than a.

Parameters

Example

fish = new Array("shark", "guppy", "red fish", "blue fish");
fish.sort();
for(i=0; (i != fish.length); ++i)
{

userFunction (Optional) A user-supplied function that dictates sort order. If omitted, the array is
sorted lexicographically (in dictionary order) according to the string conversion of
each element.

CHAPTER 9158
Reference
trace(fish[i]);
};
//prints
//blue fish
//guppy
//red fish
//shark

function numberOrder(a,b) { return a - b; }
a = new Array(33,4,1111,222);
a.sort();
for (i=0;i<a.length;i++) {

trace(a[i]);
}
a.sort(numberOrder);
for (i=0;i<a.length;i++) {

trace(a[i]);
}
//prints
//1111
//222
//33
//4
//4
//33
//222
//1111

See also

“Array.join() Method” on page 151, “Array.reverse() Method” on page 154

Array.splice() Method
arrayObj.splice(start)
arrayObj.splice(start, num)
arrayObj.splice(start, num, value1, ...valuen)

Description

The splice() method removes num elements from an array beginning at start. splice()

optionally inserts new elements starting at zero-based index start. To ensure element conti-

guity, splice() moves elements up to fill in any gaps.

159ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

Returns

An array consisting of any elements that were spliced from the array.

Example

fishAndNumbers = new Array(1,2, "shark", 3, "guppy");
fishAndNumbers.splice(2,2,6,"red fish");
for(i=0; (i != fishAndNumbers.length); ++i)
{

trace(fishAndNumbers[i]);
};
//prints
//1
//2
//6
//redfish
//guppy

fishAndNumbers = new Array(1,2, "shark", 3, "guppy");
fishAndNumbers.splice(-3,2,6,"red fish");//negative start index
for(i=0; (i != fishAndNumbers.length); ++i)
{

trace(fishAndNumbers[i]);
};
//prints
//1
//2
//6
//red fish
//guppy

start The (zero-based) index of the first array element to remove. If start is a neg-
ative value, start is relative to the end of the array (the index is the number
of elements in the array minus the value).

num (Optional) The number of array elements to remove, including start. If 0, no
elements are removed. If num is omitted, all elements from array index start
to the end of the array are removed.

value1, ...valuen (Optional) Any number of values to be added to the array starting at index
start.

CHAPTER 9160
Reference
See also

“Array.slice() Method” on page 156

Array.toString() Method
arrayObj.toString()

Description

The toString() method converts an array to a string and returns the string. Yields the same

result as the arrayObj.join() method when that method is used without a parameter.

Returns

A comma-separated list of all the elements of the array.

Example

fishAndNumbers = new Array(1,2, "shark", 3, "guppy");
trace(fishAndNumbers.toString());//prints "1,2,shark,3,guppy"

See also

“Array.join() Method” on page 151, “Array.reverse() Method” on page 154, “Array.sort()

Method” on page 157, “Object.toString() Method” on page 271

Array.unshift() Method
arrayObj.unshift(value1, ...valuen)

Description

The unshift() method adds elements to the beginning of the array.

Parameters

value1, ...valuen The values of one or more elements to be added to the beginning of the
array, starting at index 0.

161ADOBE LIVEMOTION 2.0
Scripting Guide
Returns

The new array length.

Example

fishAndNumbers = new Array(1,2, "shark", 3, "guppy");
trace(fishAndNumbers.unshift(2,6,"red fish")); //prints return value of 8
for(i=0; (i != fishAndNumbers.length); ++i)
{
trace(fishAndNumbers[i]);
};
//prints
//2
//6
//red fish
//1
//2
//shark
//3
//guppy

See also

“Array.push() Method” on page 153, “Array.pop() Method” on page 153, “Array.shift() Method”

on page 155, “Array.concat() Method” on page 150

Boolean() Global Function
Boolean(value)

Description

The Boolean() global function converts its parameter to a primitive boolean value and returns

the value. Do not confuse this global function with the Boolean object.

Parameters

value The value to convert to primitive boolean.

CHAPTER 9162
Reference
Returns

The primitive boolean value of value (true or false).

Example

var testFalse = 0;
var testTrue = true;
trace(Boolean(0));//prints "false"
trace(Boolean(1));//prints "true"
trace(Boolean(true));//prints "true"
trace(Boolean("true"));//prints "false" - not a valid non-zero number
trace(Boolean(false));//prints "false"
trace(Boolean(testFalse));//prints "false"
trace(Boolean(testTrue));//prints "true"

See also

“Boolean Object” on page 162, “String() Global Function” on page 289, “Number() Global

Function” on page 263

Boolean Object

Description

The Boolean object provides support for boolean values. The Boolean() constructor with the

new operator converts its parameter to a boolean value and returns a Boolean object wrapper

containing the value. This allows the object to inherit the methods of the Object class (see

“Object Class” on page 269).

Constructor

new Boolean()
new Boolean(value)

Parameters

value (Optional) The value that is converted to a boolean—can be a number, string, bool-
ean, or object. The values 0, NaN, null, the empty string (""), and undefined all
return false. All other values return true. If this parameter is omitted, the Boolean
object is initialized with a value of false.

163ADOBE LIVEMOTION 2.0
Scripting Guide
Properties

None.

Methods

Boolean.toString() Method
bool.toString()

Description

The toString() method returns the string representation of the value of bool. The method

returns the string true if the primitive value of bool is true; otherwise it returns the string

false.

Example

bool = new Boolean(1);
trace(bool.toString()); // displays "true"

Boolean.valueOf() Method
bool.valueOf()

Description

The valueOf() method returns the primitive value of bool . The method returns true if the

primitive value of bool is true; otherwise it returns false.

Example

bool = new Boolean("");
trace(bool.valueOf()); // displays "false" to the output window

toString() See “Boolean.toString()
Method” on page 163.

Convert the value of the Boolean object to a string.

valueOf() See “Boolean.valueOf()
Method” on page 163.

Return the primitive boolean value of the object.

CHAPTER 9164
Reference
Color Object

Description

The Color object supports access to and control of the color of a movie clip. It allows you to get

and set the red, green, and blue (RGB) color values and transformation information. You must

create an instance of the Color object for a specific target before using any of the Color methods.

Constructor

new Color(target)

Parameters

Properties

None.

Methods

target A path or a reference to the movie clip for which the Color object is created.

getRGB() See “Color.getRGB()
Method” on
page 165.

Return the RGB offset values for the object.

getTransform() See “Color.getTrans-
form() Method” on
page 165.

Return the current offset and percentage values as an object
of type Object. For more information on the Object class,
see “Object Class” on page 269.

setRGB() See “Color.setRGB()
Method” on
page 166.

Set the RGB offset values for the object.

setTransform() See “Color.setTrans-
form Method” on
page 167.

Set the offset and/or percentage values using an object of
type Object. For more information on the type Object, see
“Object Class” on page 269.

165ADOBE LIVEMOTION 2.0
Scripting Guide
Color.getRGB() Method
colorObject.getRGB()

Description

The getRGB() method returns the RGB color offset values for colorObject as one number.

These are the values that were set by a call to setRGB(). If the offsets have never been set (via

setRGB()) then the default values for the RGB offsets are 0, 0, 0.

Returns

A number indicating the RGB color offsets of colorObject in the form

red<<16|green<<8|blue.

Example

redBaseball = new Color(_root.baseball);
redBaseball.setRGB(0xFF0000);
trace(redBaseball.getRGB());//prints "16711680"

See also

“Color.setRGB() Method” on page 166.

Color.getTransform() Method
colorObject.getTransform()

Description

The getTransform() method returns an object of type Object whose properties are the trans-

formation values of colorObject.

The properties are the following:

• ra is the red transformation percentage (-100 to 100)

• rb is the red offset (-255 to 255)

• ga is the green transformation percentage (-100 to 100)

• gb is the green offset (-255 to 255)

CHAPTER 9166
Reference
• ba is the blue transformation percentage (-100 to 100)

• bb is the blue offset (-255 to 255)

• aa is the alpha transformation percentage (-100 to 100)

• ab is the alpha offset (-255 to 255)

The final value for each color is computed as: value = original * (transformation percentage) +

offset.

Returns

An object of type Object whose properties contain the transformation values of the movie clip

colorObject.

Example

redFish= new Color(_root.fish);
fishChanger = new Object();
fishChanger.ra = 100;//Red percentage
fishChanger.rb = 200;//Red offset
fishChanger.ga = 0;//Green percentage
fishChanger.gb = 0;//Green offset
fishChanger.ba = 100;//Blue percentage
fishChanger.bb = 50;//Blue offset
fishChanger.aa = 40;//Alpha percentage
fishChanger.ab = -10;//Alpha offset
redFish.setTransform(fishChanger);
fishChanger = redFish.getTransform();
fishChanger.rb = 300;//set the Red offset
fishChanger.ga = 20;//set the Green transformation percentage
redFish.setTransform(fishChanger);//changes the transformation values

See also

“Color.setTransform Method” on page 167, “Object Class” on page 269

Color.setRGB() Method
colorObject.setRGB(offsetValue)

167ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The setRGB() method sets the RGB color offsets for colorObject. It also sets all the transfor-

mation percentages to 0, which results in the ignoring of the movie clip’s original color and the

setting of its color to the values of the offsets. The following are suggestions for creating

offsetValue:

• offsetValue = red<<16|green<<8|blue where red, green, and blue are values from 0 to

255;

• offsetValue = 0xRRGGBB, where RR, GG, and BB are hexadecimal values for each color and are

in the range from 00 to FF.

Parameters

Example

redBaseball = new Color("_root.baseball");
redBaseball.setRGB(0xFF0000);
trace(redBaseball.getRGB());//prints "16711680"

See also

“Color.getRGB() Method” on page 165.

Color.setTransform Method
colorObject.setTransform(transformObj)

Description

The setTransform() method sets the color transform information for colorObject. To use

setTransform(), you first must create an object of type object (for more information on the

type Object, see “Object Class” on page 269) with a series of properties, and pass the object as

the parameter to setTransform(). setTransform() uses the values as the new offsets and

percentages of colorObject. The properties are the following:

• ra is the red transformation percentage (-100 to 100)

offsetValue An integer in the range of 0 to 16777215 (0xFFFFFF), can be a hexadecimal num-
ber (0x) indicating the offsets for each of the color offset values.

CHAPTER 9168
Reference
• rb is the red offset (-255 to 255)

• ga is the green transformation percentage (-100 to 100)

• gb is the green offset (-255 to 255)

• ba is the blue transformation percentage (-100 to 100)

• bb is the blue offset (-255 to 255)

• aa is the alpha transformation percentage (-100 to 100)

• ab is the alpha offset (-255 to 255)

The final value for each color is computed as: value = original * (transformation percentage) +

offset.

Parameters

Example

redFish= new Color(_root.fish);
fishChanger = new Object();
fishChanger.ra = 100;//Red percentage
fishChanger.rb = 200;//Red offset
fishChanger.ga = 0;//Green percentage
fishChanger.gb = 0;//Green offset
fishChanger.ba = 100;//Blue percentage
fishChanger.bb = 50;//Blue offset
fishChanger.aa = 40;//Alpha percentage
fishChanger.ab = -10;//Alpha offset
redFish.setTransform(fishChanger);//sets the new transformation values

See also

“Color.getTransform() Method” on page 165.

Date() Global Function
Date()

transformObj An object created using the constructor of the generic Object class whose proper-
ties specify color transformation percentages and color offsets.

169ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The Date() global function returns a string containing the current date, the current time in the

local time zone, and the offset in hours between Coordinated Universal Time (UTC—formerly

called the Greenwich Mean Time, or GMT) and the local time. Do not confuse this global

function with the Date object.

For example:

Mon Sep 10, 16:30:29 GMT-0700 2001

Example

var now = Date();
trace(now);//prints string

Date Object

Description

The Date object allows you to get and set the local date and time or the Coordinated Universal

Time (UTC—formerly called the Greenwich Mean Time, or GMT). To call the Date object’s

methods, you must create a new object using the constructor.

System-supplied dates and times are based on (and are as accurate as) the clock settings of the

operating system upon which the Flash Player is running.

Constructor

new Date()
new Date(ms)
new Date(year, month, date, hour, min, sec, ms)

Description

You can create a Date object in three ways:

• With no arguments. This creates a new Date object holding the current date and time based

on the local system clock. For example:

var now = new Date();
trace(now.getDate());//prints the day of the month

CHAPTER 9170
Reference
• With one argument representing milliseconds. This creates a Date object holding the number

of milliseconds relative to midnight January 1, 1970. For example:

var now = new Date(999901885456);
trace(now.getTime());//prints 999901885456

• With three or more arguments. This creates a Date object indicating the year (required),

month (required), day (required), hour, minute, second, and millisecond. To use an optional

argument, all the arguments previous to it in the function call must be present.

var now = new Date(99, 11, 31, 9, 52, 54, 999);
trace(now.getFullYear());//prints 1999
trace(now.getMonth());//prints 11
trace(now.getDate());//prints 31
trace(now.getHours());//prints 9
trace(now.getMinutes());//prints 52
trace(now.getSeconds());//prints 54
trace(now.getMilliseconds());//prints 999

Parameters

ms (Optional) An integer value representing the number of milliseconds since 1 Janu-
ary 1970 00:00:00.

year The year expressed in four digits—for example, 2001. Alternatively, if you need to
indicate a year from 1900 to 1999, specify a value from 0 to 99.

month An integer value from 0 (Jan.) to 11 (Dec.).

date An integer value from 1 to 31. If this argument is not supplied, its value is set to 0.

hour (Optional) An integer value from 0 (midnight) to 23 (11 PM). If this argument is not
supplied, its value is set to 0.

min (Optional) An integer value from 0 to 59. If this argument is not supplied, its value
is set to 0.

sec (Optional) An integer value from 0 to 59. If this argument is not supplied, its value
is set to 0.

ms (Optional) An integer value from 0 to 999. If this argument in not supplied, its value
is set to 0.

171ADOBE LIVEMOTION 2.0
Scripting Guide
Properties

None.

Methods

getDate() See “Date.getDate() Method” on
page 173.

Return the day of the month.

getDay() See “Date.getDay() Method” on
page 174.

Return the day of the week.

getFullYear() See “Date.getFullYear() Method”
on page 174.

Return the year expressed in four-digit
format.

getHours() See “Date.getHours() Method” on
page 175.

Return the hour.

getMilliseconds() See “Date.getMilliseconds()
Method” on page 175.

Return the milliseconds.

getMinutes() See “Date.getMinutes() Method”
on page 176.

Return the minutes.

getMonth() See “Date.getMonth() Method”
on page 176.

Return the month.

getSeconds() See “Date.getSeconds() Method”
on page 177.

Return the seconds.

getTime() See “Date.getTime() Method” on
page 177.

Return the number of milliseconds that
have passed since January 1, 1970.

getTimezoneOffset() See “Date.getTimezoneOffset()
Method” on page 178.

Return the number of minutes between
UTC and local time.

getUTCDate() See “Date.getUTCDate() Method”
on page 178.

Return the day of the month in UTC.

getUTCDay() See “Date.getUTCDay() Method”
on page 179.

Return the day of the week in UTC.

getUTCFullYear() See “Date.getUTCFullYear()
Method” on page 179.

Return the year as four-digits in UTC.

getUTCHours() See “Date.getUTCHours()
Method” on page 180.

Return the hour in UTC.

CHAPTER 9172
Reference
getUTCMilliseconds() See “Date.getUTCMilliseconds()
Method” on page 180.

Return the milliseconds in UTC.

getUTCMinutes() See “Date.getUTCMinutes()
Method” on page 181.

Return the minutes in UTC.

getUTCMonth() See “Date.getUTCMonth()
Method” on page 181.

Return the month in UTC.

getUTCSeconds() See “Date.getUTCSeconds()
Method” on page 182.

Return the seconds in UTC.

getYear() See “Date.getYear() Method” on
page 182.

Return the year relative to 1900.

setDate() See “Date.setDate() Method” on
page 183.

Set the day of the month.

setFullYear() See “Date.setFullYear() Method”
on page 184.

Set the year in four-digit format.

setHours() See “Date.setHours() Method” on
page 185.

Set the hour of the day.

setMilliseconds() See “Date.setMilliseconds()
Method” on page 185.

Set the milliseconds.

setMinutes() See “Date.setMinutes() Method”
on page 186.

Set the minutes.

setMonth() See “Date.setMonth() Method”
on page 187.

Set the month.

setSeconds() See “Date.setSeconds() Method”
on page 187.

Set the seconds.

setTime() See “Date.setTime() Method” on
page 188.

Set the date in number of milliseconds
that have passed since January 1, 1970.

setUTCDate() See “Date.setUTCDate() Method”
on page 189.

Set the day of the month in UTC.

setUTCFullYear() See “Date.setUTCFullYear()
Method” on page 189.

Set the year in four-digit format in UTC.

setUTCHours() See “Date.setUTCHours()
Method” on page 190.

Set the hour in UTC.

173ADOBE LIVEMOTION 2.0
Scripting Guide
Date.getDate() Method
dateObj.getDate()

Description

The getDate() method returns the day of the month.

Returns

An integer value from 1 to 31.

Example

var now = new Date();
trace(now.getDate());//prints the day of the month

setUTCMilliseconds() See “Date.setUTCMilliseconds()
Method” on page 191.

Set the milliseconds in UTC.

setUTCMinutes() See “Date.setUTCMinutes()
Method” on page 192.

Set the minutes in UTC.

setUTCMonth() See “Date.setUTCMonth()
Method” on page 192.

Set the month in UTC.

setUTCSeconds() See “Date.setUTCSeconds()
Method” on page 193.

Set the seconds in UTC.

setYear() See “Date.setYear() Method” on
page 194.

Set the year in four-digit format.

toString() See “Date.toString() Method” on
page 195.

Return the date and time values as a
string.

UTC() See “Date.UTC() Method” on
page 195.

Return the number of milliseconds
between January 1, 1970 in UTC and the
time specified.

valueOf() See “Date.valueOf() Method” on
page 196.

Return the number of milliseconds that
have passed since midnight, January 1,
1970 UTC. Equivalent to getTime().

CHAPTER 9174
Reference
See also

“Date.getUTCDate() Method” on page 178, “Date.setDate() Method” on page 183

Date.getDay() Method
dateObj.getDay()

Description

The getDay() method returns the day of the week.

Returns

An integer from 0 (Sunday) to 6 (Saturday).

Example

var now = new Date();
trace(now.getDay());//prints the day of the week as an integer

See also

“Date.getUTCDay() Method” on page 179

Date.getFullYear() Method
dateObj.getFullYear()

Description

The getFullYear() method returns the year expressed in four-digit format.

Returns

The year expressed in four digits—for example, 2001.

var now = new Date();
trace(now.getFullYear());//prints the year in four digits

175ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“Date.getYear() Method” on page 182, “Date.getUTCFullYear() Method” on page 179,

“Date.setFullYear() Method” on page 184

Date.getHours() Method
dateObj.getHours()

Description

The getHours() method returns the hour of the day.

Returns

An integer value in the range of 0 (midnight) to 23 (11 PM).

Example

var now = new Date();
trace(now.getHours());//prints the hour

See also

“Date.getUTCHours() Method” on page 180, “Date.setHours() Method” on page 185

Date.getMilliseconds() Method
dateObj.getMilliseconds()

Description

The getMilliseconds() method returns the milliseconds.

Returns

An integer from 0 to 999.

var now = new Date();
trace(now.getMilliseconds());//prints the milliseconds

CHAPTER 9176
Reference
See also

“Date.getUTCMilliseconds() Method” on page 180, “Date.setMilliseconds() Method” on

page 185

Date.getMinutes() Method
dateObj.getMinutes()

Description

The getMinutes() method returns the minutes.

Returns

An integer value in the range 0 to 59.

Example

var now = new Date();
trace(now.getMinutes());//prints the minutes

See also

“Date.getUTCMinutes() Method” on page 181, “Date.setMinutes() Method” on page 186

Date.getMonth() Method
dateObj.getMonth()

Description

The getMonth() method returns the month.

Returns

An integer value from 0 (Jan.) to 11 (Dec.).

Example

var now = new Date();

177ADOBE LIVEMOTION 2.0
Scripting Guide
trace(now.getMonth());//prints the month as an integer

See also

“Date.getUTCMonth() Method” on page 181, “Date.setMonth() Method” on page 187

Date.getSeconds() Method
dateObj.getSeconds()

Description

The getSeconds() method returns the seconds.

Returns

An integer value in the range of 0 to 59.

Example

var now = new Date();
trace(now.getSeconds());//prints the seconds

See also

“Date.getUTCSeconds() Method” on page 182, “Date.setSeconds() Method” on page 187

Date.getTime() Method
dateObj.getTime()

Description

The getTime() method returns the number of milliseconds that have passed since January 1,

1970.

Returns

An integer.

CHAPTER 9178
Reference
Example

var now = new Date();
trace(now.getTime());//prints a very large integer

See also

“Date.setTime() Method” on page 188, “Date.setMilliseconds() Method” on page 185

Date.getTimezoneOffset() Method
dateObj.getTimezoneOffset()

Description

The getTimezoneOffset() method returns the number of minutes between UTC and local

time. Accounts for daylight savings time.

Returns

An integer representing the number of minutes.

Example

var now = new Date();
trace(now.getTimezoneOffset());
// for California, prints 420 (7 hours) if daylight savings;
// if not daylight savings, prints 480

Date.getUTCDate() Method
dateObj.getUTCDate()

Description

The getUTCDate() method returns the day of the month in UTC.

Returns

An integer value from 1 to 31.

179ADOBE LIVEMOTION 2.0
Scripting Guide
Example

var now = new Date();
trace(now.getUTCDate());//prints the day of the month

See also

“Date.getDate() Method” on page 173, “Date.setUTCDate() Method” on page 189

Date.getUTCDay() Method
dateObj.getUTCDay()

Description

The getUTCDay() method returns the day of the week in UTC.

Returns

An integer from 0 (Sunday) to 6 (Saturday).

Example

var now = new Date();
trace(now.getUTCDay());//prints the day of the week as an integer

See also

“Date.getDay() Method” on page 174

Date.getUTCFullYear() Method
dateObj.getUTCFullYear()

Description

The getUTCFullYear() method returns the year as four-digits in UTC.

Returns

The year expressed in four digits—for example, 2001.

CHAPTER 9180
Reference
Example

var now = new Date();
trace(now.getUTCFullYear());//prints the year in four digits

See also

“Date.getFullYear() Method” on page 174, “Date.setUTCFullYear() Method” on page 189

Date.getUTCHours() Method
dateObj.getUTCHours()

Description

The getUTCHours() method returns the hour in UTC.

Returns

An integer value in the range of 0 (midnight) to 23 (11 PM).

Example

var now = new Date();
trace(now.getUTCHours());//prints the hour

See also

“Date.getHours() Method” on page 175, “Date.setUTCHours() Method” on page 190

Date.getUTCMilliseconds() Method
dateObj.getUTCMilliseconds()

Description

The getUTCMilliseconds() method returns the milliseconds in UTC.

Returns

An integer from 0 to 999.

181ADOBE LIVEMOTION 2.0
Scripting Guide
Example

var now = new Date();
trace(now.getUTCMilliseconds());//prints the milliseconds

See also

“Date.getMilliseconds() Method” on page 175, “Date.setUTCMilliseconds() Method” on

page 191

Date.getUTCMinutes() Method
dateObj.getUTCMinutes()

Description

The getUTCMinutes() method returns the minutes in UTC.

Return

An integer value in the range of 0 to 59.

Example

var now = new Date();
trace(now.getUTCMinutes());//prints the minutes

See also

“Date.getMinutes() Method” on page 176, “Date.setUTCMinutes() Method” on page 192

Date.getUTCMonth() Method
dateObj.getUTCMonth()

Description

The getUTCMonth() method returns the month in UTC.

CHAPTER 9182
Reference
Returns

An integer value from 0 (Jan.) to 11 (Dec.).

Example

var now = new Date();
trace(now.getUTCMonth());//prints the month as an integer

See also

“Date.getMonth() Method” on page 176, “Date.setUTCMonth() Method” on page 192

Date.getUTCSeconds() Method
dateObj.getUTCSeconds()

Description

The getUTCSeconds() method returns the seconds in UTC.

Returns

An integer value in the range of 0 to 59.

Example

var now = new Date();
trace(now.getUTCSeconds());//prints the seconds

See also

“Date.getSeconds() Method” on page 177, “Date.setUTCSeconds() Method” on page 193

Date.getYear() Method
dateObj.getYear()

183ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The getYear() method returns the year relative to 1900. For example, 101 is returned for the

year 2001.

Returns

An integer representing the number of years that have passed since 1900.

Example

var now = new Date();
trace(now.getYear());//prints current year minus 1900

See also

“Date.getFullYear() Method” on page 174, “Date.getUTCFullYear() Method” on page 179,

“Date.setYear() Method” on page 194

Date.setDate() Method
dateObj.setDate(date)

Description

The setDate() method sets the day of the month of dateObj. This does not affect the system

clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setDate(6));//prints a very large integer
trace(now.getDate());//prints 6

date An integer value from 1 to 31 indicating the day of the month to set.

CHAPTER 9184
Reference
See also

“Date.getDate() Method” on page 173, “Date.setUTCDate() Method” on page 189

Date.setFullYear() Method
dateObj.setFullYear(year, month, date)

Description

The setFullYear() method sets the year of dateObj. The method also sets month and date

when these optional parameters are specified. This does not affect the system clock or anything

else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setFullYear(2001));//prints a very large integer
trace(now.getFullYear());//prints 2001
trace(now.getMonth());//prints month
trace(now.getDate());//prints day of the month

See also

“Date.setUTCFullYear() Method” on page 189, “Date.setYear() Method” on page 194,

“Date.getFullYear() Method” on page 174

year A four-digit integer value indicating the year to set—for example, 2001.

month (Optional) An integer value from 0 (Jan.) to 11 (Dec.) indicating the month
of the year to set.

date (Optional) An integer value from 1 to 31 indicating the day of the month to
set.

185ADOBE LIVEMOTION 2.0
Scripting Guide
Date.setHours() Method
dateObj.setHours(hour)

Description

The setHours() method sets the hour of dateObj. This does not affect the system clock or

anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setHours(22));//prints a very large integer
trace(now.getHours());//prints 22

See also

“Date.getHours() Method” on page 175, “Date.setUTCHours() Method” on page 190

Date.setMilliseconds() Method
dateObj.setMilliseconds(ms)

Description

The setMilliseconds() method sets the milliseconds of dateObj. This does not affect the

system clock or anything else.

Parameters

hour An integer value from 0 (midnight) to 23 (11 PM) indicating the hour of the
day to set.

ms An integer value from 0 to 999 indicating the milliseconds to set.

CHAPTER 9186
Reference
Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setMilliseconds(847));//prints a very large integer
trace(now.getMilliseconds());//prints 847

See also

“Date.getMilliseconds() Method” on page 175, “Date.setUTCMilliseconds() Method” on

page 191

Date.setMinutes() Method
dateObj.setMinutes(min)

Description

The setMinutes() method sets the minutes of dateObj. This does not affect the system clock

or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setMinutes(59));//prints a very large integer
trace(now.getMinutes());//prints 59

See also

“Date.getMinutes() Method” on page 176, “Date.setUTCMinutes() Method” on page 192

min An integer value from 0 to 59 indicating the number of minutes to set.

187ADOBE LIVEMOTION 2.0
Scripting Guide
Date.setMonth() Method
dateObj.setMonth(month)

Description

The setMonth() method sets the month of dateObj. This does not affect the system clock or

anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setMonth(0));//prints a very large integer
trace(now.getMonth());//prints 0

See also

“Date.getMonth() Method” on page 176, “Date.setUTCMonth() Method” on page 192

Date.setSeconds() Method
dateObj.setSeconds(sec)

Description

The setSeconds() method sets the seconds of dateObj. This does not affect the system clock

or anything else.

Parameters

month An integer value from 0 (Jan.) to 11 (Dec.) indicating the month to set.

sec An integer value from 0 to 59 indicating the seconds to set.

CHAPTER 9188
Reference
Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setSeconds(59));//prints a very large integer
trace(now.getSeconds());//prints 59

See also

“Date.getSeconds() Method” on page 177, “Date.setUTCSeconds() Method” on page 193

Date.setTime() Method
dateObj.setTime(ms)

Description

The setTime() method sets the date in number of milliseconds that have passed since January

1, 1970. This does not affect the system clock or anything else.

Parameters

Returns

The number of milliseconds set.

Example

var now = new Date();
trace(now.setTime(999930239559));//prints a very large integer
trace(now.getTime());//prints 999930239559

See also

“Date.getTime() Method” on page 177

ms An integer indicating the number of milliseconds between the date to be
set and midnight, January 1, 1970.

189ADOBE LIVEMOTION 2.0
Scripting Guide
Date.setUTCDate() Method
dateObj.setUTCDate(date)

Description

The setUTCDate() method sets the date of the month in UTC of dateObj. This does not affect

the system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now.setUTCDate(2));//prints a very large integer
trace(now.getUTCDate());//prints 2

See also

“Date.getUTCDate() Method” on page 178, “Date.setDate() Method” on page 183

Date.setUTCFullYear() Method
dateObj.setUTCFullYear(year, month, date)

Description

The setUTCFullYear() method sets the year in UTC of dateObj, and optionally sets the month

and day of the month. This does not affect the system clock or anything else.

date An integer value from 1 to 31 indicating the day to be set.

CHAPTER 9190
Reference
Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now.setUTCFullYear(2001,3,1));//prints a very large integer
trace(now.getUTCFullYear());//prints 2001
trace(now.getUTCMonth());//prints 3
trace(now.getUTCDate());//prints 1

See also

“Date.getUTCFullYear() Method” on page 179, “Date.setFullYear() Method” on page 184

Date.setUTCHours() Method
dateObj.setUTCHours(hour)

Description

The setUTCHours() method sets the hour of the day in UTC of dateObj. This does not affect

the system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

year The year expressed in four digits—for example, 2001.

month (Optional) An integer from 0 (Jan.) to 11 (Dec.).

date (Optional) An integer value from 1 to 31.

hour An integer value from 0 (midnight) to 23 (11 PM) indicating the hour to be
set.

191ADOBE LIVEMOTION 2.0
Scripting Guide
Example

var now = new Date();
trace(now.setUTCHours(22));//prints a very large integer
trace(now.getUTCHours());//prints 22

See also

“Date.getUTCHours() Method” on page 180, “Date.setHours() Method” on page 185

Date.setUTCMilliseconds() Method
dateObj.setUTCMilliseconds(ms)

Description

The setUTCMilliseconds() method sets the milliseconds in UTC of dateObj. This does not

affect the system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now.setUTCMilliseconds(220));//prints a very large integer
trace(now.getUTCMilliseconds());//prints 220

See also

“Date.getUTCMilliseconds() Method” on page 180, “Date.setMilliseconds() Method” on

page 185

ms An integer value in the range of 0 to 999 indicating the number of millisec-
onds to set.

CHAPTER 9192
Reference
Date.setUTCMinutes() Method
dateObj.setUTCMinutes(min)

Description

The setUTCMinutes() method sets the minutes in UTC of dateObj. This does not affect the

system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now.setUTCMinutes(45));//prints a very large integer
trace(now.getUTCMinutes());//prints 45

See also

“Date.getUTCMinutes() Method” on page 181, “Date.setMinutes() Method” on page 186

Date.setUTCMonth() Method
dateObj.setUTCMonth(month)

Description

The setUTCMonth() method sets the month in UTC of dateObj. This does not affect the system

clock or anything else.

min An integer value in the range 0 to 59 indicating the number of minutes to
be set.

193ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now.setUTCMonth(11));//prints a very large integer
trace(now.getUTCMonth());//prints 11

See also

“Date.getUTCMonth() Method” on page 181, “Date.setMonth() Method” on page 187

Date.setUTCSeconds() Method
dateObj.setUTCSeconds(sec)

Description

The setUTCSeconds() sets the seconds in UTC of dateObj. This does not affect the system

clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();
trace(now.setUTCSeconds(44));//prints a very large integer

month An integer value in the range 0 (Jan.) to 11 (Dec.) indicating the month to
set.

sec An integer value in the range 0 to 59 indicating the number of seconds to
set.

CHAPTER 9194
Reference
trace(now.getUTCSeconds());//prints 44

See also

“Date.getUTCSeconds() Method” on page 182, “Date.setSeconds() Method” on page 187

Date.setYear() Method
dateObj.setYear(year, month, date)

Description

The setYear() method sets the year of dateObj, and optionally the month and day of the

month. This does not affect the system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();
trace(now.setYear(2001,3,1));//prints a very large integer
trace(now.getFullYear());//prints 2001
trace(now.getMonth());//prints 3
trace(now.getDate());//prints 1

year An integer value indicating the year to set. The method interprets a 1- or 2-
digit value to mean the 1900s—for example, 13 is interpreted to mean
1913.

month (Optional) An integer value in the range of 0 (Jan.) to 11 (Dec.) indicating
the month to set.

date (Optional) An integer value in the range of 1 to 31 indicating the day to be
set.

195ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“Date.getYear() Method” on page 182, “Date.setFullYear() Method” on page 184,

“Date.setUTCFullYear() Method” on page 189

Date.toString() Method
dateObj.toString()

Description

The toString() method returns the date and time values as a string.

Returns

The following string is an example of the format returned by this method:

Mon Aug 13, 10:54:21 GMT-0700 2001

Example

var now = new Date();
trace(now.toString());//string with the date

Date.UTC() Method
Date.UTC(year, month, date, hour, min, sec, ms)

Description

The Date.UTC() method returns the date as the number of milliseconds between the time

specified (passed in as the arguments to the method) and midnight, January 1, 1970, in UTC.

The first three parameters are required. Date.UTC() and Date() accept the same arguments; the

only difference between the two is that the new Date object created using Date.UTC() assumes

UTC while the new Date object created using only Date() assumes local time. A new UTC date

object is normally created like this:

now = new Date(Date.UTC(2001, 9, 30));

In addition, Date.UTC() is commonly used with the setTime() method to set a UTC date.

CHAPTER 9196
Reference
Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date(Date.UTC(96, 11, 29, 11, 58, 59, 345));
trace(now.getTime());//prints milliseconds
trace(now.getUTCFullYear());//prints 1996
trace(now.getMonth());//prints 11
trace(now.getUTCDate());//prints 29
trace(now.getUTCHours());//prints 11
trace(now.getUTCMinutes());//prints 58
trace(now.getUTCSeconds());//prints 59
trace(now.getUTCMilliseconds());//prints 345

See also

“Date.setTime() Method” on page 188

Date.valueOf() Method
dateObj.valueOf()

year The year expressed in four digits— for example, 2001. To indicate for a year from 1900
to 1999, you can specify a value from 0 to 99.

month An integer value from 0 (Jan.) to 11 (Dec.).

date An integer value from 1 to 31.

hour (Optional) An integer value in the range of 0 (midnight) to 23 (11 PM).

min (Optional) An integer value in the range of 0 to 59.

sec (Optional) An integer value in the range of 0 to 59.

ms (Optional) An integer value in the range of 0 to 999.

197ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The valueOf() method returns the number of milliseconds that have passed since midnight,

January 1, 1970 UTC. Equivalent to getTime().

Returns

An integer.

Example

var now = new Date();
trace(now.valueOf());//prints the number of milliseconds

See also

“Date.getTime() Method” on page 177

duplicateMovieClip() Global Function
duplicateMovieClip(target, newName, depth)

Description

The duplicateMovieClip() global function creates a duplicate of target while target is

playing. The duplicate movie clip always starts at its frame 1 regardless of target’s frame at the

time of duplication. The duplicate movie clip inherits transformations but not the current values

of movieClip’s user-defined variables. The duplicate movie clip is placed in target’s parent’s

programmatic stack. A programmatic stack holds child movie clips; when you duplicate a movie

clip the duplicate will have the same parent as the original, and thus reside in the parent’s

programmatic stack.

The removeMovieClip() global function is used to delete duplicate movie clips.

movieClip.removeMovieClip() can also be used by duplicate movie clips to delete

themselves. Duplicate movie clips can also be removed by placing another movie clip at the same

depth in the programmatic stack.

CHAPTER 9198
Reference
Parameters

Example

duplicateMovieClip (_root.baseball, "newBaseball", 1);//creates new baseball
_root.newBaseball._x += 25;//moves new baseball along x axis
_root.newBaseball._y += 25;//moves new baseball along y axis

See also

“removeMovieClip() Global Function” on page 275, “MovieClip.duplicateMovieClip()

Method” on page 241, “MovieClip.removeMovieClip() Method” on page 253

escape() Global Function
escape(string)

Description

The escape() global function creates an encoded string from string. In the new string,

characters of string that require encoding are replaced with the format %xx, where xx is the

hexadecimal value of the character. The encoding is basically URL encoding except that spaces

are replaced with %20 instead of a + sign. Use the unescape() global function to translate the

string back into its original format.

Parameters

Example

//prints Billy%20went%20fishing%21%24%23%21
trace(escape("Billy went fishing!$#!"));

target A path or reference to the movie clip that is duplicated.

newName A string specifying the name of the duplicate movie clip. This must be a unique
name.

depth The depth of the movie clip in target’s parent’s programmatic stack.

string The string to be encoded.

199ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“unescape() Global Function” on page 304

eval() Global Function
eval(expression)

Description

The eval() global function returns the value of, or a reference to, expression.

Note: This implementation of eval() is different from the traditional JavaScript implementation.

Parameters

Returns

If expression is a variable or property, the value of the variable or property is returned. If

expression is an object, movie clip, or function, a reference to the item is returned.

Example

x=4;
trace(eval(x));//prints 4
str = "baseball";
hitBaseball = eval("_root."+ str);
hitBaseball._x += 50;//moves movie clip 50 pixels along x axis

trace(eval(this._x));//returns _x property for "this" reference

_focusrect Global Property
_focusrect

expression An expression that evaluates to a variable, property, object, movie clip, or
function.

CHAPTER 9200
Reference
Description

The _focusrect global property is a boolean that specifies whether a button with the “over”

state defined and that currently has keyboard focus has a yellow border that appears around it.

Keyboard focus is obtained using the Tab key. As a boolean, it can be assigned only one of two

values: true or false. If assigned true, the yellow border appears; if false, it does not. The

default value is true. This property can be read or written.

fscommand() Global Function
getURL("fscommand:command", argument)

Description

The fscommand global function is used only within the context of getURL(). See getURL() for

details. In LiveMotion, fscommand communication is only supported for use with the

standalone Flash Player.

Parameters

See also

“getURL Global Function” on page 201

getTimer Global Function
getTimer()

Description

The getTimer() global function gets the number of milliseconds that have elapsed since the

SWF started playing.

command The command to execute.

argument The argument for the command.

201ADOBE LIVEMOTION 2.0
Scripting Guide
Returns

The elapsed time in milliseconds.

getURL Global Function
getURL(url)
getURL(url, window)
getURL(url, window, howToSendVariables)

Description

The getURL() global function gets a document from a specified URL and loads it into the Web

browser in the specified window. It is also used to execute a script on a server and receive the

results in a Web browser window or frame. Additionally, it can be used to execute JavaScript code

("javascript:command") or VBScript code ("vbscript:command")in a Web browser, and it

provides support for the fscommand global function. The file, ftp, http, and print protocols

are supported.

Note: This method is not supported in Preview mode.

Parameters

The fscommand options are as follows:

url A string specifying the URL to which to hyperlink (HTTP or FTP). This
may be a relative or an absolute pathname. It can be the name of a doc-
ument or it can be a script, and the fscommand global function can be
used here.

window (Optional) The target frame in the browser—e.g., _self (the default),
_parent, _top, _blank. If omitted, _self is used. Custom names can
also be used.

howToSendVariables (Optional) Omit this parameter if you don’t want to send variables. This
parameter is a string literal. Specify GET to send variables via get (i.e.,
tacked onto the end of the URL) or POST to send them with post (i.e., put
into the body of the request). Both methods send them in application/x-
www-form-urlencoded MIME format. All user-defined variables are
sent.

CHAPTER 9202
Reference
• getURL("fscommand: allowscale", value)—Tells the standalone Flash Player whether its

contents should scale with the size of the player’s window. value is the string "true" or

"false", indicating whether or not (respectively) the contents of the Flash Player should scale.

• getURL("fscommand: exec", applicationName)—Tells the standalone Flash Player to

launch an external application. applicationName is a string showing an absolute path to the

application.

• getURL("fscommand: fullscreen", value)—Tells the standalone Flash Player whether to

maximize, filling the entire screen. value is the string "true" or "false", indicating whether

or not (respectively) to maximize.

• getURL("fscommand: quit")—Tells the standalone Flash Player to quit.

• getURL("fscommand: showmenu", value)—Tells the standalone Flash Player whether to

suppress the display of the controls in the context menu. value is the string "true" or "false",

indicating whether or not (respectively) to suppress.

• getURL("fscommand: trapallkeys", value)—Tells the standalone Flash Player whether

to send all keystrokes to the SWF file(s) executing in the Flash Player. value is the string "true"

or "false", indicating whether or not (respectively) to send.

Example

getURL("ftp://download.intel.com");
getURL("http://www.adobe.com", "_parent");
getURL("file:///C|/coolestFile.html");
getURL("javascript: alert(\"Hi\");");

See also

“loadVariables() Global Function” on page 220, “MovieClip.getURL() Method” on page 245,

“MovieClip.loadVariables() Method” on page 251, “fscommand() Global Function” on

page 200

getVersion() Global Function
getVersion()

203ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The getVersion() global function returns, in string form, the version of the Flash Player that

the user currently has installed. The first number refers to the major version number of the Flash

Player; the second number gives the minor version; the third number is the build (revision); and

the fourth number is the patch.

For example, from LiveMotion’s Preview mode:

LM 5,0,42,0

For example, from an exported SWF file (on a Windows machine):

WIN 5,0,30,0

Returns

The version of the Flash Player installed on the user’s system.

gotoAndPlay() Global Function
gotoAndPlay(label)

Description

The gotoAndPlay() global function sends the current timeline’s playhead to the specified

label and continues playing from label.

Note: Frame numbers should not be passed to this global function. The use of labels is recommended.

Parameters

See also

“gotoAndStop() Global Function” on page 204, “MovieClip.gotoAndPlay() Method” on

page 247

label A string indicating the destination of the playhead.

CHAPTER 9204
Reference
gotoAndStop() Global Function
gotoAndStop(label)

Description

The gotoAndStop() global function sends the current timeline’s playhead to the specified

label and stops playing.

Note: Frame numbers should not be passed to this global function. The use of labels is recommended.

Parameters

See also

“gotoAndPlay() Global Function” on page 203, “MovieClip.gotoAndStop() Method” on

page 247

Infinity Global Property
Infinity

Description

The Infinity global property is a predefined variable with the value for infinity. It is any value

larger than Number.MAX_VALUE, which is the largest number that can be represented in JavaS-

cript. This property can only be read.

See also

“-Infinity Global Property” on page 204, “Number.POSITIVE_INFINITY Property” on

page 267, “Number.MAX_VALUE Property” on page 265

-Infinity Global Property
-Infinity

label A string indicating the destination of the playhead.

205ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The -Infinity global property is a predefined variable with the value of -infinity. This property

can only be read.

See also

“Infinity Global Property” on page 204, “Number.NEGATIVE_INFINITY Property” on

page 266

isFinite Global Function
isFinite(expression)

Description

The isFinite() global function evaluates an expression and returns true if the expression is a

finite number. Otherwise, it returns false—the value is infinity or negative infinity.

Parameters

Returns

true if the expression is a finite number, false otherwise.

See also

“Infinity Global Property” on page 204, “-Infinity Global Property” on page 204

IsNan() Global Function
isNan(expression)

Description

The isNan() global function returns true if the expression is Not-a-Number (NaN).

expression Any valid JavaScript expression.

CHAPTER 9206
Reference
Parameters

Returns

true if the expression is not a number (NaN), false otherwise.

See also

“Number.NaN Property” on page 266

Key Object

Description

The Key object is used to retrieve the state of the keyboard. The Key object and its constants and

methods are static—you do not create Key objects using a constructor.

Constants

expression Any valid JavaScript expression.

BACKSPACE See “Key.BACKSPACE
Constant” on page 208.

Key.BACKSPACE constant contains the key code for the
BACKSPACE key.

CAPSLOCK See “Key.CAPSLOCK Con-
stant” on page 208.

Key.CAPSLOCK constant contains the key code for the
CAPSLOCK key.

CONTROL See “Key.CONTROL Con-
stant” on page 208.

Key.CONTROL constant contains the key code for the
CONTROL key.

DELETEKEY See “Key.DELETEKEY Con-
stant” on page 209.

Key.DELETEKEY constant contains the key code for the
DELETEKEY key.

DOWN See “Key.DOWN Con-
stant” on page 209.

Key.DOWN constant contains the key code for the DOWN
key.

END See “Key.END Constant”
on page 209.

Key.END constant contains the key code for the END
key.

ENTER See “Key.ENTER Con-
stant” on page 210.

Key.ENTER constant contains the key code for the
ENTER key.

207ADOBE LIVEMOTION 2.0
Scripting Guide
Methods

ESCAPE See “Key.ESCAPE Con-
stant” on page 210.

Key.ESCAPE constant contains the key code for the
ESCAPE key.

HOME See “Key.HOME Constant”
on page 212.

Key.HOME constant contains the key code for the HOME
key.

INSERT See “Key.INSERT Con-
stant” on page 212.

Key.INSERT constant contains the key code for the
INSERT key.

LEFT See “Key.LEFT Constant”
on page 214.

Key.LEFT constant contains the key code for the LEFT
key.

PGDN See “Key.PGDN Constant”
on page 214.

Key.PGDN constant contains the key code for the PGDN
key.

PGUP See “Key.PGUP Constant”
on page 215.

Key.PGUP constant contains the key code for the PGUP
key.

RIGHT See “Key.RIGHT Constant”
on page 215.

Key.RIGHT constant contains the key code for the
RIGHT key.

SHIFT See “Key.SHIFT Constant”
on page 215.

Key.SHIFT constant contains the key code for the
SHIFT key.

SPACE See “Key.SPACE Constant”
on page 216.

Key.SPACE constant contains the key code for the
SPACE key.

TAB See “Key.TAB Constant”
on page 216.

Key.TAB constant contains the key code for the TAB key.

UP See “Key.UP Constant” on
page 216.

Key.UP constant contains the key code for the UP key.

getAscii() See “Key.getAscii()
Method” on page 211.

Get the ASCII code of the last key pressed.

getCode() See “Key.getCode()
Method” on page 211.

Get the key code of the last key pressed.

isDown() See “Key.isDown()
Method” on page 212.

Check whether the specified key is currently down.

isToggled() See “Key.isToggled()
Method” on page 213.

Check whether the Num lock, Caps lock, or Scroll lock key is
toggled on.

CHAPTER 9208
Reference
Key.BACKSPACE Constant
Key.BACKSPACE

Description

The Key.BACKSPACE constant contains the key code for the BACKSPACE key. It is passed to

Key.isDown() to determine whether the BACKSPACE key is pressed. It is returned by

Key.getCode() if the BACKSPACE key was last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.CAPSLOCK Constant
Key.CAPSLOCK

Description

The Key.CAPSLOCK constant contains the key code for the CAPSLOCK key. It is passed to

Key.isToggled to determine whether the CAPSLOCK key is on. It is returned by Key.getCode()

if CAPSLOCK key was last key pressed.

See also

“Key.isToggled() Method” on page 213, “Key.getCode() Method” on page 211

Key.CONTROL Constant
Key.CONTROL

Description

The Key.CONTROL constant contains the key code for the CONTROL key. It is passed to

Key.isDown() to determine whether the CONTROL key is pressed. It is returned by

Key.getCode() if CONTROL key was last key pressed.

209ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.DELETEKEY Constant
Key.DELETEKEY

Description

The Key.DELETEKEY constant contains the key code for the DELETEKEY key. It is passed to

Key.isDown() to determine whether the DELETEKEY key is pressed. It is returned by

Key.getCode() if the DELETEKEY key was last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.DOWN Constant
Key.DOWN

Description

The Key.DOWN constant contains the key code for the DOWN key. It is passed to Key.isDown() to

determine whether the DOWN key is pressed. It is returned by Key.getCode() if the DOWN key was

last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.END Constant
Key.END

CHAPTER 9210
Reference
Description

The Key.END constant contains the key code for the END key. It is passed to Key.isDown() to

determine whether the END key is pressed. It is returned by Key.getCode() if the END key was

last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.ENTER Constant
Key.ENTER

Description

The Key.ENTER constant contains the key code for the ENTER key. It is passed to Key.isDown()

to determine whether the ENTER key is pressed. It is returned by Key.getCode() if the ENTER

key was last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.ESCAPE Constant
Key.ESCAPE

Description

The Key.ESCAPE constant contains the key code for the ESCAPE key. It is passed to

Key.isDown() to determine whether the ESCAPE key is pressed. It is returned by

Key.getCode() if the ESCAPE key was last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

211ADOBE LIVEMOTION 2.0
Scripting Guide
Key.getAscii() Method
Key.getAscii()

Description

The Key.getAscii() method returns the ASCII code of the last key pressed.

Example

In the onKeyUp or onKeyDown event:

var asciiVal = Key.getAscii();
if (asciiVal == 102)
{

trace("Lower case ‘f’ has been pressed");
}

See also

“Key.getCode() Method” on page 211

Key.getCode() Method
Key.getCode()

Description

The Key.getCode() method returns the key code of the last key pressed.

Example

In the onKeyUp or onKeyDown event:

if (Key.getCode() == Key.ESCAPE)
{

trace("Key.ESCAPE was pressed.");
}

See also

“Key.getAscii() Method” on page 211

CHAPTER 9212
Reference
Key.HOME Constant
Key.HOME

Description

The Key.HOME constant contains the key code for the HOME key. It is passed to Key.isDown() to

determine whether the HOME key is pressed. It is returned by Key.getCode() if the HOME key was

last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.INSERT Constant
Key.INSERT

Description

The Key.INSERT constant contains the key code for the INSERT key. It is passed to

Key.isDown() to determine whether INSERT key is pressed. It is returned by Key.getCode() if

the INSERT key was last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.isDown() Method
Key.isDown(keycode)

Description

The Key.isDown() method is used to check whether the specified key is currently down.

213ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

Returns

true if the key is pressed; false otherwise.

Example

In the onKeyUp or onKeyDown event:

if (Key.isDown(key.RIGHT))
{

trace("Right arrow key was pressed.");
}

See also

“Key.isToggled() Method” on page 213

Key.isToggled() Method
Key.isToggled(keycode)

Description

The Key.isToggled() method is used to see if the Caps lock, Num lock, or Scroll lock key is on.

Parameters

Returns

true if the Num lock or Caps lock key is toggled on; false otherwise.

keycode The key code to check for.

keycode If this parameter is Key.CAPSLOCK or the integer 20, then the
method checks for whether the Caps lock key is toggled on. If the
parameter is the integer 144, then the method checks for whether
the Num lock key is toggled on. If the parameter is the integer 145,
then the method checks for whether the Scroll lock key is toggled
on.

CHAPTER 9214
Reference
Example

In the onKeyUp or onKeyDown event:

if (Key.isToggled(20))//detect whether Caps lock key is toggled on
{

trace("Caps lock key is on.");
}

See also

“Key.isDown() Method” on page 212

Key.LEFT Constant
Key.LEFT

Description

The Key.LEFT constant contains the key code for the LEFT key. It is passed to Key.isDown() to

determine whether the LEFT key is pressed. It is returned by Key.getCode() if the LEFT key was

last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.PGDN Constant
Key.PGDN

Description

The Key.PGDN constant contains the key code for the PGDN key. It is passed to Key.isDown() to

determine whether the PGDN key is pressed. It is returned by Key.getCode() if the PGDN key was

last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

215ADOBE LIVEMOTION 2.0
Scripting Guide
Key.PGUP Constant
Key.PGUP

Description

The Key.PGUP constant contains the key code for the PGUP key. It is passed to Key.isDown() to

determine whether the PGUP key is pressed. It is returned by Key.getCode() if the PGUP key was

last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.RIGHT Constant
Key.RIGHT

Description

The Key.RIGHT constant contains the key code for the RIGHT key. It is passed to Key.isDown()

to determine whether the RIGHT key is pressed. It is returned by Key.getCode() if the RIGHT

key was last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.SHIFT Constant
Key.SHIFT

Description

The Key.SHIFT constant contains the key code for the SHIFT key. It is passed to Key.isDown()

to determine whether the SHIFT key is pressed. It is returned by Key.getCode() if the SHIFT

key was last key pressed.

CHAPTER 9216
Reference
See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.SPACE Constant
Key.SPACE

Description

The Key.SPACE constant contains the key code for the SPACE key. It is passed to Key.isDown()

to determine whether the SPACE key is pressed. It is returned by Key.getCode() if the SPACE

key was last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.TAB Constant
Key.TAB

Description

The Key.TAB constant contains the key code for the TAB key. It is passed to Key.isDown() to

determine whether the TAB key is pressed. It is returned by Key.getCode() if the TAB key was

last key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

Key.UP Constant
Key.UP

217ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The Key.UP constant contains the key code for the UP key. It is passed to Key.isDown() to

determine whether the UP key is pressed. It is returned by Key.getCode() if the UP key was last

key pressed.

See also

“Key.getCode() Method” on page 211, “Key.isDown() Method” on page 212

_leveln Global Property
_leveln

Description

The _leveln global property is used to explicitly refer to the levels of the Flash Player and it is

used to access the contents of those levels. It is used specify the level into which to load a SWF

file using the loadMovie() or loadMovieNum() global function and it is used to refer to that

SWF file after it has been loaded. The _root level movie clip loads at level 0 by default. This

property can only be read.

Note: This global property is not supported in Preview mode (except for _level0).

Example

loadMovie("http://devtech.corp.adobe.com/livemotion/billys.swf",
"_level1");
_level1.stop();

See also

“loadMovie() Global Function” on page 218, “loadMovieNum() Global Function” on page 219

lmFrameOfLabel() Global Function
lmFrameOfLabel(label)

CHAPTER 9218
Reference
Description

The lmFrameOfLabel() global function returns the frame number at which label resides.

Parameters

Returns

The frame number associated with label, or 0 if label is not found on the composition

timeline.

Example

//returns frame number of "firstThrow" label
lmFrameOfLabel("firstThrow");

loadMovie() Global Function
loadMovie(url, target)
loadMovie(url, target, howToSendVariables)

Description

The loadMovie() global function loads additional SWF files into the Flash Player. These SWF

files can be loaded into Flash Player levels, or they can be loaded into existing movie clips. A

movie clip can replace itself, even if it is at _level0.

If a new main movie clip is loaded at level 0, every level is unloaded and the effect is the same as

starting a new SWF file in the Flash Player. The movie clip loaded in level 0 sets the frame rate,

background color, and frame size for all other loaded movie clips.

Note: _root does not always refer to _level0. It refers to the root of the current level where the

reference is being made. For instance, if a movie clip in _level2 references _root, it is the same as

referencing _level2.

Movie clips loaded with the loadMovie() global function can be unloaded using the unload-

Movie() global function or the unloadMovieNum() global function. Likewise, a new movie clip

can be loaded into the level using the loadMovie() or loadMovieNum() global function.

label A string identifying the label on the composition (_root’s) timeline.

219ADOBE LIVEMOTION 2.0
Scripting Guide
When a SWF file is loaded into an existing movie clip, the onData event handler is called. Even

though the contents of the movie clip are replaced, the movie clip handlers are not. These include

onEnterFrame, onLoad, onUnload, onData, onMouseDown, onMouseUp, onMouseMove,

onKeyDown, and onKeyUp. Everything else—including button handlers, state scripts, and

objects—are replaced. This movie clip “shell” concept is important to keep in mind because it

means that, when using loadMovie() and unloadMovie(), a movie clip instance is never really

removed from the composition. Movie clip content is simply moved in and out of the shell.

Note: This method is not supported in Preview mode.

Parameters

Example

loadMovie("http://devtech.corp.adobe.com/docs/livemotion/billys.swf",
"_level1");
loadMovie("file:///C|/coolestMovie.swf", "_level1");

See also

“loadMovieNum() Global Function” on page 219, “unloadMovie() Global Function” on

page 304, “unloadMovieNum() Global Function” on page 305, “MovieClip.loadMovie()

Method” on page 250

loadMovieNum() Global Function
loadMovieNum(url, level)
loadMovieNum(url, level, howToSendVariables)

url A string specifying the URL from which to load the SWF file.

target A path or a reference to another movie clip that the new SWF file will replace,
or the player level. The loaded movie clip inherits the position, scaling, and
rotation of the movie it’s replacing.

howToSendVariables (Optional) Omit this parameter if you don’t want to send variables. This
parameter is a string literal. Specify GET to send variables via get (i.e., tacked
onto the end of the URL) or POST to send them with post (i.e., put into the
body of the request). Both methods send them in application/x-www-form-
urlencoded MIME format. All user-defined variables are sent.

CHAPTER 9220
Reference
Description

The loadMovieNum() global function is the same as loadMovie() except that the second

parameter must be specified as a number. With loadMovieNum() you cannot specify the name

of another movie clip to be replaced.

Note: This method is not supported in Preview mode.

Parameters

See also

“loadMovie() Global Function” on page 218, “unloadMovie() Global Function” on page 304,
“unloadMovieNum() Global Function” on page 305

loadVariables() Global Function
loadVariables(url, target)
loadVariables(url, target, howToSendVariables)

Description

The loadVariables() global function loads variables fetched from the specified URL into

target. The movie clip's onData event handler is called when the variables have been loaded.

The data that’s loaded is scoped to the movie clip/level that it’s loaded into. All the values loaded

are considered the string data type. If a variable to be loaded is not already declared within

target, then it is added as a new property of target and can be accessed using the standard

target.property syntax or handled in the same way as any other variable.

url A string specifying the URL from which to load the SWF file.

level The player level number into which to load the SWF file. Must be a non-
negative integer.

howToSendVariables (Optional) A string literal. GET or POST.

221ADOBE LIVEMOTION 2.0
Scripting Guide
The data fetched from the URL must be in the application/x-www-form-urlencoded MIME

format.

Note: Variables cannot be loaded from a local file in Preview mode. However, HTTP requests for

external data can be.

Parameters

Example

loadVariables("http://www.myServer.com/cgibin/stockdata.pl",this,"GET");

See also

“loadVariablesNum() Global Function” on page 221, “getURL Global Function” on page 201,

“MovieClip.getURL() Method” on page 245, “MovieClip.loadVariables() Method” on page 251

loadVariablesNum() Global Function
loadVariablesNum (url, level)
loadVariablesNum (url, level, howToSendVariables)

Description

The loadVariablesNum() global function is the same as loadVariables() except the second

argument must be a player level number.

url A string specifying the URL from which to get the variables. For security
reasons, the URL must be in the same domain as that from which the
movie clip was downloaded.

target A path or reference to an existing movie clip or player level in which the
loaded variables are defined.

howToSendVariables (Optional) Omit this parameter if you don’t want to send variables. If
omitted, variables are retrieved but none are sent. This parameter is a
string literal. Specify GET to send variables via get (i.e., tacked onto the
end of the URL) or POST to send them with post (i.e., put into the body
of the request). Both methods send them in application/x-www-form-
urlencoded MIME format. All user-defined variables are sent.

CHAPTER 9222
Reference
Parameters

See also

“loadVariables() Global Function” on page 220, “getURL Global Function” on page 201,

“loadMovie() Global Function” on page 218, “loadMovieNum() Global Function” on page 219

Math Object

Description

The Math object has constants and methods to facilitate use of common mathematical functions

and values. The Math object and its constants and methods are static—you do not create Math

objects using a constructor. For example, you refer to the constant PI as Math.PI and you call

the sine function as Math.sin(x), where x is the method’s argument. Constants are defined

with the full precision of real numbers.

Constants

url A string specifying the URL from which to get the variables.

level The player level number in which the loaded variables are
defined. Must be a non-negative integer.

howToSendVariables (Optional) A string literal. GET or POST.

E See “Math.E Constant” on
page 227.

Euler's constant and the base of natural logarithms
(approximately 2.718).

LN2 See “Math.LN2 Constant” on
page 228.

Natural logarithm of 2 (approximately 0.693).

LN10 See “Math.LN10 Constant” on
page 229.

Natural logarithm of 10 (approximately 2.302).

LOG2E See “Math.LOG2E Constant” on
page 229.

NBase 2 logarithm of E (approximately 1.442).

LOG10E See “Math.LOG10E Constant” on
page 230.

Base 10 logarithm of E (approximately 0.434).

223ADOBE LIVEMOTION 2.0
Scripting Guide
Methods

PI See “Math.PI Constant” on
page 231.

Ratio of the circumference of a circle to its diameter
(approximately 3.14159).

SQRT1_2 See “Math.SQRT1_2 Constant”
on page 233.

Square root of 1/2; equivalently, 1 over the square
root of 2 (approximately 0.707).

SQRT2 See “Math.SQRT2 Constant” on
page 233.

Square root of 2 (approximately 1.414).

abs() See “Math.abs() Method” on
page 224.

Return the absolute value of a number.

acos() See “Math.acos() Method” on
page 224.

Return the arccosine (in radians) of a number.

asin() See “Math.asin() Method” on
page 225.

Return the arcsine (in radians) of a number.

atan() See “Math.atan() Method” on
page 225.

Return the arctangent (in radians) of a number.

atan2() See “Math.atan2() Method” on
page 226.

Return the arctangent (in radians) of the quotient of
the arguments (y/x).

ceil() See “Math.ceil() Method” on
page 226.

Return the value rounded up.

cos() See “Math.cos() Method” on
page 227.

Return the cosine of an angle provided in radians.

exp() See “Math.exp() Method” on
page 228.

Return Math.E raised to the power of a number.

floor() See “Math.floor() Method” on
page 228.

Return the value rounded down.

log() See “Math.log() Method” on
page 229.

Return the natural logarithm of a number.

max() See “Math.max() Method” on
page 230.

Return the maximum of two numbers.

min() See “Math.min() Method” on
page 230.

Return the minimum of two numbers.

CHAPTER 9224
Reference
Math.abs() Method
Math.abs(x)

Description

The abs() method returns the absolute value of a number.

Parameters

Math.acos() Method
Math.acos(x)

Description

The acos() method returns the arccosine (in radians) of a number. x must be in the range of -

1.0 and 1.0. If it is not, the method returns NaN.

pow() See “Math.pow() Method” on
page 231.

Return XY.

random() See “Math.random() Method”
on page 231.

Return a pseudo-random number from 0.0 up to
but not including 1.0.

round() See “Math.round() Method” on
page 232.

Return the value of a number rounded to the nearest
integer.

sin() See “Math.sin() Method” on
page 232.

Return the sine of an angle provided in radians.

sqrt() See “Math.sqrt() Method” on
page 233.

Return the square root of a number.

tan() See “Math.tan() Method” on
page 233.

Return the tangent of an angle provided in radians.

x A number.

225ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

See also

“Math.asin() Method” on page 225, “Math.atan() Method” on page 225, “Math.atan2()

Method” on page 226, “Math.cos() Method” on page 227, “Math.sin() Method” on page 232,

“Math.tan() Method” on page 233

Math.asin() Method
Math.asin(x)

Description

The asin() method returns the arcsine (in radians) of a number. x must be in the range of -1.0

and 1.0. If it is not, the method returns NaN.

Parameters

See also

“Math.acos() Method” on page 224, “Math.atan() Method” on page 225, “Math.atan2()

Method” on page 226, “Math.cos() Method” on page 227, “Math.sin() Method” on page 232,

“Math.tan() Method” on page 233

Math.atan() Method
Math.atan(x)

Description

The atan() method returns the arctangent (in radians) of a number. x must be in the range of

-Infinity and Infinity, inclusive.

x A number between -1.0 and 1.0.

x A number between -1.0 and 1.0.

CHAPTER 9226
Reference
Parameters

See also

“Math.acos() Method” on page 224, “Math.asin() Method” on page 225, “Math.atan2()

Method” on page 226, “Math.cos() Method” on page 227, “Math.sin() Method” on page 232,

“Math.tan() Method” on page 233

Math.atan2() Method
Math.atan2(y,x)

Description

The atan2() method returns the arctangent (in radians) of the quotient of its arguments (y/x).

Note that the arguments to this function pass the y-coordinate first and the x-coordinate second.

Parameters
.

See also

“Math.acos() Method” on page 224, “Math.asin() Method” on page 225, “Math.atan() Method”

on page 225, “Math.cos() Method” on page 227, “Math.sin() Method” on page 232, “Math.tan()

Method” on page 233

Math.ceil() Method
Math.ceil(x)

Description

The ceil() method returns the value rounded up to the nearest integer.

x A number in the range of -Infinity and Infinity, inclusive.

x,y Two numbers representing a point.

227ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

See also

“Math.floor() Method” on page 228

Math.cos() Method
Math.cos(x)

Description

The cos() method returns the cosine of an angle provided in radians. The value is between -1

and 1.

Parameters

See also

“Math.acos() Method” on page 224, “Math.asin() Method” on page 225, “Math.atan() Method”

on page 225, “Math.atan2() Method” on page 226, “Math.sin() Method” on page 232,

“Math.tan() Method” on page 233

Math.E Constant
Math.E

Description

The E constant represents Euler's constant and the base of natural logarithms (approximately

2.718).

x A number.

x An angle, in radians.

CHAPTER 9228
Reference
Math.exp() Method
Math.exp(x)

Description

The exp() method returns Math.E raised to the power of x.

Parameters

See also

“Math.E Constant” on page 227, “Math.log() Method” on page 229, “Math.pow() Method” on

page 231

Math.floor() Method
Math.floor(x)

Description

The floor() method returns the value rounded down to the nearest integer.

Parameters

See also

“Math.ceil() Method” on page 226

Math.LN2 Constant
Math.LN2

x A number.

x A number.

229ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The LN2 constant is the natural logarithm of 2 (approximately 0.693).

Math.LN10 Constant
Math.LN10

Description

The LN10 constant is the natural logarithm of 10 (approximately 2.302).

Math.log() Method
Math.log(x)

Description

The log() method returns the natural logarithm of a number.

Parameters

See also

“Math.exp() Method” on page 228, “Math.pow() Method” on page 231

Math.LOG2E Constant
Math.LOG2E

Description

The LOG2E constant is the base 2 logarithm of E (approximately 1.442).

x A number.

CHAPTER 9230
Reference
Math.LOG10E Constant
Math.LOG10E

Description

The LOG10E constant is the base 10 logarithm of E (approximately 0.434).

Math.max() Method
Math.max(x,y)

Description

The max() method returns the maximum of two numbers.

Parameters

See also

“Math.min() Method” on page 230

Math.min() Method
Math.min(x,y)

Description

The min() method returns the minimum of two numbers.

Parameters

x,y Two numbers.

x,y Two numbers.

231ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“Math.max() Method” on page 230

Math.PI Constant
Math.PI

Description

The PI constant is the ratio of the circumference of a circle to its diameter (approximately

3.14159).

Math.pow() Method
Math.pow(base,exponent)

Description

The pow() method returns XY.

Parameters

See also

“Math.exp() Method” on page 228, “Math.log() Method” on page 229

Math.random() Method
Math.random()

base The base number.

exponent The exponent to which base is raised.

CHAPTER 9232
Reference
Description

The random() method returns a pseudo-random number from 0.0 up to but not including 1.0.

The random number generator is seeded from the current time.

Math.round() Method
Math.round(x)

Description

The round() method returns the value of a number rounded to the nearest integer. If the

fractional portion of number is .5 or greater, the argument is rounded to the next higher integer.

If the fractional portion of number is less than .5, the argument is rounded to the next lower

integer.

Parameters

Math.sin() Method
Math.sin(x)

Description

The sin() method returns the sine of an angle provided in radians.

Parameters

See also

“Math.acos() Method” on page 224, “Math.asin() Method” on page 225, “Math.atan() Method”

on page 225, “Math.atan2() Method” on page 226, “Math.cos() Method” on page 227,

“Math.tan() Method” on page 233

x A number.

x An angle, in radians.

233ADOBE LIVEMOTION 2.0
Scripting Guide
Math.sqrt() Method
Math.sqrt(x)

Description

The sqrt() method returns the square root of a number.

Parameters

Math.SQRT1_2 Constant
Math.SQRT1_2

Description

The SQRT1_2 constant represents the square root of 1/2—equivalently, 1 over the square root of

2, approximately 0.707.

Math.SQRT2 Constant
Math.SQRT2

Description

The SQRT2 constant represents the square root of 2 (approximately 1.414).

Math.tan() Method
Math.tan(x)

Description

The tan() method returns the tangent of an angle provided in radians.

x A number.

CHAPTER 9234
Reference
Parameters

See also

“Math.acos() Method” on page 224, “Math.asin() Method” on page 225, “Math.atan() Method”

on page 225, “Math.atan2() Method” on page 226, “Math.cos() Method” on page 227,

“Math.sin() Method” on page 232

Mouse Object

Description

The Mouse object is used to show or hide the cursor. The Mouse object and its methods are

static—you do not create Mouse objects using a constructor.

Properties

None.

Methods

Mouse.hide() Method
Mouse.hide()

Description

The hide() method hides the mouse cursor.

x An angle, in radians.

Mouse.hide See “Mouse.hide()
Method” on page 234.

Hide the mouse cursor.

Mouse.show See “Mouse.show()
Method” on page 235.

Show the mouse cursor.

235ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“Mouse.show() Method” on page 235

Mouse.show() Method
Mouse.show()

Description

The show() method shows the mouse cursor.

See also

“Mouse.hide() Method” on page 234

MovieClip Object

Description

The MovieClip object is the object at the heart of LiveMotion. _root itself is an instance of the

MovieClip object, and many of the MovieClip methods are also available as global functions.

Constructor

None. Movie clips are created manually using the LiveMotion Composition window. In

addition, new movie clips can be added with attachMovie() and duplicateMovieClip().

Properties

_alpha See “MovieClip._alpha Prop-
erty” on page 239.

Opacity of the movie clip on a scale of 0 (transpar-
ent) to 100 (opaque).

_currentframe See “MovieClip._currentframe
Property” on page 241.

Location of the movie clip playhead.

_droptarget See “MovieClip._droptarget
Property” on page 241.

Absolute path (in slash notation) of a movie clip
over which the movie clip passes during drag oper-
ations by the user.

CHAPTER 9236
Reference
_framesloaded See “MovieClip._framesloaded
Property” on page 242.

Number of movie clip frames that have been
loaded.

_height See “MovieClip._height Prop-
erty” on page 248.

Height of the movie clip in pixels.

_name See “MovieClip._name Prop-
erty” on page 252.

Name of the movie clip.

_parent See “MovieClip._parent Prop-
erty” on page 252.

Movie clip containing this movie clip.

_rotation See “MovieClip._rotation Prop-
erty” on page 254.

Rotation angle of the movie clip in degrees.

_target See “MovieClip._target Prop-
erty” on page 257.

Absolute path of the movie clip.

_totalframes See “MovieClip._totalframes
Property” on page 257.

Number of frames in the movie clip.

_url See “MovieClip._url Property”
on page 258.

URL from which the movie clip was loaded.

_visible See “MovieClip._visible Prop-
erty” on page 258.

Boolean indicating whether the movie clip is visi-
ble.

_width See “MovieClip._width Prop-
erty” on page 259.

Width of the movie clip in pixels.

_x See “MovieClip._x Property” on
page 259.

Horizontal location of the movie clip in pixels.

_xmouse See “MovieClip._xmouse Prop-
erty” on page 260.

Horizontal location of the mouse cursor in pixels.

_xscale See “MovieClip._xscale Prop-
erty” on page 260.

Horizontal scaling factor of the movie clip.

_y See “MovieClip._y Property” on
page 260.

Vertical location of the movie clip in pixels.

_ymouse See “MovieClip._ymouse Prop-
erty” on page 261.

Vertical location of the mouse cursor in pixels.

_yscale See “MovieClip._yscale Prop-
erty” on page 261.

Vertical scaling factor of the movie clip.

237ADOBE LIVEMOTION 2.0
Scripting Guide
Methods

attachMovie() See “MovieClip.attachMovie()
Method” on page 239.

Attach the named movie clip (passed in
as an argument) to the movie clip.

duplicateMovieClip() See “MovieClip.duplicate-
MovieClip() Method” on
page 241.

Duplicate this movie clip. Also a global
movie clip function. See “duplicateMov-
ieClip() Global Function” on page 197

getBounds() See “MovieClip.getBounds()
Method” on page 243.

Return bounds of the movie clip. The
returned object contains the values in
the properties xMin, XMax, yMin and
yMax.

getBytesLoaded() See “MovieClip.getBytes-
Loaded() Method” on
page 244.

Return the number of bytes already
loaded if the movie clip is external
(loaded with movieClip.load-
Movie()). If the movie clip is internal,
the number returned is always the same
as that returned by movieClip.get-
BytesTotal().

getBytesTotal() See “MovieClip.getBytesTo-
tal() Method” on page 245.

Return the size of the movie clip in bytes.
When running in Preview mode, you will
get an arbitrary number.

getURL() See “MovieClip.getURL()
Method” on page 245.

Load the URL into the browser. Also a glo-
bal movie clip function. See “getURL Glo-
bal Function” on page 201.

globalToLocal() See “MovieClip.globalToLo-
cal() Method” on page 246.

Convert the given global point to local
coordinates.

gotoAndPlay() See “MovieClip.gotoAnd-
Play() Method” on page 247.

Go to the specified label and play. Also a
global movie clip function. See
“gotoAndPlay() Global Function” on
page 203.

gotoAndStop() See “MovieClip.gotoAnd-
Stop() Method” on page 247.

Go to the specified label and stop. Also a
global movie clip function. See
“gotoAndStop() Global Function” on
page 204.

hitTest() See “MovieClip.hitTest()
Method” on page 248.

Return a boolean indicating whether the
movie clip intersects with a given clip
(passed in as an argument) or given x/y
coordinates.

CHAPTER 9238
Reference
lmSetCurrentState() See “MovieClip.lmSetCur-
rentState() Method” on
page 249.

Change the state of the movie clip.

loadMovie() See “MovieClip.loadMovie()
Method” on page 250.

Load an external SWF file into the player.
Also a global movie clip function. See
“loadMovie() Global Function” on
page 218

loadVariables() See “MovieClip.loadVari-
ables() Method” on page 251.

Load variables fetched from the specified
URL. The movie clip’s onData handler is
called when the variables have been
loaded. Also a global movie clip function.
See “loadVariables() Global Function” on
page 220.

localToGlobal() See “MovieClip.localToGlo-
bal() Method” on page 251.

Convert the given local point to global
coordinates.

nextFrame() See “MovieClip.nextFrame()
Method” on page 252.

Go to the next frame and stop playing.
Also a global movie clip function. See
“nextFrame() Global Function” on
page 263.

play() See “MovieClip.play()
Method” on page 253.

Start playing. Also a global movie clip
function. See “play() Global Function” on
page 274.

prevFrame() See “MovieClip.prevFrame()
Method” on page 253.

Go to the previous frame and stop play-
ing. Also a global movie clip function. See
“prevFrame() Global Function” on
page 275.

removeMovieClip() See “MovieClip.removeMov-
ieClip() Method” on
page 253.

Delete a duplicate or attached movie clip.
Also a global movie clip function. See
“removeMovieClip() Global Function” on
page 275.

startDrag() See “MovieClip.startDrag()
Method” on page 254.

Start dragging a movie clip. Also a global
movie clip function. See “startDrag() Glo-
bal Function” on page 287.

stop() See “MovieClip.stop()
Method” on page 255.

Stop playing. Also a global movie clip
function. See “stop() Global Function” on
page 288.

239ADOBE LIVEMOTION 2.0
Scripting Guide
MovieClip._alpha Property
movieClip._alpha

Description

The _alpha property sets the opacity of the movie clip. 0 is transparent; 100 is opaque. This

property can be read or written.

MovieClip.attachMovie() Method
movieClip.attachMovie(exportName, newName, depth)

Description

The attachMovie() method creates a new instance of exportName and attaches it to the movie

clip by placing it at the designated depth in movieClip’s programmatic stack. Remove the

attached movie clip by using the movieClip.removeMovieClip() method or the removeMov-

ieClip() global function. The movie clip may also be removed by placing another movie clip

at the same depth in the programmatic stack.

exportName is the sharing name of the movie clip that is to be attached.

stopDrag() See “MovieClip.stopDrag()
Method” on page 255.

Stop any drag operation in progress. Also
a global movie clip function. See “start-
Drag() Global Function” on page 287.

swapDepths() See “MovieClip.swapDepths()
Method” on page 256.

Swap the movie clip’s depth with that of
another movie clip.

unloadMovie() See “MovieClip.unload-
Movie() Method” on
page 257.

Unload a movie that was previously
loaded with loadmovie(). Also a global
movie clip function. See “unloadMovie()
Global Function” on page 304.

valueOf() See “MovieClip.valueOf()
Method” on page 258.

Returns the absolute path to the movie
clip using dot (as opposed to slash) nota-
tion.

CHAPTER 9240
Reference
A movie clip can be attached to the _root movie clip as well using the syntax _root.attach-

Movie(exportName, newName, depth).

A movie clip instanced using attachMovie() becomes a child of the movie clip through which

the method was called, and is in that movie clip’s programmatic stack. For example:

clipA.attachMovie(exportName, "clipB", depth);

clipB is a child of clipA and is in clipA’s programmatic stack.

In contrast, a movie clip instanced using duplicateMovieClip() becomes a child of the parent

of the movie clip through which the method was called, and is in the parent’s programmatic

stack. For example:

clipA.duplicateMovieClip("clipB", depth);

clipB is a child of clipA._parent and is in clipA._parent’s programmatic stack.

Note: In Preview mode, the movie clip that is attached is the local version only. If the “Use External

Asset” feature is used from the Export palette, this will not be the same movie clip that is actually

used when the SWF file is executing in the Flash Player.

Parameters

See also

“removeMovieClip() Global Function” on page 275, “MovieClip.removeMovieClip() Method”

on page 253, “loadMovie() Global Function” on page 218, “unloadMovie() Global Function” on

page 304, “MovieClip.loadMovie() Method” on page 250,“MovieClip.unloadMovie() Method”

on page 257,“duplicateMovieClip() Global Function” on page 197, “MovieClip.duplicateMov-

ieClip() Method” on page 241,“Sound.attachSound() Method” on page 281

exportName The movie clip to be attached. This movie clip already exists in the current SWF
file. It was assigned its sharing name (exportName) via the Export palette. A
remote copy may or may not have been loaded in when the SWF file was loaded
into the Flash player, depending on whether the “Use External Asset” feature was
used from the Export palette.

newName A string indicating the name for the attached movie clip.

depth The depth for the movie clip in the programmatic stack.

241ADOBE LIVEMOTION 2.0
Scripting Guide
MovieClip._currentframe Property
movieClip._currentframe

Description

The _currentframe property specifies the location (frame number) of the playhead of

movieClip. This property can only be read.

MovieClip._droptarget Property
movieClip._droptarget

Description

The _droptarget property is a string value that specifies the absolute path (in slash notation)

of a movie clip over which movieClip passes during drag operations by the user. To convert a

_droptarget string to a movie clip reference, use eval(). This property can only be read.

MovieClip.duplicateMovieClip() Method
movieClip.duplicateMovieClip(newName, depth)

Description

The duplicateMovieClip() method duplicates movieClip. Duplicate movie clips always start

playing at frame 1. The duplicate movie clip inherits transformations but not the current values

of movieClip’s user-defined variables. The duplicate movie clip is placed in movieClip’s

parent’s programmatic stack. A programmatic stack holds child movie clips; when you duplicate

a movie clip the new movie clip will have the same parent as the original, and thus reside in the

parent’s programmatic stack. The removeMovieClip() method is used to delete duplicate

movie clips.

movieClip.removeMovieClip() can be used by duplicate movie clips to delete themselves, or

the removeMovieClip() global function can be used to delete duplicate movie clips. Duplicate

movie clips can also be removed by placing another movie clip at the same depth in the program-

matic stack.

CHAPTER 9242
Reference
A movie clip instanced using duplicateMovieClip() becomes a child of the parent of the

movie clip through which the method was called, and is in the parent’s programmatic stack. For

example:

clipA.duplicateMovieClip("clipB", depth);

clipB is a child of clipA._parent and is in clipA._parent’s programmatic stack.

In contrast, a movie clip instanced using attachMovie() becomes a child of the movie clip

through which the method was called, and is in that movie clip’s programmatic stack. For

example:

clipA.attachMovie(exportName, "clipB", depth);

clipB is a child of clipA and is in clipA’s programmatic stack.

Parameters

Example

_root.baseball.duplicateMovieClip ("newBaseball", 1);//creates new baseball
_root.newBaseball._x += 25;//moves new baseball along x axis
_root.newBaseball._y += 25;//moves new baseball along y axis

See also

“removeMovieClip() Global Function” on page 275, “MovieClip.removeMovieClip() Method”

on page 253, “loadMovie() Global Function” on page 218, “unloadMovie() Global Function” on

page 304, “MovieClip.loadMovie() Method” on page 250,“MovieClip.unloadMovie() Method”

on page 257,“duplicateMovieClip() Global Function” on page 197, “MovieClip.attachMovie()

Method” on page 239

MovieClip._framesloaded Property
movieClip.framesloaded

newName A string indicating the new name for the duplicate movie clip.

depth An integer indicating the depth at which the duplicate movie clip is placed
in movieClip’s parent’s programmatic stack.

243ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The _framesloaded property holds the number of frames that have already been downloaded.

This property can only be read.

This property is often used in conjunction with the _totalframes property to create a preloader

for the _root movie clip. For example, you could place the following code in a keyframe script

on a frame somewhere between the beginLoop and Start labels. The _root movie clip loops

between the beginLoop label and the frame where the keyframe script is, then jumps to the

Start label when the entire _root movie clip has downloaded.

if (_root._framesloaded == _root._totalframes)
{

_root.gotoAndPlay("Start");
}
else
{
 _root.gotoAndPlay("beginLoop");
}

See also

“MovieClip._totalframes Property” on page 257

MovieClip.getBounds() Method
movieClip.getBounds()
movieClip.getBounds(targetCoordinateSpace)

Description

The getBounds() method returns the bounds of the movie clip as an object. If specified, the

values returned represent the coordinate space of targetCoordinateSpace.

Parameters

targetCoordinateSpace (Optional) A path or reference to a movie clip in which mov-
ieClip’s bounds are measured. Defaults to movieClip if not
specified.

CHAPTER 9244
Reference
Returns

An object with four properties: obj.xMin, obj.xMax, obj.yMin, obj.yMax.

Example

var coordinates = _root.baseball.getBounds();
trace(coordinates.xMin);//prints value
trace(coordinates.xMax);//prints value
trace(coordinates.yMin);//prints value
trace(coordinates.yMax);//prints value

var coordinates = _root.baseball.getBounds("_root");
trace(coordinates.xMin);//prints value
trace(coordinates.xMax);//prints value
trace(coordinates.yMin);//prints value
trace(coordinates.yMax);//prints value

See also

“MovieClip.globalToLocal() Method” on page 246, “MovieClip.localToGlobal() Method” on

page 251

MovieClip.getBytesLoaded() Method
movieClip.getBytesLoaded()

Description

The getBytesLoaded() method returns the number of bytes already loaded if movieClip is

external. If internal, the number returned is always the same as that returned by

movieClip.getBytesTotal().

Returns

The number of bytes already loaded for movieClip.

See also

“MovieClip.getBytesTotal() Method” on page 245

245ADOBE LIVEMOTION 2.0
Scripting Guide
MovieClip.getBytesTotal() Method
movieClip.getBytesTotal()

Description

The size of movieClip in bytes. When running in Preview mode, the number returned is

arbitrary.

Returns

The size of movieClip in bytes.

See also

“MovieClip.getBytesLoaded() Method” on page 244

MovieClip.getURL() Method
movieClip.getURL(url, window)
movieClip.getURL(url, window, howToSendVariables)

Description

The getURL()method loads a URL into the web browser. It operates the same as the global form,

except when variables are sent they are sent from the movieClip timeline.

Note: This method is not supported in Preview mode.

Parameters

url A string specifying the URL to which to hyperlink. This may be a relative
or an absolute pathname, or the name of a document or script.

CHAPTER 9246
Reference
See also

“getURL Global Function” on page 201

MovieClip.globalToLocal() Method
movieClip.globalToLocal(point)

Description

The globalToLocal() method converts the given global point to local (movieClip) coordi-

nates.

Parameters

Example

wheresTheMouse = new Object();
wheresTheMouse.x = _root._xmouse;
wheresTheMouse.y = _root._ymouse;
this.globalToLocal(wheresTheMouse);
//wheresTheMouse.x and wheresTheMouse.y now contain local coordinates

See also

“MovieClip.getBounds() Method” on page 243, “MovieClip.localToGlobal() Method” on

page 251, “Object Class” on page 269

window (Optional) A string specifying the target frame in the browser—e.g.,
_self (the default), _parent, _top, _blank. If omitted, _self is
used. Custom names can also be used.

howToSendVariables (Optional) Omit this parameter if you don’t want to send variables. This
parameter is a string literal. Specify GET to send variables via get (i.e.,
tacked onto the end of the URL) or POST to send them with post (i.e., put
into the body of the request). Both methods send them in application/x-
www-form-urlencoded MIME format. All user-defined variables are
sent.

point An object of type Object with two properties: x and y. x and y are set to the global
coordinates before the object point is passed to globalToLocal().

247ADOBE LIVEMOTION 2.0
Scripting Guide
MovieClip.gotoAndPlay() Method
movieClip.gotoAndPlay(label)

Description

The gotoAndPlay() method goes to the specified label and continues playing from label.

Note: Frame numbers should not be passed to this method. The use of labels is recommended.

Parameters

See also

“MovieClip.gotoAndStop() Method” on page 247, “gotoAndPlay() Global Function” on

page 203

MovieClip.gotoAndStop() Method
movieClip.gotoAndStop(label)

Description

The gotoAndStop() method goes to the specified label and stops playing.

Note: Frame numbers should not be passed to this method. The use of labels is recommended.

Parameters

See also

“MovieClip.gotoAndPlay() Method” on page 247, “gotoAndStop() Global Function” on

page 204

label A string indicating the destination of the playhead.

label A string indicating the destination of the playhead.

CHAPTER 9248
Reference
MovieClip._height Property
movieClip._height

Description

The _height property represents the height of the movie clip in pixels. The _height property

is based on the content within movieClip. If movieClip has no content, then _height is 0.

_height is also determined by placement of the objects within movieClip: the farthest object

toward the top or bottom determines the value of _height. If objects within movieClip are

moved, _height can change. This property can be read or written.

Note: Only _root.height and _root.width return dimensions of the _root movie clip.

See also

“MovieClip._width Property” on page 259

MovieClip.hitTest() Method
movieClip.hitTest(x, y, shapeFlag)
movieClip.hitTest(target)

Description

The hitTest() method returns a boolean indicating whether movieClip intersects with a

specific point in the composition, or overlaps with another movie clip. When specifying the hit

test, you indicate whether the test involves matching a specific x/y point in the composition (first

form) against just the border of movieClip or all of it, or (second form) finding any overlap with

the other clip.

Parameters

x Horizontal component of the hit test. Defined in global coordinate space.

y Vertical component of the hit test. Defined in global coordinate space.

249ADOBE LIVEMOTION 2.0
Scripting Guide
Returns

true if a hit occurred; false otherwise.

Example

if (this.hitTest(_root._xmouse, _root._ymouse, true))
{

trace("The mouse has passed over the movie clip");
};

See also

“MovieClip.getBounds() Method” on page 243

MovieClip.lmSetCurrentState() Method
movieClip.lmSetCurrentState(label)

Description

The lmSetCurrentState() method sets the state of movieClip.

Parameters

Example

if (_root._xmouse < 175 && _root._ymouse > 100)
{

_root.Spiral.lmSetCurrentState("Purple");
}
if (_root._xmouse > 175 && _root._ymouse > 100)
{

shapeFlag Boolean indicating whether the test should test just the bounding box (false)
or all pixels (true) of movieClip for overlap with the point.

target A path or reference to a movie clip against which the hit test is made.

label A string representing amovieClip state that was already
defined for movieClip. This can be a standard state like “over”,
or a custom state. Must appear in quotes.

CHAPTER 9250
Reference
_root.Spiral.lmSetCurrentState("Green");
}

MovieClip.loadMovie() Method
movieClip.loadMovie(url)
movieClip.loadMovie(url, howToSendVariables)

Description

The loadMovie() method brings an external SWF file into the player and optionally sends

variables to url. movieClip and any programmatically generated movie clips associated with it

are replaced with the new SWF file. Use unloadMovie() to remove the movie clip. The unload-

Movie() global function can also be used to remove the movie clip.

Note: This method is not supported in Preview mode.

Parameters

Example

_root.baseball.loadMovie("http://devtech.corp.adobe.com/docs/livemotion/bil
lys.swf");

See also

“loadMovie() Global Function” on page 218, “unloadMovie() Global Function” on page 304,

“MovieClip.unloadMovie() Method” on page 257

url A string literal representing URL from which to get the SWF file to
load. This can be an absolute or a relative URL.

howToSendVariables (Optional) Omit this parameter if you don’t want to send variables.
This parameter is a string literal. Specify GET to send variables via get
(i.e., tacked onto the end of the URL) or POST to send them with post
(i.e., put into the body of the request). Both methods send them in
application/x-www-form-urlencoded MIME format. All user-defined
variables are sent.

251ADOBE LIVEMOTION 2.0
Scripting Guide
MovieClip.loadVariables() Method
movieClip.loadVariables(url, howToSendVariables)

Description

The loadVariables() method loads variables fetched from the specified URL. The movie clip's

onData event handler is called when all of the variables have been loaded.

The data fetched from the URL must be in the application/x-www-form-urlencoded MIME

format.

Note: Variables cannot be loaded from a local file in Preview mode. However, HTTP requests for

external data can be.

Parameters

See also

“loadVariables() Global Function” on page 220, “loadVariablesNum() Global Function” on

page 221, “getURL Global Function” on page 201, “MovieClip.getURL() Method” on page 245,

MovieClip.localToGlobal() Method
movieClip.localToGlobal(point)

Description

The localToGlobal() method converts the given local (movieClip) point to global coordi-

nates.

url The URL from which to get the variables. For security reasons, the URL
must be in the same domain as that from which the movie clip was
downloaded.

howToSendVariables (Optional) Omit this parameter if you don’t want to send variables.
This parameter is a string literal. If omitted, variables are loaded only.
Specify GET to send variables via get (i.e., tacked onto the end of the
URL) or POST to send them with post (i.e., put into the body of the
request). Both methods send them in application/x-www-form-
urlencoded MIME format. All user-defined variables are sent.

CHAPTER 9252
Reference
Parameters

See also

“MovieClip.getBounds() Method” on page 243, “MovieClip.globalToLocal() Method” on

page 246, “Object Class” on page 269

MovieClip._name Property
movieClip._name

Description

The _name property of the movie clip represents the name of the movie clip as a string (as

opposed to a reference). This is a relative reference (no pathname is returned). This property can

be read or written.

MovieClip.nextFrame() Method
movieClip.nextFrame()

Description

The nextFrame() method moves the playhead to the next frame and stops the playhead.

See also

“nextFrame() Global Function” on page 263, “MovieClip.prevFrame() Method” on page 253,

“MovieClip.stop() Method” on page 255, “MovieClip.play() Method” on page 253

MovieClip._parent Property
movieClip._parent

point An object of type Object with two properties: x and y. x and y
are set to the local coordinates before the object point is
passed to localToGlobal().

253ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The _parent property is a reference (not a string) to the parent of movieClip. This allows

syntax such as: _parent._parent.stop(). This property can only be read.

MovieClip.play() Method
movieClip.play()

Description

The play() method starts playing the timeline of movieClip.

See also

“play() Global Function” on page 274, “MovieClip.prevFrame() Method” on page 253,

“MovieClip.nextFrame() Method” on page 252, “MovieClip.stop() Method” on page 255

MovieClip.prevFrame() Method
movieClip.prevFrame()

Description

The prevFrame() method moves the playhead to the previous frame and stops it there.

See also

“prevFrame() Global Function” on page 275, “MovieClip.nextFrame() Method” on page 252,

“MovieClip.stop() Method” on page 255, “MovieClip.play() Method” on page 253

MovieClip.removeMovieClip() Method
movieClip.removeMovieClip()

CHAPTER 9254
Reference
Description

The removeMovieClip() method deletes the movie clip from the player. Unlike the remove-

MovieClip() global function, movie clips that call this method can only delete themselves.

See also

“removeMovieClip() Global Function” on page 275, “duplicateMovieClip() Global Function”

on page 197, “MovieClip.duplicateMovieClip() Method” on page 241, “MovieClip.attach-

Movie() Method” on page 239

MovieClip._rotation Property
movieClip._rotation

Description

The _rotation property specifies the rotation of the movie clip in degrees. This property can

be read or written.

MovieClip.startDrag() Method
movieClip.startDrag()
movieClip.startDrag(lockCenter)
movieClip.startDrag(lockCenter, left, top, right, bottom)

Description

The startDrag() method causes movieClip to visually follow the mouse cursor. Use

stopDrag() to halt dragging.

Parameters

lockCenter (Optional) A boolean indicating whether the draggable mov-
ieClip should be centered under the mouse cursor (true) or
dragged relative to the mouse cursor’s location when clicked
(false). Default is false.

255ADOBE LIVEMOTION 2.0
Scripting Guide
Example

//onButtonPress event
this.startDrag();
//onButtonRelease event
this.stopDrag();

See also

“MovieClip.stopDrag() Method” on page 255, “startDrag() Global Function” on page 287

MovieClip.stop() Method
movieClip.stop()

Description

The stop() method stops playing the timeline of movieClip.

See also

“stop() Global Function” on page 288, “MovieClip.play() Method” on page 253

MovieClip.stopDrag() Method
movieClip.stopDrag()

left (Optional) The x-coordinate boundary to the left of which mov-
ieClip cannot be dragged.

top (Optional) The y-coordinate boundary above which movieClip
cannot be dragged.

right (Optional) The x-coordinate boundary to the right of which mov-
ieClip cannot be dragged.

bottom (Optional) The y-coordinate boundary below which movieClip
cannot be dragged.

CHAPTER 9256
Reference
Description

The stopDrag() method ends any drag operation currently in progress.

Example

//onButtonPress event
this.startDrag();
//onButtonRelease event
this.stopDrag();

See also

“MovieClip.startDrag() Method” on page 254, “stopDrag() Global Function” on page 288

MovieClip.swapDepths() Method
movieClip.swapDepths(target)
movieClip.swapDepths(depth)

Description

The swapDepths() method changes the position of movieClip in movieClip’s parent’s visual

stacking order (z-order). Movie clips at the top of the stack (higher level numbers) cover those

lower in the stack. You can swap the depths of attached or duplicate movie clips with manually

created clips, but be sure that you test extensively since this has been a problem area with the

Flash Player in the past.

Parameters

target A path or reference to a movie clip to be swapped with mov-
ieClip. The movie clip and movieClip must have the same
parent.

depth An integer specifying the level in movieClip’s parent’s visual
stack with which to swap. If another movie clip resides at this
level, then full swapping occurs. Otherwise, movieClip is sim-
ply moved to that level. May be 0. The higher the number, the
more visible is the layer.

257ADOBE LIVEMOTION 2.0
Scripting Guide
MovieClip._target Property
movieClip._target

Description

The _target property represents the target path of movieClip in absolute terms using slash

notation. To get the path in dot notation, use the targetPath() global function. This property

can only be read.

See also

“targetPath() Global Function” on page 302

MovieClip._totalframes Property
movieClip._totalframes

Description

The _totalframes property specifies the total number of frames in movieClip. It is often used

in conjunction with the _framesloaded property to determine the percentage of total frames

that have already downloaded; when an acceptable number are ready, the movie clip is started.

This property can only be read.

See also

“MovieClip._framesloaded Property” on page 242

MovieClip.unloadMovie() Method
movieClip.unloadMovie()

Description

The unloadMovie() method unloads a movie clip that was previously loaded with

loadMovie().

CHAPTER 9258
Reference
See also

“unloadMovie() Global Function” on page 304, “MovieClip.loadMovie() Method” on page 250

MovieClip._url Property
movieClip._url

Description

The _url property specifies the URL of the file from which movieClip was loaded. This

property can only be read.

See also

“loadMovie() Global Function” on page 218, “loadMovieNum() Global Function” on page 219

MovieClip.valueOf() Method
movieClip.valueOf()

Description

The valueOf() method returns a string that is the path to movieClip in absolute terms using

dot notation.

See also

“Object.valueOf() Method” on page 272, “targetPath() Global Function” on page 302

MovieClip._visible Property
movieClip._visible

Description

Boolean indicating whether movieClip is visible. Visibility: true if visible; false if hidden.

This property can be read or written.

259ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“MovieClip.swapDepths() Method” on page 256, “MovieClip._alpha Property” on page 239

MovieClip._width Property
movieClip._width

Description

The _width property represents the width of the movie clip in pixels. The _width property is

based on the content within movieClip. If movieClip has no content, then _width is 0. _width

is also determined by placement of the objects within movieClip: the farthest object to the left

or right determines the value of _width. If objects within movieClip are moved, _width can

change. This property can be read or written.

Note: Only _root._width and _root._height return dimensions of the _root movie clip.

See also

“MovieClip._height Property” on page 248

MovieClip._x Property
movieClip._x

Description

The _x property specifies the horizontal position of movieClip in pixels.If movieClip is on

the _root timeline, then the coordinate system is based on 0,0 x/y coordinates in the upper left

corner of the composition.If movieClip is contained within another movie clip, movieClip’s

coordinates are relative to the position of the enclosing movie clip’s anchor point. This property

can be read or written.

See also

“MovieClip._y Property” on page 260

CHAPTER 9260
Reference
MovieClip._xmouse Property
movieClip._xmouse

Description

The _xmouse property specifies the horizontal location of the mouse cursor in pixels in the local

coordinate system of movieClip. If movieClip is _root, then the coordinate system is based

on 0,0 x/y coordinates in the upper left corner of the composition. Otherwise, the _xmouse

coordinate is relative to the position of movieClip’s anchor point. This property can only be

read.

Note: The _xmouse and _ymouse coordinates are relative to the movie clip. Only _root._xmouse

and _root._ymouse return absolute positions.

See also

“MovieClip._ymouse Property” on page 261

MovieClip._xscale Property
movieClip._xscale

Description

The _xscale property of movieClip represents the horizontal scaling percentage of the movie

clip relative to its original size. This property can be read or written.

See also

“MovieClip._yscale Property” on page 261

MovieClip._y Property
movieClip._y

Description

261ADOBE LIVEMOTION 2.0
Scripting Guide
The _y property specifies the vertical position of movieClip in pixels.If movieClip is on the

_root timeline, then the coordinate system is based on 0,0 x/y coordinates in the upper left

corner of the composition.If movieClip is contained within another movie clip, movieClip’s

coordinates are relative to the position of the enclosing movie clip’s anchor point. This property

can be read or written.

Note: In the Flash Player, the y-axis is inverted—that is, positive values increase in the “downward”

direction rather than upward.

See also

“MovieClip._x Property” on page 259

MovieClip._ymouse Property
movieClip._ymouse

Description

The _ymouse property specifies the vertical location of the mouse cursor in pixels in the local

coordinate system of movieClip. If movieClip is _root, then the coordinate system is based

on 0,0 x/y coordinates in the upper left corner of the composition. Otherwise, the _ymouse

coordinate is relative to the position of movieClip’s anchor point. This property can only be

read.

Note: The _ymouse and _xmouse coordinates are relative to the movie clip. Only _root._ymouse

and _root._xmouse return absolute positions.

Note: In Flash Player, the y-axis is inverted—that is, positive values increase in the “downward”

direction rather than upward.

See also

“MovieClip._xmouse Property” on page 260

MovieClip._yscale Property
movieClip._yscale

CHAPTER 9262
Reference
Description

The _yscale property of movieClip represents the vertical scaling percentage of the movie clip

relative to its original size. This property can be read or written.

See also

“MovieClip._xscale Property” on page 260

NaN Global Property
NaN

Description

The NaN global property is a predefined variable with the value NaN (Not-a-Number), as

specified by the IEEE-754 standard. This property can only be read.

Example

trace(NaN);//prints NaN
var redFish = NaN;
trace(redFish);//prints NaN

See also

“IsNan() Global Function” on page 205, “Number.NaN Property” on page 266

newline Constant
newline

Description

The newline constant is used wherever a \n could be used in text to force a line break. It is equiv-

alent to the ASCII value of 10.

263ADOBE LIVEMOTION 2.0
Scripting Guide
nextFrame() Global Function
nextFrame()

Description

The nextFrame() global function moves the playhead of the current timeline to the next frame

and stops it.

See also

“MovieClip.nextFrame() Method” on page 252, “prevFrame() Global Function” on page 275

Number() Global Function
Number(expression)

Description

The Number() global function converts expression into a number. Do not confuse this global

function with the Number object.

Parameters

Returns

A number representing the expression, or NaN if the expression cannot be converted into a

number.

Example

trace(Number(2 * 2));//prints 4

See also

“Number Object” on page 264, “parseFloat() Global Function” on page 273, “parseInt() Global

Function” on page 273, “String() Global Function” on page 289, “Boolean() Global Function”

on page 161

expression A string, boolean, or other expression to convert into a number.

CHAPTER 9264
Reference
Number Object

Description

The Number object helps you work with numeric values. It is an object wrapper for primitive

numeric values.

The primary uses for the Number object are to access constant properties that represent the

largest and smallest representable numbers, positive and negative infinity, and the Not-a-

Number (NaN) value.

The properties of Number are properties of the object itself, not of individual Number objects. You

need to create an instance of type Number only when you wish to use its methods.

Constructor

new Number(value)

Parameters

Properties

value The numeric value of the object being created.

MAX_VALUE See “Number.MAX_VALUE Prop-
erty” on page 265.

Constant representing the largest repre-
sentable number

MIN_VALUE See “Number.MIN_VALUE Prop-
erty” on page 265.

Constant representing the smallest rep-
resentable number.

NaN See “Number.NaN Property” on
page 266.

Constant representing the special "Not a
Number" value.

NEGATIVE_INFINITY See “Num-
ber.NEGATIVE_INFINITY Prop-
erty” on page 266.

Constant representing negative infinity.

POSITIVE_INFINITY See “Num-
ber.POSITIVE_INFINITY Property”
on page 267.

Constant representing positive infinity.

265ADOBE LIVEMOTION 2.0
Scripting Guide
Methods

Number.MAX_VALUE Property
Number.MAX_VALUE

Description

The MAX_VALUE property represents the maximum representable numeric value. It has value

of approximately 1.79e+308, though this may vary depending on the platform. Values larger

than MAX_VALUE are represented as infinity (see “Number.POSITIVE_INFINITY Property”

on page 267 and “Number.NEGATIVE_INFINITY Property” on page 266). This property can

only be read.

Example

if (1000 * 100001 <= Number.MAX_VALUE)
trace("No overflow");//prints "No overflow"

else
trace("Overflow");

See also

“Number.MIN_VALUE Property” on page 265, “Number.POSITIVE_INFINITY Property” on

page 267, “Number.NEGATIVE_INFINITY Property” on page 266, “Infinity Global Property”

on page 204, “-Infinity Global Property” on page 204

Number.MIN_VALUE Property
Number.MIN_VALUE

toString() See “Number.toString()
Method” on page 268.

Return a string representing the object.

valueOf() See “Number.valueOf()
Method” on page 268.

Return the primitive value of the object.

CHAPTER 9266
Reference
Description

The MIN_VALUE property represents the smallest positive representable numeric value. It is the

number closest to 0—not the most negative number that can be represented. MIN_VALUE has

a value of approximately 2.22e-308, though this may vary depending on the platform. Values

smaller than MIN_VALUE (“underflow values”) are converted to 0.

Example

if (1/1000000000000000000000000<= Number.MAX_VALUE)
trace("No underflow");//prints "No underflow"

else
trace("Underflow");

See also

“Number.MAX_VALUE Property” on page 265

Number.NaN Property
Number.Nan

Description

The Nan property is a special value representing Not-A-Number. This value complies with the

IEEE-754 value for Not-A-Number. This property can only be read.

Example

var twoFish = 1;
if (twoFish < 2 || twoFish > 2) {

twoFish = Number.NaN;
}
trace(twoFish);//prints "NaN"

Number.NEGATIVE_INFINITY Property
Number.NEGATIVE_INFINITY

267ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The NEGATIVE_INFINITY property is a special numeric value representing negative infinity.

Mathematically, this value behaves like infinity—for example, anything multiplied by infinity is

infinity, and anything divided by infinity is 0. This property can only be read.

Example

var IQ = -Number.MAX_VALUE*10;
if (IQ == Number.NEGATIVE_INFINITY)

trace("Really low");//prints "Really low"
else

trace("Not so low");

See also

“Number.POSITIVE_INFINITY Property” on page 267, “Infinity Global Property” on

page 204, “-Infinity Global Property” on page 204

Number.POSITIVE_INFINITY Property
Number.POSITIVE_INFINITY

Description

The POSITIVE_INFINITY property is a special numeric value representing infinity. This value

behaves mathematically like infinity—for example, anything multiplied by infinity is infinity,

and anything divided by infinity is 0. This property can only be read.

Example

var IQ = Number.MAX_VALUE*10;
if (IQ == Number.POSITIVE_INFINITY)

trace("Really high");//prints "Really high"
else

trace("Not so high");

See also

“Number.NEGATIVE_INFINITY Property” on page 266, “Infinity Global Property” on

page 204, “-Infinity Global Property” on page 204

CHAPTER 9268
Reference
Number.toString() Method
num.toString()
num.toString(radix)

Description

The toString() method returns a string representing the specified object.

Parameters

Returns

A string representing the specified object.

Example

var tenFish = new Number(10);
trace("Billy and Monica caught " + tenFish.toString() + " fish.");
//prints "Billy and Monica caught 10 fish."

See also

“Object.toString() Method” on page 271

Number.valueOf() Method
num.valueOf()

Description

The valueOf() method returns the value of num as a primitive number.

Returns

The primitive value of num.

radix (Optional) An integer between 2 and 36 specifying the base to
use for representing numeric values. Default is 10.

269ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“Object.valueOf() Method” on page 272

Object Class

Description

The Object class provides the primitive JavaScript object type. All JavaScript objects are derived

from the Object class. That is, all JavaScript objects have the methods and properties defined for

the Object class available to them. In C++ terminology, Object is the base class that is inherited

by all JavaScript objects.

In addition to using a constructor to create a new instance of the Object class, you can also use

the bracket syntax (e.g., newObject = { value1: 1, value2: 2};).

Constructor

new Object()

Parameters

None.

Properties

Methods

constructor See “Object.constructor Prop-
erty” on page 270.

Reference to the function used to create an object.

__proto__ See “Object.__proto__ Prop-
erty” on page 270.

Reference to an object’s prototype object.

toString() See “Object.toString() Method” on
page 271.

Returns a string representing the object.

valueOf() See “Object.valueOf() Method” on
page 272.

Returns the primitive value of the object.

CHAPTER 9270
Reference
Object.constructor Property
obj.constuctor

Description

The constructor property is a reference to the prototype function used to createobj. The value

of this property is a reference to the function itself, not a string containing the function's name.

This property can be read or written.

Example

beret = new Object();
trace (beret.constructor == Object);//prints "true"

beret = {};
trace (beret.constructor == Object);//prints "true"

Object.__proto__ Property
obj.__proto__

Description

The __proto__ (double underscores) property is a reference to obj’s prototype object. This

property can be read or written.

The prototype object of the Object class, on the other hand, is used to pass properties and

methods to objects that inherit the Object class. Note that the __proto__ property and

prototype object are common to all scripting objects. Since all LiveMotion objects are derived

from the Object class, you can use the prototype object to add methods and properties to all

LiveMotion objects. These become global methods and properties. When adding a global

property this way, you are in essence creating a global variable. This property can be read or

written.

Example

Object.prototype.newProp = "office";//create a true global variable
oval = new Date();
trace(oval.newProp); //prints "office"
trace(oval.__proto__); //prints "Date"

271ADOBE LIVEMOTION 2.0
Scripting Guide
Object.toString() Method
obj.toString()

Description

The toString() method returns a string representing obj. Many objects override this method

in favor of their own implementation (for example, dateObj.toString()).

If an object has no string value and no user-defined toString() method, toString() returns

[object type], where type is the object type or the name of the constructor function that

created the object.

Returns

A string representing obj.

Example

function Cat(name,breed,color,sex) {
this.name=name
this.breed=breed
this.color=color
this.sex=sex

}
theCat = new Cat("Socks","Calico","chocolate","girl");

The following code creates catToString(), the function that will be used in place of the default

toString() method. This function generates a string containing each property, of the form

“property = value”.

function catToString() {
var ret = "Cat " + this.name + " is [";
for (var prop in this)
ret += " " + prop + " is " + this[prop] + ";"
return ret + "]"

}

The following code assigns the user-defined function to the object's toString() method:

Cat.prototype.toString = catToString;

CHAPTER 9272
Reference
With the preceding code in place, any time theCat is used in a string context, (for example,

trace(theCat.toString())) JavaScript automatically calls the catToString function, which

returns the following string:

Cat Socks is [name is Socks; breed is Calico; color is chocolate; sex is
girl;]

See also

“Array.toString() Method” on page 160, “Date.toString() Method” on page 195,

“Boolean.toString() Method” on page 163, “Number.toString() Method” on page 268,

“Object.valueOf() Method” on page 272

Object.valueOf() Method
obj.valueOf()

Description

The valueOf() method returns the primitive value of obj. If obj has no primitive value,

valueOf() returns the object itself. Note that you rarely need to invoke the valueOf() method

yourself. JavaScript automatically invokes it when encountering an object where a primitive

value is expected.

The following shows the object types for which the valueOf() method is most useful. Most

other objects have no primitive values.

• Number object type—valueOf() returns primitive numeric value associated with the object.

• Boolean object type—valueOf() returns primitive boolean value associated with the object.

• String object type—valueOf() returns string associated with the object.

You can create a valueOf() method to be called in place of the default valueOf() method. Your

function must take no arguments.

Returns

The primitive value of obj; if obj has no primitive value, valueOf() returns the object itself.

273ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“Boolean.valueOf() Method” on page 163, “MovieClip.valueOf() Method” on page 258,

“Number.valueOf() Method” on page 268, “Object.toString() Method” on page 271

parseFloat() Global Function
parseFloat(string)

Description

The parseFloat() global function parses string to find the first set of characters that can be

converted to a floating-point number and returns that number. If the function does not

encounter characters that it can convert to a number, it returns NaN. The function supports

exponential notation.

Parameters

Returns

A floating-point number, or NaN if no number was found.

Example

trace(parseFloat("2.12"));//prints 2.12
trace(parseFloat("a23"));//prints NaN
trace(parseFloat("25e10"));//prints 250000000000

See also

“Number() Global Function” on page 263, “parseInt() Global Function” on page 273

parseInt() Global Function
parseInt(string)
parseInt(string, base)

string The string from which to extract a floating-point number.

CHAPTER 9274
Reference
Description

The parseInt() global function parses string to find the first set of characters that can be

converted to an integer in the specified base and returns that integer. If the function does not

encounter characters that it can convert to an integer, it returns NaN.

Parameters

Returns

An integer in base 10, or NaN if no number was found.

Example

trace(parseInt("10"));//prints 10
trace(parseInt("10", 2));//prints 2 (decimal equivalent of binary 10)
trace(parseInt(10 * 10));//prints 100
trace(parseInt("0xFF"));//prints 255 (decimal equivalent of hex FF)
trace(parseInt("0377"));//prints 255 (decimal equivalent of octal 377)

See also

“Number() Global Function” on page 263, “parseFloat() Global Function” on page 273

play() Global Function
play()

Description

The play() global function moves the playhead of the current timeline forward.

See also

“gotoAndPlay() Global Function” on page 203, “MovieClip.play() Method” on page 253, “stop()

Global Function” on page 288

string The string from which to extract an integer.

base (Optional) The base of the string to parse (from base 2 to base
36). If not supplied, base is determined by the format of
string.

275ADOBE LIVEMOTION 2.0
Scripting Guide
prevFrame() Global Function
prevFrame()

Description

The prevFrame() global function moves the playhead of the current timeline to the previous

frame and stops it there.

See also

“MovieClip.prevFrame() Method” on page 253, “nextFrame() Global Function” on page 263

_quality Global Property
_quality

Description

The _quality global property sets the level of rendering quality. It takes one of the following

strings (must be used with quotes):

• "LOW"—Graphics aren’t anti-aliased; bitmaps aren’t smoothed.

• "MEDIUM"—Graphics are anti-aliased using a 2x2 grid; bitmaps aren’t smoothed.

• "HIGH"—Graphics are anti-aliased using a 4x4 grid; bitmaps are smoothed if the movie clip is

static.

• "BEST"—Graphics are anti-aliased using a 4x4 grid; bitmaps are always smoothed.

removeMovieClip() Global Function
removeMovieClip(target)

Description

The removeMovieClip() global function deletes a movie clip. It can be used to delete movie

clips created with the duplicateMovieClip(), movieClip.duplicateMovieClip(),or

movieClip.attachMovie().

CHAPTER 9276
Reference
Parameters

See also

“duplicateMovieClip() Global Function” on page 197, “MovieClip.duplicateMovieClip()

Method” on page 241, “MovieClip.attachMovie() Method” on page 239, “MovieClip.remove-

MovieClip() Method” on page 253

_root Global Property
_root

Description

_root is a special case of the MovieClip object. _root is a reference to the root movie clip in the

current level, and as such it can be used in absolute paths to any object. This property can only

be read. It’s equivalent to saying _level4 if the script is also at _level4. It is most often used to

invoke methods and reference properties that are members of the _root movie clip. For

example:

_root.attachMovie(exportName, newName, depth)//attaches movie clip to _root
_root._x = -150 //causes a horizontal offset of the entire SWF file

See also

“_leveln Global Property” on page 217, “MovieClip._parent Property” on page 252

Selection Object

Description

The Selection object contains information about the text field that currently has focus. A text

field gets focus when the user clicks on the text field with the mouse. Since only one text field can

have focus at a time, the Selection object is static. No constructor is required. In LiveMotion,

text fields are created using the text field tool.

target A path or a reference to an existing movie clip.

277ADOBE LIVEMOTION 2.0
Scripting Guide
Using the Selection object you can control a user’s interaction with text fields and capture text

from the text fields. You can position or get the position of the cursor in a text field.

Properties

None.

Methods

Selection.getBeginIndex() Method
Selection.getBeginIndex()

Description

The getBeginIndex() method returns the index of the first character of the selection span. It

returns -1 if there is no currently selected field. The index is zero-based, where the first position

in the text field is 0. If no text is selected, the position of the cursor is returned.

Returns

Index of the beginning of the selection span. Returns -1 if there is no currently selected field. If

no text is selected, the position of the cursor is returned.

getBeginIndex() See “Selection.getBeginIn-
dex() Method” on page 277.

Return the index of the beginning of the
selection span. Return -1 if there is no cur-
rently selected field.

getCaretIndex() See “Selection.getCaretIn-
dex() Method” on page 278.

Return the index of the current caret (vertical
text cursor).

getEndIndex() See “Selection.getEndIndex()
Method” on page 278.

Return the index of the end of the current
selection. Returns -1 if there is no selection.

getFocus() See “Selection.getFocus()
Method” on page 279.

Return a string that is the absolute path to
the text field with the current focus.

setFocus() See “Selection.setFocus()
Method” on page 279.

Set the focus of the editable text field associ-
ated with the variable in the argument.

setSelection() See “Selection.setSelection()
Method” on page 280.

Set the beginning and ending indices of the
selection span.

CHAPTER 9278
Reference
See also

“Selection.getEndIndex() Method” on page 278

Selection.getCaretIndex() Method
Selection.getCaretIndex()

Description

The getCaretIndex() method returns the index of the current caret (vertical text cursor) in the

selection that currently has focus. If there is no current selection, -1 is returned.

Returns

Index of the current caret (vertical text cursor) in the selection that currently has focus. If there

is no current selection, -1 is returned.

Selection.getEndIndex() Method
Selection.getEndIndex()

Description

The getEndIndex() method returns the index of the character after the last character of the

selection span. It returns -1 if there is no currently selected field. The index is zero-based, where

the first position in the text field is 0. If no text is selected, the position of the cursor is returned.

Returns

Index of the character after the last character of the selection span. Returns -1 if there is no

currently selected field. If no text is selected, the position of the cursor is returned.

See also

“Selection.getBeginIndex() Method” on page 277

279ADOBE LIVEMOTION 2.0
Scripting Guide
Selection.getFocus() Method

Description

The getFocus() method returns a string that is the absolute path to the text field with the

current focus. If no text field is selected, null is returned. The result can be eval()’ed—i.e.,

eval(Selection.getFocus()) returns a reference to the text field.

Returns

A string that is the absolute path to the text field with the current focus. If no text field is selected,

null is returned.

See also

“Selection.setFocus() Method” on page 279

Selection.setFocus() Method
Selection.setFocus(textFieldPath)

Description

The setFocus() method sets the focus of the editable text field associated with the variable in

the argument.

Parameters

Returns

true if the focus was set, false otherwise.

Example

trace(Selection.setFocus("_root.display"));//prints "true" if there is a
text box whose var = display

textFieldPath A string representing the path to the text field that will gain
focus.

CHAPTER 9280
Reference
See also

“Selection.getFocus() Method” on page 279

Selection.setSelection() Method
Selection.setSelection(start, end)

Description

The setSelection() method sets the beginning and ending indices of the selection span. The

indices are zero-based, where the first position in the text field is 0. The method has no effect if

there is no currently selected text field. If start = end, the cursor is set at that point in the text.

Parameters

See also

“Selection.getBeginIndex() Method” on page 277, “Selection.getEndIndex() Method” on

page 278

Sound Object

Description

The Sound object is used to create an object that plays a sound. The object can be set and

controlled to provide the sounds for an individual movie clip, including _root, or for the global

timeline. All of the movie clip’s children are affected by a Sound object created for it.

Constructor

new Sound()
new Sound(target)

start The index of the beginning of the selection.

end The index of the character after the last character to be included
in the new selection.

281ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

Properties

None.

Methods

Sound.attachSound() Method
soundObj.attachSound(exportName)

target (Optional) A path or reference to a player level or an existing movie clip. If not speci-
fied, the Sound object created controls all sounds in the global timeline. All of the
sound in the movie clip hierarchy will from this point down will be controlled by the
new Sound object.

attachSound() See “Sound.attachSound()
Method” on page 281.

Add a new sound to a movie clip.

getPan() See “Sound.getPan() Method” on
page 282.

Get the current pan value of a sound.

getTransform() See “Sound.getTransform()
Method” on page 282.

Get the current panning transform value of a
sound.

getVolume() See “Sound.getVolume()
Method” on page 283.

Get the current volume of a sound.

setPan() See “Sound.setPan() Method” on
page 284.

Set the current pan value of a sound.

setTransform() See “Sound.setTransform()
Method” on page 284.

Set the current panning transform value of a
sound.

setVolume() See “Sound.setVolume()
Method” on page 285.

Set the current volume of a sound.

start() See “Sound.start() Method” on
page 286.

Play a sound.

stop() See “Sound.stop() Method” on
page 286.

Stop playing a sound or all sounds.

CHAPTER 9282
Reference
Description

The attachSound() method attaches a sound to a Sound object.exportName is the sharing

name of the sound. This is the sound file that was imported into LiveMotion, then assigned a

sharing name using the Export palette. Only one sound at a time can be attached to soundObj.

Note: In Preview mode, the sound that is attached is the local version only. If the “Use External Asset”

feature is used from the Export palette, this will not be the same sound that is actually used when the

SWF file is executing in the Flash Player.

Parameters

See also

“MovieClip.attachMovie() Method” on page 239

Sound.getPan() Method
soundObj.getPan()

Description

The getPan() method gets the current pan value of the sound. This value was set by the last call

to setPan(). The pan value is used to implement the balance function between audio channels.

Returns

The pan value of the sound (a number in the range of -100 to 100).

See also

“Sound.setPan() Method” on page 284

Sound.getTransform() Method
soundObj.getTransform()

exportName The sharing name of the sound to attach. This name was
assigned to the sound using the Export palette.

283ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The getTransform() method returns the current panning transform values of a Sound object.

The panning transform values are similar to the pan value, but they let you specify the relative

amounts of right channel sound to be included in the left speaker, and vice versa.

Returns

An object of type Object with the following properties:

• ll— the percentage of the left channel to play in the left speaker (an integer value in the range

of 0 to 100).

• lr—the percentage of the left channel to play in the right speaker (an integer value in the range
of 0 to 100).

• rl—the percentage of the right channel to play in the left speaker (an integer value in the range
of 0 to 100).

• rr—the percentage of the right channel to play in the right speaker (an integer value in the

range of 0 to 100).

See also

“Sound.setTransform() Method” on page 284, “Object Class” on page 269

Sound.getVolume() Method
soundObj.getVolume()

Description

The getVolume() method gets the current volume of a sound. This is the volume set by the last

setVolume() call. Values are from 0 - 100.

Returns

The volume of the sound (an integer value in the range from 0 - 100).

See also

“Sound.setVolume() Method” on page 285

CHAPTER 9284
Reference
Sound.setPan() Method
soundObj.setPan(pan)

Description

The setPan() method sets the current pan value of a Sound object. The pan value is used to

implement the balance function between audio channels. A value of -100 routes all sound

through the left channel only; a value of 100 routes all sound through the right channel. Values

in between reflect the range between these two extremes, with a value of 0 indicating equal

balance between the two channels. Default value is 0.

Parameters

See also

“Sound.getPan() Method” on page 282

Sound.setTransform() Method
soundObj.setTransform(transform)

Description

The setTransform() method sets the current panning transform values of a Sound object. The

panning transform values are similar to the pan value, but they let you specify the relative

amounts of right channel sound to be included in the left speaker, and vice versa. The panning

transform values are passed into the setTransform() method by instantiating an object of type

Object and setting the following four properties:

• ll— the percentage of the left channel to play in the left speaker (an integer value in the range

of 0 to 100);

• lr—the percentage of the left channel to play in the right speaker (an integer value in the range
of 0 to 100);

• rl—the percentage of the right channel to play in the left speaker (an integer value in the range
of 0 to 100);

pan The pan value of the sound (a number in the range of -100 to
100).

285ADOBE LIVEMOTION 2.0
Scripting Guide
• rr—the percentage of the right channel to play in the right speaker (an integer value in the

range of 0 to 100).

An ll value of, for example, 50% indicates that 50% of the left channel content should be played

through the left speaker.

Parameters

Example

waveringVoice = new Object();
voice.ll = 50;
voice.lr = 50;
voice.rl = 50;
voice.rr = 50;
soundObj.setTransform(waveringVoice);

See also

“Sound.getTransform() Method” on page 282, “Object Class” on page 269

Sound.setVolume() Method
soundObj.setVolume(volume)

Description

The setVolume() method sets the current volume of a sound.

Parameters

See also

“Sound.getVolume() Method” on page 283

transform An object with ll, lr, rl, and rr properties.

volume The volume of the sound (an integer in the range of 0 - 100).

CHAPTER 9286
Reference
Sound.start() Method
soundObj.start(offset, loops)

Description

The start() method plays the sound attached to soundObj.

Parameters

See also

“Sound.stop() Method” on page 286

Sound.stop() Method
soundObj.stop()
soundObj.stop(exportName)

Description

The stop() method stops playing a sound or all sounds. All sounds controlled by soundObj are

stopped if no argument is provided.

Parameters

See also

“Sound.start() Method” on page 286

offset The number of seconds to wait before playing the sound. Default value is 0.

loops The number of times to loop the sound before stopping. Default value is 1.

exportName (Optional) The sharing name of the sound to stop. This name was
assigned to the sound using the Export palette.

287ADOBE LIVEMOTION 2.0
Scripting Guide
_soundbuftime Global Property
_soundbuftime

Description

The _soundbuftime global property is an integer indicating the number of seconds of streaming

sound to load before playing starts. Default value is 5 seconds. This property can be read or

written.

startDrag() Global Function
startDrag(target)
startDrag(target, lockCenter)
startDrag(target, lockCenter, left, top, right, bottom)

Description

The startDrag() global function causes target to visually follow the mouse cursor. Use the

stopDrag() global function to halt dragging.

Parameters

target A path or reference to the existing movie clip to drag.

lockCenter (Optional) A boolean indicating whether the draggable target
should be centered under the mouse cursor (true) or dragged
relative to the mouse cursor’s location when clicked (false).
Default is false.

left (Optional) The x-coordinate boundary to the left of which tar-
get cannot be dragged.

top (Optional) The y-coordinate boundary above which target
cannot be dragged.

right (Optional) The x-coordinate boundary to the right of which tar-
get cannot be dragged.

bottom (Optional) The y-coordinate boundary below which target can-
not be dragged.

CHAPTER 9288
Reference
See also

“stopDrag() Global Function” on page 288, “MovieClip.startDrag() Method” on page 254

stop() Global Function
stop()

Description

The stop() global function stops playing the timeline of the current movie clip.

See also

“play() Global Function” on page 274

stopAllSounds() Global Function
stopAllSounds()

Description

The stopAllSounds() global function stops all sounds currently playing in the composition. It

doesn’t stop the playhead and it doesn’t stop new sounds from starting.

See also

“Sound.stop() Method” on page 286

stopDrag() Global Function
stopDrag()

Description

The stopDrag() global function stops the dragging of the currently draggable object.

289ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“startDrag() Global Function” on page 287, “MovieClip.stopDrag() Method” on page 255

String() Global Function
String(value)

Description

The String() global function returns a primitive string representation of value. Do not

confuse this global function with the String object.

Parameters

Returns

• If value is a boolean, returns true or false.

• If value is a string, returns the string.

• If value is a number, returns a string representation of the number.

• If value is a MovieClip object, returns the absolute path in dot notation.

• If value is an object, returns a string representation of the object.

• If value is undefined, returns an empty string.

See also

“String Object” on page 290, “Object.toString() Method” on page 271, “Boolean() Global

Function” on page 161, “Number() Global Function” on page 263

value A number, string, variable, or boolean to convert to a string.

CHAPTER 9290
Reference
String Object

Description

The String object is a wrapper around the string primitive data type. Do not confuse a string

literal with the String object. For example, the following code creates the string literal s1 and

also the String object s2:

s1 = "foo" // creates a string literal value
s2 = new String("foo") // creates a String object
trace(s1.valueOf());//prints "foo"
trace(s2.valueOf());//prints "foo"

You can call any of the methods of the String object on a string literal value— JavaScript

automatically converts the string literal to a temporary String object, calls the method, then

discards the temporary String object. You can also use the length property with a string

literal.

Constructor

new String(value)

Parameters

Properties

Methods

value The initial value of the string object, or a number, variable, or boolean to convert to
a string. If this parameter is not supplied, the string will be set to "" (the empty
string).

length See “String.length Property”
on page 296.

The length of the string.

charAt() See “String.charAt() Method”
on page 291.

Return the character at the specified index.

charCodeAt() See “String.charCodeAt()
Method” on page 292.

Return the ASCII value of the character at the speci-
fied index.

291ADOBE LIVEMOTION 2.0
Scripting Guide
String.charAt() Method
stringObj.charAt(index)

Description

The charAt() method returns the specified character from the string. Characters in a string are

indexed from left to right. The index of the first character is 0, and the index of the last character

is the length of string minus 1 (zero-based indexing). If the index is out of range, JavaScript

returns an empty string.

concat() See “String.concat() Method”
on page 293.

Concatenate the text of two or more strings and
return the new string.

fromCharCode() See “String.fromCharCode()
Method” on page 294.

Return a string created from the characters specified
in the argument list.

indexOf() See “String.indexOf()
Method” on page 294.

Return the index of the first occurrence of the speci-
fied value in the string, or -1 if not found.

lastIndexOf() See “String.lastIndexOf()
Method” on page 295.

Return the index of the last occurrence of the speci-
fied value in the string, or -1 if not found.

splice() See “String.slice() Method” on
page 297.

Return a string consisting of the sub-string specified
in the argument list.

split() See “String.split() Method” on
page 297.

Split a string into an array of sub-strings.

substr() See “String.substr() Method”
on page 298.

Return the specified number of characters in a string
beginning at the specified location.

substring() See “String.substring()
Method” on page 299.

Return the characters between the two indices into
the string.

toLowerCase() See “String.toLowerCase()
Method” on page 301.

Convert the string to lowercase and return.

toUpperCase() See “String.toUpperCase()
Method” on page 301.

Convert the string to uppercase and return.

CHAPTER 9292
Reference
Parameters

Returns

A string consisting of one character or an empty string (if the index is out of range).

Example

The following example displays characters at sequential locations in the string “Billy”:

var anyString="Billy"
trace("The character at index 0 is " + anyString.charAt(0));
trace("The character at index 1 is " + anyString.charAt(1));
trace("The character at index 2 is " + anyString.charAt(2));
trace("The character at index 3 is " + anyString.charAt(3));
trace("The character at index 4 is " + anyString.charAt(4));

//prints
//The character at index 0 is B
//The character at index 1 is i
//The character at index 2 is l
//The character at index 3 is l
//The character at index 4 is y

See also

“String.indexOf() Method” on page 294, “String.lastIndexOf() Method” on page 295

String.charCodeAt() Method
stringObj.charCodeAt(index)

Description

The charCodeAt() method returns the ASCII value of the character at the given index.

index An integer between 0 and the length of the string minus 1 (zero-
based indexing).

293ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

Returns

The ASCII value of the character.

Example

trace("ICE".charCodeAt(0));// prints 73 - the ASCII value of "I"
trace("ICE".charCodeAt());// prints 73 - the ASCII value of "I"
trace("ICE".charCodeAt(1));// prints 67 - the ASCII value of "C"
trace("ICE".charCodeAt(2));// prints 69 - the ASCII value of "E"

String.concat() Method
stringObj.concat(value1, value2, ...valuen)

Description

The concat() method concatenates the text of one or more strings to stringObj and returns

the new string. If necessary, it first converts a given value to a string. The original string in not

affected.

Parameters

Returns

The concatenated string.

Example

The following example combines two strings into a new string.

s1="Billy ";
s2="and ";
s3="Monica are fishing.";

index An integer between 0 and the length of the string minus 1 (zero-based index-
ing). Default value is 0.

value1, value2, ...valuen The values to concatenate to stringObj.

CHAPTER 9294
Reference
trace(s1.concat(s2,s3)); // prints "Billy and Monica are fishing."

String.fromCharCode() Method
String.fromCharCode(value1, value2, ...valuen)

Description

The fromCharCode() method returns a string created by using the specified sequence of ASCII

values. Because fromCharCode() is a static method of String, you always use it as

String.fromCharCode(), rather than as a method of a String object you create.

Parameters

Returns

A string consisting of the characters provided as ASCII values.

Example

trace(String.fromCharCode(66,105,108,108,121)); //Returns "Billy"

String.indexOf() Method
stringObj.indexOf(searchValue, fromIndex)

Description

The indexOf() method returns the index within the string of the first occurrence of the

specified value, starting the search at fromIndex if provided. The method returns -1 if the value

is not found.

Characters in a string are indexed from left to right. The index of the first character is 0, and the

index of the last character is length of the string minus 1 (zero-based indexing).

value1, value2, ...valuen A sequence of ASCII values.

295ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

Returns

The position (zero-based) within the string where the first occurrence of searchValue was

found, or -1 if it was not found.

Example

trace("Favorite beret".indexOf("Favorite")); // prints 0
trace("Favorite beret".indexOf("Hat")); // prints -1
trace("Favorite beret".indexOf("beret",0)); // prints 9
trace("Favorite beret".indexOf("beret",9)); // prints 9

See also

“String.charAt() Method” on page 291, “String.lastIndexOf() Method” on page 295

String.lastIndexOf() Method
stringObj.lastIndexOf(searchValue, fromIndex)

Description

The lastIndexOf() method returns the index within the string of the last occurrence of the

specified value, or -1 if not found. The string is searched backward, starting at fromIndex.

Characters in a string are indexed from left to right. The index of the first character is 0, and the

index of the last character is the length of the string minus 1.

searchValue The string value for which to search.

fromIndex (Optional) The location within the current string from which to start the
search. Can be any integer between 0 and the length of the string minus 1
(zero-based indexing). If this argument is not supplied, the default value is 0.

CHAPTER 9296
Reference
Parameters

Returns

The position (zero-based) within the string where the last occurrence of searchValue was

found, or -1 if it was not found.

Example

trace("Billy".lastIndexOf("l")); // prints 3
trace("Billy".lastIndexOf("l",2)); // prints 2
trace("Billy".lastIndexOf("x")); // prints -1

See also

“String.charAt() Method” on page 291, “String.indexOf() Method” on page 294

String.length Property
stringObj.length

Description

The length property is the length of the string. A null string has a length of 0. This property

can only be read.

Example

var x="Billy";
trace("Length is " + x.length);//Prints "Length is 5"

searchValue A string representing the value to search for.

fromIndex (Optional) The location within the current string from which to start the
search. Can be any integer between 0 and the length of the string minus 1
(zero-based indexing). If this argument is not supplied, the default value is
0.

297ADOBE LIVEMOTION 2.0
Scripting Guide
String.slice() Method
stringObj.slice(startSlice, endSlice)

Description

The slice() method extracts a section of the string and returns the new string. slice()

extracts up to but not including endSlice. Indexing is zero-based. For example, slice(1,4)

extracts the second character through the fourth character (characters indexed 1, 2, and 3). The

original string is unchanged.

As a negative index, startSlice or endSlice indicates an offset from the end of the string,

where the last character is -1, the second is -2, etc. For example, slice(2,-1) extracts the third

character through the second to last character in the string.

Parameters

Returns

A substring of characters from stringObj, starting at startSlice and ending with endSlice

minus 1.

Example

str1="Billy and Monica are ice skating.";
str2=str1.slice(10,-5);
trace(str2); //Prints "Monica are ice ska"

See also

“String.substring() Method” on page 299, “String.substr() Method” on page 298

String.split() Method
stringObj.split(delimiter)

startSlice The zero-based index at which to begin extraction.

endSlice (Optional) The zero-based index at which to end extraction. If omitted, slice
extracts to the end of the string.

CHAPTER 9298
Reference
Description

The split() method splits the string into a group of substrings, places those strings into an

array, and returns the array. The substrings are created by breaking the original string at points

that match delimiter. When found, delimiter is removed from the string and the resulting

substring is added to the array.

Parameters

Returns

An array whose elements are the substrings.

Example

myString = "Hello Billy. Let’s go fishing.";
splits = myString.split(" ");
for(i=0; (splits[i] != "fishing."); ++i)
{
trace(splits[i]);
};
trace(splits[i]);
//Displays
//"Hello"
//"Billy."
//"Let’s"
//"go"
//"fishing."

See also

“String.charAt() Method” on page 291, “String.lastIndexOf() Method” on page 295,

“String.indexOf() Method” on page 294, “Array.join() Method” on page 151

String.substr() Method
stringObj.substr(start, length)

delimiter (Optional) The character to use for delimiting. The delimiter is
treated as a string. If omitted, the array returned contains one
element consisting of the entire string.

299ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The substr() method returns the characters in the string beginning at start and continuing

through the specified number of characters.start is a character index. The index of the first

character is 0, and the index of the last character is the length of the string minus 1 (zero-based

indexing). substr() begins extracting characters at start and collects length number of

characters. The original string is unchanged.

If start is negative, substr() uses it as a character index from the end of the string

(stringObj.length plus start). If length is omitted, start extracts characters to the end of

the string.

Parameters

Returns

A string containing the extracted characters.

Example

str = "phonecall"
trace("(1,2): " + str.substr(1,2));
trace("(-2,2): " + str.substr(-2,2));
trace("(1): " + str.substr(1));
trace("(20, 2): " + str.substr(20,2));
//prints
//(1,2): ho
//(-2,2): ll
//(1): honecall
//(20, 2):

See also

“String.substring() Method” on page 299, “String.slice() Method” on page 297

String.substring() Method
stringObj.substring(indexA, indexB)

start The location at which to begin extracting characters.

length (Optional) The number of characters to extract.

CHAPTER 9300
Reference
Description

The substring() method returns a substring of the string by extracting characters from

indexA up to but not including indexB. The original string is unchanged. Specifically:

• If indexA is less than 0, indexA is treated as if it were 0.

• If indexB is less than 0, indexB is treated as if it were 0.

• If indexB is greater than or equal tostringObj.length, characters are extracted to the end of

the string.

• If indexA equals indexB, substring() returns an empty string.

• If indexB is omitted, characters are extracted to the end of the string.

• If indexB is less than indexA, the two indices are automatically re-ordered.

Parameters

Returns

A substring of characters from stringObj.

Example

var str="trolling";
// Displays "tro"
trace(str.substring(0,3));
trace(str.substring(3,0));//automatic re-ordering
// Displays "lin"
trace(str.substring(4,7));
trace(str.substring(7,4));
// Displays "trollin"
trace(str.substring(0,7));
// Displays "trolling"
trace(str.substring(0,8));
trace(str.substring(0,10));

indexA An integer between 0 and the length of the string minus 1 (zero-based
indexing).

indexB (Optional) An integer between 0 and the length of the string minus 1
(zero-based indexing).

301ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“String.substr() Method” on page 298, “String.slice() Method” on page 297

String.toLowerCase() Method
stringObj.toLowerCase()

Description

The toLowerCase() method returns stringObj converted to lowercase without affecting the

value of the string itself.

Returns

A lower case string.

Example

The following example displays the lowercase string “white house”:

var upperCase="WHITE HOUSE";
trace(upperCase.toLowerCase()) //Displays "white house"

See also

“String.toUpperCase() Method” on page 301

String.toUpperCase() Method
stringObj.toUpperCase()

Description

The toUpperCase() method returns stringObj converted to uppercase without affecting the

value of the string itself.

Returns

An upper case string.

CHAPTER 9302
Reference
Example

The following example displays the string “WHITE HOUSE”:

var lowerCase="white house";
trace(lowerCase.toUpperCase()); //displays "WHITE HOUSE"

See also

“String.toLowerCase() Method” on page 301

targetPath() Global Function
targetPath(movieClip)

Description

The targetPath() global function returns the absolute path to movieClip. as a string in dot

notation. To get the path in slash notation, use the _target property of MovieClip.

Parameters

Returns

A string representing the absolute path to movieClip.

Example

targetPath(oval);

See also

“MovieClip._target Property” on page 257

Text Field Properties
variableName.scroll
variableName.maxscroll

movieClip A reference to the movie clip for which the path is requested.

303ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The scroll and maxscroll text field properties give you control over the display of text in a text

field.variableName is the name of the variable (var=) associated with the text field.

The scroll text field property allows you to control the display of information in a text field by

moving the text field to a specific position. It is set to the line number of the line that you want

to be the topmost visible line in the text field. It is used in conjunction with the maxscroll

property. This property can be read or written.

The maxscroll text field property specifies the maximum value allowed for the scroll text

field property. It serves as a value that you can use to ensure that the scroll property is not

assigned a value larger than the number of the last line in the text field. This property can only

be read.

trace() Global Function
trace(expression)

Description

The trace() global function evaluates expression and outputs the results as a string to the

Script Console window followed by a newline character. Used for debugging.

trace() is only useful from within LiveMotion’s Preview mode. You can display similar results

to a text field of the executing SWF file using the following code, where display is the variable

(var=) name of your text field:

_root.display = expression;

Parameters

Example

trace() is used extensively for output in the examples of this reference chapter.

trace(this);//prints MovieClip ("primitive" type)
trace(2 * 2);//prints 4
trace("Monica and Billy were here.");//prints "Monica and Billy were here."

expression The expression to evaluate. It needs to result in a string, or some-
thing that can be converted to a string.

CHAPTER 9304
Reference
unescape() Global Function
unescape(stringExpression)

Description

The unescape() global function translates the encoded string stringExpression into a

regular string. In stringExpression, characters that required encoding were replaced with the

format %xx, where xx is the hexadecimal value of the character. This type of encoding is basically

URL encoding except that spaces are replaced with %20 instead of a + sign. Use the escape()

global function to encode strings.

Parameters

Returns

A regular string version of stringExpression.

Example

//prints "Billy went fishing!#?!"
trace(unescape("Billy%20went%20fishing%21%24%23%21"));

See also

“escape() Global Function” on page 198

unloadMovie() Global Function
unloadMovie(target)

Description

The unloadMovie() global function unloads the SWF file from target that was previously

loaded using the loadMovie() global function, the loadMovieNum() global function, or the

movieClip.loadMovie() method.

stringExpression A string encoded with the escape() global function.

305ADOBE LIVEMOTION 2.0
Scripting Guide
When a SWF file is unloaded from an existing movie clip, the contents of the movie clip are

unloaded, but the movie clip handlers are not. These include onEnterFrame, onLoad, onUnload,

onData, onMouseDown, onMouseUp, onMouseMove, onKeyDown, and onKeyUp. Everything

else—including button handlers, state scripts, and objects—are removed from the movie clip

“shell.” This movie clip shell concept is important to keep in mind because it means that, when

using loadMovie() and unloadMovie(), a movie clip instance is never really removed from the

composition. Movie clip content is simply moved in and out of the shell with loadMovie() and

unloadMovie().

Parameters

See also

“loadMovie() Global Function” on page 218, “loadMovieNum() Global Function” on page 219,

“unloadMovieNum() Global Function” on page 305, “MovieClip.loadMovie() Method” on

page 250, “MovieClip.unloadMovie() Method” on page 257

unloadMovieNum() Global Function
unloadMovieNum(number)

Description

Same as unloadMovie() except that a number is used to specify the player level. Therefore, it

can only be used to unload SWF files previously loaded using the loadMovie() global function

or the loadMovieNum() global function.

Parameters

target A path or reference to a level of the player or an existing movie
clip.

number A non-negative integer specifying the level of the player contain-
ing the SWF file to unload.

CHAPTER 9306
Reference
See also

“loadMovie() Global Function” on page 218, “loadMovieNum() Global Function” on page 219,

“unloadMovie() Global Function” on page 304, “MovieClip.loadMovie() Method” on page 250,

“MovieClip.unloadMovie() Method” on page 257

updateAfterEvent() Global Function
updateAfterEvent()

Description

The updateAfterEvent() global function is used to update the display when one of the

following events occurs: onMouseMove, onMouseDown, onMouseUp, onKeyDown, onKeyUp.

Place this function in the appropriate event handler to cause refresh to occur.

XML Object

Description

The XML object enables you to load, parse, send, build, and manipulate EXtensible Markup

Language (XML) document trees. Unlike HTML, which uses a defined set of tags, XML allows

you to define your own document tags. LiveMotion allows you to either build an XML document

from scratch or read in and modify an existing XML document.

The following shows three levels of child nodes (the document itself is the parent):

<fish>//level 1 child node
<type>Bass</type>//"type" tag is level 2 child node; "Bass" is level 3

</fish>

For example, the following creates an XML document:

xmlDocument = new XML("<fish><type>Bass</type></fish>");

The text can then be accessed as follows:

//prints "Bass"
trace(xmlDocument.firstChild.firstChild.firstChild.nodeValue);

307ADOBE LIVEMOTION 2.0
Scripting Guide
Constructor

new XML()
new XML(source)

Parameters

Properties

source (Optional) Source XML document. If not provided, the XML object will contain a new,
empty XML document.

attributes See “XML.attributes Property”
on page 309.

Object whose properties store the attributes
defined by the node.

childNodes See “XML.childNodes Property”
on page 310.

Array of child nodes of node.

contentType See “XML.contentType Prop-
erty” on page 311.

MIME content type.

docTypeDecl See “XML.docTypeDecl Prop-
erty” on page 314.

DOCTYPE declaration of the XML document.

firstChild See “XML.firstChild Property”
on page 314.

First child of the node, null if there are no chil-
dren.

ignoreWhite See “XML.ignoreWhite Prop-
erty” on page 315.

Whether to ignore whitespace during XML pars-
ing.

lastChild See “XML.lastChild Property”
on page 317.

Last child of the node, null if there are no chil-
dren.

loaded See “XML.loaded Property” on
page 318.

true if the load() or sendAndLoad() opera-
tion has completed.

nextSibling See “XML.nextSibling Property”
on page 318.

Next sibling of the node, null if this node is the
last node.

nodeName See “XML.nodeName Property”
on page 319.

Tag name of the node. null if this node is a text
node.

nodeType See “XML.nodeType Property”
on page 319.

Type of the node. Either 1 if the node is an ele-
ment node, or 3 if the node is a text node.

nodeValue See “XML.nodeValue Property”
on page 320.

Text contained in the node. null if the node is
not a text node.

CHAPTER 9308
Reference
Methods

parentNode See “XML.parentNode Prop-
erty” on page 322.

Parent node of the node. null if the node is at
the top of the hierarchy.

previousSibling See “XML.previousSibling Prop-
erty” on page 323.

Previous sibling of the node, null if the node is
the first node.

status See “XML.status Property” on
page 325.

Whether there was an error parsing the XML
document. 0 indicates no errors.

xmlDecl See “XML.xmlDecl Property” on
page 326.

DOCTYPE declaration of the XML document.

appendChild() See “XML.appendChild()
Method” on page 309.

Append a child to the node.

cloneNode() See “XML.cloneNode()
Method” on page 311.

Clone the node.

createElement() See “XML.createElement()
Method” on page 312.

Create an XML element node.

createTextNode() See “XML.createTextNode()
Method” on page 313.

Create an XML text node.

hasChildNodes() See “XML.hasChildNodes()
Method” on page 315.

Return an indication whether the node has
children.

insertBefore() See “XML.insertBefore()
Method” on page 316.

Insert a child node before another child
node.

load() See “XML.load() Method” on
page 317.

Load and parse an XML document from the
given URL.

parseXML() See “XML.parseXML() Method”
on page 322.

Parse the given text as an XML document.

removeNode() See “XML.removeNode()
Method” on page 323.

Delete the node and all of its children from
the containing document.

send() See “XML.send() Method” on
page 324.

Convert the XML document into a string and
send it to the given URL.

309ADOBE LIVEMOTION 2.0
Scripting Guide
Event Handlers

XML.appendChild() Method
node.appendChild(childNode)

Description

The appendChild() method appends an existing XML node to node as its last child.

Parameters

See also

“XML.createElement() Method” on page 312, “XML.createTextNode() Method” on page 313,

“XML.cloneNode() Method” on page 311, “XML.insertBefore() Method” on page 316

XML.attributes Property
node.attributes

sendAndLoad() See “XML.sendAndLoad()
Method” on page 324.

Convert the XML document into a string and
send it to the given URL. The receiving appli-
cation is to reply with an XML document.

toString() See “XML.toString() Method”
on page 326.

Convert the XML object into a string.

onData See “XML.onData() Event Han-
dler” on page 320.

Indicates that the XML document parsing
can begin.

onLoad See “XML.onLoad() Event Han-
dler” on page 321.

Indicates that the load of an XML document
completed successfully.

childNode An existing XML node to append to node as a child.

CHAPTER 9310
Reference
Description

The attributes property stores the names and values of attributes defined by node. This

property can be read or written.

For example, in the following line of code, name is an attribute and value is the value of that

attribute:

<testtag name=\"value\">Bass</testtag>

Example

xmlDocument = new XML("<testtag name=\"value\">Bass</testtag>");
trace(xmlDocument.firstChild.attributes.name);//prints "value"

See also

“XML.nodeType Property” on page 319

XML.childNodes Property
node.childNodes[n]

Description

The childNodes property holds an array of child nodes of node. Each element n in the array is

a reference to a child node. Use the methods appendChild(), insertBefore(), and

removeNode() to manipulate child nodes. This property can only be read.

Example

xmlDocument = new XML("<fish><type>Bass</type><color>grey</color></fish>");
trace(xmlDocument.childNodes[0].childNodes[0].nodeValue);//prints "type"
trace(xmlDocument.childNodes[0].childNodes[1].nodeValue);//prints "color"

See also

“XML.firstChild Property” on page 314, “XML.hasChildNodes() Method” on page 315,

“XML.lastChild Property” on page 317, “XML.nextSibling Property” on page 318, “XML.previ-

ousSibling Property” on page 323, “XML.appendChild() Method” on page 309, “XML.insert-

Before() Method” on page 316,“XML.removeNode() Method” on page 323

311ADOBE LIVEMOTION 2.0
Scripting Guide
XML.cloneNode() Method
node.cloneNode(deep)

Description

The cloneNode() method clones node and, optionally, all of its children.

Parameters

Returns

The cloned node and, if deep is true, all of its children.

Example

xmlDocument = new XML("<fish><type>Bass</type></fish>");
newDocument = new XML();
node = xmlDocument.firstChild.cloneNode(true);
newDocument.appendChild(node);
trace(newDocument.firstChild.nodeValue);//prints "fish"

See also

“XML.appendChild() Method” on page 309, “XML.createElement() Method” on page 312,

“XML.createTextNode() Method” on page 313, “XML.insertBefore() Method” on page 316

XML.contentType Property
root.contentType

deep A boolean indicating whether a deep clone (all of the node’s children as well as
node) should be performed. If true, a deep clone is performed. If false, only
node is cloned.

CHAPTER 9312
Reference
Description

The contentType property holds the MIME content type. The MIME type is sent to the server

when either the send() or sendAndLoad() methods are used. Only available on the root node

of the document. This property can be read or written. The default is application/x-www-

form-urlencoded.

See also

“XML.send() Method” on page 324, “XML.sendAndLoad() Method” on page 324

XML.createElement() Method
root.createElement(tagName)

Description

The createElement() method creates a new element, or tag, node (not a text node). Only

available on the root node of the document. The new node has no parent and no children. Note

that the new node that is returned is not inserted into root. To do that, you must use append-

Child() or insertBefore().

As an example of a tag node, examine the line:

<type>Bass</type>

type is a tag node, whereas Bass is the associated text node.

Parameters

Returns

The new tag node.

Example

xmlDocument = new XML();
node = xmlDocument.createElement("fish");
xmlDocument.appendChild(node);
trace(xmlDocument.firstChild.nodeValue);

tagName The tag name of the node to create.

313ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“XML.appendChild() Method” on page 309, “XML.cloneNode() Method” on page 311,

“XML.createTextNode() Method” on page 313, “XML.insertBefore() Method” on page 316,

XML.createTextNode() Method
root.createTextNode(text)

Description

The createTextNode() method creates a text node (as opposed to an element, or tag, node).

Only available on the root node of the document. The new node has no parent and no children.

Note that the new node that is returned is not inserted into root. To do that, you must use

appendChild() or insertBefore().

As an example of a text node, examine the line:

<type>Bass</type>

type is a tag node, whereas Bass is the associated text node.

Parameters

Returns

The new text node.

Example

xmlDocument = new XML();
node = xmlDocument.createElement("fish");
xmlDocument.appendChild(node);
textString = xmlDocument.createTextNode("Bass");
xmlDocument.firstChild.appendChild(textString);
trace(xmlDocument.firstChild.nodeValue);//prints "fish"
trace(xmlDocument.firstChild.firstChild.nodeValue);//prints "Bass"

text The text of the node to create.

CHAPTER 9314
Reference
See also

“XML.appendChild() Method” on page 309, “XML.cloneNode() Method” on page 311,

“XML.createElement() Method” on page 312, “XML.insertBefore() Method” on page 316

XML.docTypeDecl Property
root.docTypeDecl

Description

The docTypeDecl property specifies the DOCTYPE declaration of the XML document. If there

is no DOCTYPE, then this property is undefined. Only available on the root node of the

document. This property can be read or written.

Example

xmlDocument = new XML("<fish><type>Bass</type><color>grey</color></fish>");
xmlDocument.docTypeDecl = "<!DOCTYPE salutation SYSTEM \"hello.dtd\">";
trace(xmlDocument.docTypeDecl);
//prints "<!DOCTYPE salutation SYSTEM "hello.dtd">"

See also

“XML.xmlDecl Property” on page 326

XML.firstChild Property
node.firstChild

Description

The firstChild property specifies the first child of node, or null if there are no children. This

property can only be read.

Example

xmlDocument = new XML("<fish><type>Bass</type></fish>");
trace(xmlDocument.firstChild.nodeValue);//prints "fish"

315ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“XML.childNodes Property” on page 310, “XML.lastChild Property” on page 317,

“XML.nextSibling Property” on page 318, “XML.previousSibling Property” on page 323

XML.hasChildNodes() Method
node.hasChildNodes()

Description

The hasChildNodes() method returns an indication of whether node has children.

Returns

true if node has children; false otherwise.

Example

xmlDocument = new XML("<fish><type>Bass</type></fish>");
if (xmlDocument.hasChildNodes())

{
 trace("yes");//prints "yes"

}
else

{
 trace("no");

}

See also

“XML.childNodes Property” on page 310

XML.ignoreWhite Property
root.ignoreWhite

CHAPTER 9316
Reference
Description

The ignoreWhite property stores a boolean that indicates whether to ignore whitespace during

XML parsing. Only available on the root node of the document. The default is false. This

property can only be read.

Note: Previous to release 41of the Netscape Flash Player plug-in and release 42 of the Internet

Explorer Flash Player plug-in, the Flash 5 Player treated whitespace (carriage returns, tabs, spaces)

as nodes. The ignoreWhite property is supported in the later releases. If your XML code needs to

run on earlier versions of the Flash 5 Player, you will need to include code that strips out whitespace

from incoming XML documents.

temp = new Boolean(true);
trace(temp.valueOf());//prints "true"
xmlDocument = new XML("<fish><type>Bass</type></fish>");
temp = xmlDocument.ignoreWhite;
trace(temp.valueOf());//prints "false"

XML.insertBefore() Method
node.insertBefore(newChild, insertBeforeChild)

Description

The insertBefore() method inserts a new child node before an existing child node in the

hierarchy.

Parameters

Example

xmlDocument = new XML("<color>grey</color>");
newNode = xmlDocument.createElement("<color>");
newText = xmlDocument.createTextNode("white");
newNode.appendChild(newText);
xmlDocument.insertBefore(newNode, xmlDocument.firstChild);
trace(xmlDocument.childNodes[0].childNodes[0].nodeValue);//prints "grey"

newChild An existing XML node to add as a child to node before
insertBeforeChild in the hierarchy.

insertBeforeChild The child to insert newChild before in node’s child list.

317ADOBE LIVEMOTION 2.0
Scripting Guide
trace(xmlDocument.childNodes[1].childNodes[0].nodeValue);//prints "white"

See also

“XML.appendChild() Method” on page 309

XML.lastChild Property
node.lastChild

Description

The lastChild property holds the last child of node, or null if there are no children.It is equiv-

alent to childNodes[childNodes.length-1]. This property can only be read.

Example

xmlDocument = new XML("<color>white</color><color2>grey</color2>");
trace(xmlDocument.lastChild.nodeValue);//prints "color2"

See also

“XML.childNodes Property” on page 310, “XML.firstChild Property” on page 314,

“XML.nextSibling Property” on page 318, “XML.previousSibling Property” on page 323

XML.load() Method
root.load(url)

Description

The load() method loads and parses an XML document from url into root. Only available on

the root node of the document. The load doesn’t happen immediately. Use the root.onLoad()

event handler for code to execute when the document has finished downloading. The loaded

document replaces the contents of root with the downloaded XML data. When load() is first

executed, the loaded property is set to false; then, when the download is complete, the loaded

property is set to true and the root node’s onLoad() event handler is called. The XML data is

not parsed until the entire document is loaded. The parsing may be done using the default JavaS-

cript parser, or the root.onData() event handler may be used to write your own parser.

CHAPTER 9318
Reference
Parameters

See also

“XML.loaded Property” on page 318, “XML.onLoad() Event Handler” on page 321,

“XML.sendAndLoad() Method” on page 324, “XML.status Property” on page 325,

“XML.onData() Event Handler” on page 320, “XML.parseXML() Method” on page 322

XML.loaded Property
root.loaded

Description

The loaded property holds true if the load() or sendAndLoad() operation has completed.

Otherwise it holds false. Only available on the root node of the document. This property can

only be read.

See also

“XML.load() Method” on page 317, “XML.onLoad() Event Handler” on page 321,

“XML.sendAndLoad() Method” on page 324, “XML.status Property” on page 325

XML.nextSibling Property
node.nextSibling

Description

The nextSibling property holds a reference to the next node in the same level of the XML

object hierarchy, or null if node is the last node. This property can only be read.

Example

xmlDocument = new XML("<color>white</color><color2>grey</color2>");

url A string specifying the URL of the document to load and parse. Its XML hierarchy
is placed into root. For security reasons, the URL must be in the same domain as
that from which the movie clip was downloaded.

319ADOBE LIVEMOTION 2.0
Scripting Guide
tempNode = xmlDocument.childNodes[0];
trace(tempNode.firstChild.nodeValue);//prints "white"
tempNode = tempNode.nextSibling;
trace(tempNode.firstChild.nodeValue);//prints "grey"

See also

“XML.childNodes Property” on page 310, “XML.firstChild Property” on page 314,

“XML.lastChild Property” on page 317, “XML.nodeName Property” on page 319,

“XML.nodeValue Property” on page 320, “XML.previousSibling Property” on page 323

XML.nodeName Property
node.nodeName

Description

The nodeName property holds the tag name of node, or null if node is a text node. If the tag is

<mynode> then the nodeName is mynode. This property can be read or written.

See also

“XML.nodeType Property” on page 319, “XML.nodeValue Property” on page 320

XML.nodeType Property
node.nodeType

Description

The nodeType property holds the type of node. The possible values are 1 if this node is an

element node, or 3 if this node is a text node. This property can only be read.

See also

“XML.nodeName Property” on page 319, “XML.nodeValue Property” on page 320

CHAPTER 9320
Reference
XML.nodeValue Property
node.nodeValue

Description

The nodeValue property holds the text contained in node, or null if node is an element node.

This property can be read or written, though writing to it only makes sense if the node is a text

node.

See also

“XML.nodeName Property” on page 319, “XML.nodeType Property” on page 319

XML.onData() Event Handler
root.onData(source)

Description

The onData() user-defined event handler executes automatically whenever raw XML source has

finished loading into the XML document due to a previous root.load() or root.sendAn-

dLoad() call, but before the XML has been parsed. This allows you to write a custom function

that handles the raw XML, or you can simply let the default XML parser execute on the raw

XML.This event handler should only be defined if you want to do the XML parsing yourself. It

is only available on the root node of the document.

If the raw source that is received is undefined, the onData() event handler calls the

root.onLoad() event handler with the success parameter set to false. Otherwise, the

onData() event handler parses the raw XML, sets the root.loaded property to true, and calls

the root.onLoad() event handler with the success parameter set to true.

Parameters

source A string with the raw XML source.

321ADOBE LIVEMOTION 2.0
Scripting Guide
Example

This example shows how to intercept the raw XML using the onData() event handler. It uses a

function literal.

xmlDocument = new XML();
xmlDocument.onData = function(source)
{

trace("Print the raw XML: \n" + source);
};

See also

“XML.onLoad() Event Handler” on page 321, “XML.load() Method” on page 317,

“XML.sendAndLoad() Method” on page 324, “XML.loaded Property” on page 318

XML.onLoad() Event Handler
root.onLoad(success)

Description

The onLoad() user-defined event handler is automatically executed whenever an external XML

file is loaded into root via the root.load() or root.sendAndLoad() method. By default, the

onLoad() event handler is an empty function: you must provide your own callback handler, as

shown in the example. The onLoad() event handler is only available on the root node of the

document and it offers an alternative to monitoring the state to the root.loaded property

before proceeding with processing the downloaded XML.

Parameters

Example

xmlDocument = new XML();
xmlDocument.onLoad = xmlProcessor;
xmlDocument.load("myFile.xml");
function xmlProcessor(success)
{

success A boolean indicating success (true) or failure (false) of the
root.load() or root.sendAndLoad() method.

CHAPTER 9322
Reference
//function body
};

See also

“XML.onData() Event Handler” on page 320, “XML.load() Method” on page 317,

“XML.sendAndLoad() Method” on page 324, “XML.loaded Property” on page 318

XML.parentNode Property
node.parentNode

Description

The parentNode property holds the parent node of node, or null if node is at the top of the

hierarchy. This property can only be read.

See also

“XML.childNodes Property” on page 310, “XML.firstChild Property” on page 314,

“XML.lastChild Property” on page 317, “XML.previousSibling Property” on page 323

XML.parseXML() Method
root.parseXML(source)

Description

The parseXML() method parses source as an XML document. It replaces any existing XML in

root with the resulting XML tree from source. Only available on the root node of the

document. This method is similar to the load() method, but the source is passed in as a string

so can be used, for example, to pass in user input rather than just the contents of a URL or file.

Parameters

source The string to parse.

323ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“XML.load() Method” on page 317, “XML.status Property” on page 325

XML.previousSibling Property
node.previousSibling

Description

The previousSibling property holds a reference to the previous node in the same level of the

XML object hierarchy, or null if node is the first node. This property can only be read.

Example

xmlDocument = new XML("<color>white</color><color2>grey</color2>");
tempNode = xmlDocument.childNodes[1];
trace(tempNode.firstChild.nodeValue);//prints "grey"
tempNode = tempNode.previousSibling;
trace(tempNode.firstChild.nodeValue);//prints "white"

See also

“XML.childNodes Property” on page 310, “XML.firstChild Property” on page 314,

“XML.lastChild Property” on page 317, “XML.nextSibling Property” on page 318,

“XML.nodeName Property” on page 319, “XML.nodeValue Property” on page 320,

“XML.parentNode Property” on page 322

XML.removeNode() Method
node.removeNode()

Description

The removeNode() method deletes node and all of its children from the containing document.

See also

“XML.appendChild() Method” on page 309

CHAPTER 9324
Reference
XML.send() Method
root.send(url, window)

Description

The send() method converts root into a string of XML source and sends it as an HTTP request

to url. The response data is usually an HTML file for display in a browser window; this contrasts

with the sendAndLoad() method, which receives XML for display directly from the movie clip.

Only available on the root node of the document.

Parameters

See also

“XML.sendAndLoad() Method” on page 324, “XML.load() Method” on page 317

XML.sendAndLoad() Method
root.sendAndLoad(url, responseXML)

Description

The sendAndLoad() method converts root into a string and sends it as an HTTP request to

url. The receiving application is supposed to reply with an XML document, which is parsed as

XML source and loaded into responseXML; this contrasts with the send() method, which

receives an HTML file for display in a browser window. Only available on the root node of the

document.

url The URL to which to send the XML text.

window A string indicating the window in which to display data returned
by the server. This may be a custom name or one of the standard
JavaScript windows (_blank, _parent, _self, or _top).

325ADOBE LIVEMOTION 2.0
Scripting Guide
Parameters

See also

“XML.load() Method” on page 317, “XML.loaded Property” on page 318, “XML.send()

Method” on page 324, “XML.status Property” on page 325, “XML.onData() Event Handler” on

page 320, “XML.onLoad() Event Handler” on page 321

XML.status Property
root.status

Description

The status property holds an integer that indicates whether there was an error parsing the XML

document. Only available on the root node of the document. This property can only be read. The

possible error codes are:

• 0 — No error; parsing completed successfully.

• -2 — A CDATA section was not properly terminated.

• -3 — The XML declaration was not properly terminated.

• -4 — The DOCTYPE declaration was not properly terminated.

• -5 — A comment was not properly terminated.

• -6 — An XML element was malformed.

• -7 — Out of memory.

• -8 — An attribute value was not properly terminated.

• -9 — A start tag was not properly matched with an end tag.

• -10 — An end tag was not properly matched with a start tag.

url The URL to which to send the XML text. For security reasons, the URL must be
in the same domain as that from which the movie clip was downloaded.

responseXML The XML object into which to load the response.

CHAPTER 9326
Reference
Parsing occurs in several instances: when an XML object is first instantiated using the XML

constructor, when an XML object is loaded using the load() or sendAndLoad() method, or XML

is passed for parsing to the parseXML() method. Before checking the value of this property,

check the loaded property to ensure that the load() or sendAndLoad() method has completed

successfully.

See also

“XML.load() Method” on page 317, “XML.loaded Property” on page 318, “XML.onLoad()

Event Handler” on page 321, “XML.parseXML() Method” on page 322, “XML.sendAndLoad()

Method” on page 324,

XML.toString() Method
node.toString()

Description

The toString() method converts node into a string and returns it. If you’re debugging with

trace(), you probably won’t use this much.

Returns

A string that is the XML source code equivalent of node.

Example

xmlDocument = new XML("<color>white</color><color2>grey</color2>");
trace(xmlDocument.toString());
//displays "<color>white</color><color2>grey</color2>"

See also

“Object.toString() Method” on page 271, “XML.nodeValue Property” on page 320

XML.xmlDecl Property
root.xmlDecl

327ADOBE LIVEMOTION 2.0
Scripting Guide
Description

The xmlDecl property is a string that holds the XML declaration tag of the XML document. It

is only available on the root node of the document and is used to identify the version of XML

being used in the document. This property can be read or written.

Example

xmlDocument = new XML("<?xml version=\"1.0\"?><type>Bass</type>");
trace(xmlDocument.xmlDecl);
//prints "<?xml version="1.0"?>"

See also

“XML.docTypeDecl Property” on page 314

XMLnode Object

Description

The XMLnode object is the base class defining core properties and methods of nodes in an XML

object hierarchy. Few programmers will need to access this object, but it is possible to use it to

extend the default functionality of XML objects.

XMLSocket Object

Description

The XMLSocket object is used to implement a client socket that allows the Flash Player to

communicate with a server via an “open” connection. A socket connection is useful because it

remains “open”—that is, a TCP/IP connection doesn’t have to be made between the client and

the server each time communications occur between the two, as is required when the HTTP

protocol is used. This enables the Flash Player to listen for incoming messages and quickly

process them; it also allows it to respond quickly.

Constructor

new XMLSocket()

CHAPTER 9328
Reference
Parameters

None.

Properties

None.

Methods

Event Handlers

XMLSocket.close() Method
socket.close()

Description

The close() method closes an open socket connection.

close() See “XMLSocket.close() Method” on
page 328.

Close an open socket connection.

connect() See “XMLSocket.connect() Method”
on page 329.

Create a connection to a specified server.

send() See “XMLSocket.send() Method” on
page 333.

Send an XML object to the server.

onClose() See “XMLSocket.onClose() Event Han-
dler” on page 330.

Callback function that is called when a con-
nection has closed.

onConnect() See “XMLSocket.onConnect() Event
Handler” on page 331.

Callback function that is called when a con-
nection is created.

onData() See “XMLSocket.onData() Event Han-
dler” on page 332.

Callback function that is called when data is
received but has not yet been parsed as
XML.

onXML() See “XMLSocket.onXML() Event Han-
dler” on page 332.

Callback function that is called when data
has been received and parsed into an XML
object hierarchy.

329ADOBE LIVEMOTION 2.0
Scripting Guide
See also

“XMLSocket.connect() Method” on page 329, “XMLSocket.onClose() Event Handler” on

page 330

XMLSocket.connect() Method
socket.connect(host, port)

Description

The connect() method creates a connection to a specified server. If this method returns true,

then the onConnect() event handler is invoked to complete the connection.

Parameters

Returns

true if a connection is successfully created; false otherwise.

Example

function socketConnect(success)
{

if (success)
{

trace("Full connection achieved");
};

};

newSocket = new XMLSocket();
newSocket.onConnect = socketConnect();
if (newSocket.connect("http://www.adobe.com", 2000))

host The full DNS name or an IP address. null if you want to specify the current
server (where the currently executing SWF file was downloaded from). For
security reasons, if the Netscape SWF plug-in or an ActiveX control is being
used, the host must have the same domain name as the host from which
the SWF file was downloaded.

port The TCP port to which you wish to establish a connection. Must be a num-
ber equal to or greater than 1024.

CHAPTER 9330
Reference
{
trace("Initial connection achieved");

};

See also

“XMLSocket.close() Method” on page 328, “XMLSocket.onConnect() Event Handler” on

page 331

XMLSocket.onClose() Event Handler
socket.onClose = functionName
socket.functionName()

Description

The onClose() user-defined callback function is called when a connection is closed by the

server. The default implementation of this method performs no action. To override the default

implementation, you must write your own handler, as shown in the example.

Parameters

Example

newSocket = new XMLSocket();
newSocket.onClose = socketClosed;
function socketClosed()
{

trace("The connection was closed by the server");
};

See also

“XMLSocket.close() Method” on page 328

functionName The name of the function to call when the indicated connection has
closed.

331ADOBE LIVEMOTION 2.0
Scripting Guide
XMLSocket.onConnect() Event Handler
socket.onConnect = functionName
socket.functionName(success)

Description

The onConnect() user-defined callback function is called when a connection is created. The

default implementation of this method performs no action. To override the default implemen-

tation, you must write your own handler, as shown in the example.

Parameters

Returns

true if a connection is successfully created; false otherwise.

Example

function socketConnect(success)
{

if (success)
{

trace("Full connection achieved");
};

};

newSocket = new XMLSocket();
newSocket.onConnect = socketConnect();
if (newSocket.connect("http://www.adobe.com", 2000))
{

trace("Initial connection achieved");
};

See also

“XMLSocket.connect() Method” on page 329

success A boolean indicating success (true) or failure (false).

functionName The name of the function to call when the connection is created.

CHAPTER 9332
Reference
XMLSocket.onData() Event Handler
socket.onData(source)

Description

The onData() user-defined callback function is called when data is received but has not yet been

parsed. The onData() event handler executes automatically whenever a zero byte (ASCII null

character) is transmitted to the player over socket. This allows you to write a function that

handles the raw XML instead of the default parser that would otherwise be used before the XML

is passed onto the socket.onXML() event handler. If you have not supplied onData() with a

custom callback function, the XML is passed onto the default XML parser, and then

socket.onXML()is called with the result.

Parameters

Example

The following shows how to implement the onData() event handler using a function literal.

newSocket = new XMLSocket();
newSocket.onData = function(source)
{

trace("Print the raw XML: \n" + source);
};

See also

“XMLSocket.onXML() Event Handler” on page 332; “XML.onData() Event Handler” on

page 320

XMLSocket.onXML() Event Handler
socket.onXML = functionName
socket.functionName(object)

Description

source A string with the raw XML source.

333ADOBE LIVEMOTION 2.0
Scripting Guide
The onXML() user-defined callback function is called when data has been received and parsed

into an XML object hierarchy. It has been parsed either by the default parser or by a custom

onData() event handler. The default implementation of this method performs no action. To

override the default implementation, you must write your own handler.

Parameters

See also

“XMLSocket.send() Method” on page 333, “XMLSocket.onData() Event Handler” on page 332

XMLSocket.send() Method
socket.send(object)

Description

The send() method converts object to a string and sends it to the server over the socket

connection, followed by a zero byte (ASCII null character). This operation is asynchronous: the

send() is initiated, but the operating system and networking software may not complete the

transmission until some amount of time has passed.

Parameters

See also

“XMLSocket.onXML() Event Handler” on page 332, “XMLSocket.send() Method” on page 333

object An XML object containing a parsed XML document that was received from the
server.

functionName The name of the function to call when data has been received and parsed into
an XML object hierarchy.

object The XML object to send.

CHAPTER 9334
Reference

335
Glossary Terms
Absolute reference Reference that uses _root as the starting point of the address to a movie clip.

The address is a string of movie clip names delimited by dot (.) notation representing each level

in the object hierarchy from _root down to and including the name of movie clip being refer-

enced. The absolute reference is the same regardless of where in the object hierarchy the source

movie clip that is making the reference is located. An example of an absolute reference is:

_root.movieClipA.movieClipB._x

Anchor point Point that represents the 0,0 (x,y) origin point for all coordinates in a movie clip.

For a movie clip group with multiple objects, the anchor point is set to the center of the group.

Animation Changes applied to an object over time.

Button Movie clip that has a button event handler or has had states added to it by the user.

Composition Refers to a .liv file that is created in LiveMotion.

Composition timeline Main timeline of a composition; also referred to as _root’s timeline.

Composition window Window in the LiveMotion user interface that displays objects as they are

created and edited. The objects are displayed as they appear at the current time, which is deter-

mined by the current- time marker in the Timeline window. The Composition window also

displays the results of previewing a composition.

DOM Document Object Model. All the objects, their methods, and properties that are supported

by LiveMotion as extensions to the JavaScript core.

Event User interaction, such as pressing a key or dragging the mouse, or system interaction, such

as loading a movie clip.

Filename.liv Document created in the LiveMotion application using LiveMotion’s interface

tools, palettes, and (optional) scripting code; also referred to as a composition.

Interactivity Result of a user event such as pressing a button or moving the mouse over an object

in a composition or a system event such as loading a movie clip. The event triggers an event

handler that performs a response when the event occurs.

Keyframe script Script added to a frame in a timeline.

Label String identifier that references a frame in a timeline.

Movie clip Copy of the MovieClip object that has its own timeline and unique name and can be

manipulated by writing scripts.

Movie clip group Parent movie clip containing one or more nested objects.

336
Parent Timeline upon which a movie clip or movie clip group is created.

Path Reference enclosed in quotation marks. An example of a path is:

"_root.movieClipA.movieClipB._x"

Relative reference Movie clip names delimited by dot (.) notation that “navigate” through the

object hierarchy and include the name of each movie clip from the source movie clip to the

movie clip it is referencing. The contents of a relative reference are determined by the hierarchical

relationship of the source movie clip to the movie clip it is addressing. Although using the

keyword this is optional in the relative reference, this scripting guide begins all relative refer-

ences with this. An example relative reference is:

this._parent.movieClipA.movieClipB._x

Script keyframe Keyframe to which a script is added.

Siblings Movie clips on the timeline of the same parent.

Source Movie clip that is controlling another movie clip by calling MovieClip methods or

manipulating MovieClip properties.

SWF File format into which a LiveMotion composition is converted on export on export to

Macromedia Flash format. SWF files can be viewed with the Flash Player or a Web browser with

the Flash plug-in.

337
Index

Symbols

.liv files 15, 40

_leveln 87

_root movie clip 64, 69, 71, 108

A

absolute reference 66, 67

ActionScript Syntax Helpers 119

adding states 16

attachSound() object method 84

Automation syntax helper 25, 117

B

behaviors

mapping to scripts 45

Behaviors button 40

bounds checking 35

C

children 79

clearing breakpoints 135

composition 15

Composition browser 25, 117,
121

Console window

comparing output to Debugger
140

using with Debugger 140

writing to 139

current-time marker 31

D

Debugger

activating 127

buttons 130

Call stack window 129

expression entry field 133, 137

halting execution 130

Kill 131

modes 127

modes for bringing up 127

Run 130

setting breakpoints 135

single-stepping 131

Source window 129

Step 131

Step Into 131

Step Out 132

Stop 130

terminating sessions 131

using with Console window 138

Variable window 129, 138

watching variables 132, 137

windows 129

depth 81, 85

Description window 26, 116

dot (.) notation 65

E

event handlers

automatically generated 103

button 98

defined 32, 89

key 94

mouse 97

system-based 90

event types 89

examples, list of hands-on 13

Export 84

exporting 15, 30

F

Find 25, 118, 126

forms

creating 110

sending and receiving variables
108, 110

using text fields 105

G

global function

fscommand() 200

global functions

INDEX338
Boolean() 161

Date() 168

duplicateMovieClip() 78, 197

escape() 198

eval() 199

getTimer() 200

getURL() 108, 201

gotoAndPlay() 203

gotoAndStop() 204

isFinite() 205

isNan() 205

lmFrameOfLabel() 217

loadMovie() 88, 108, 218

loadMovieNum() 219

loadVariables() 108, 220

loadVariablesNum() 221

nextFrame() 263

Number() 263

parseFloat() 273

parseInt() 273

play() 274

prevFrame() 275

removeMovieClip() 275

startDrag() 287

stop() 288

stopAllSounds() 288

stopDrag() 288

String() 289

targetPath() 302

that use _leveln 87

trace() 303

unescape() 304

unloadMovie() 88, 304

unloadMovieNum() 305

updateAfterEvent 306

global properties

_focusrect 199

_leveln 87, 217

_quality 275

_root 276

_soundbuftime 287

-Infinity 204

Infinity 204

NaN 262

newline 262

Go to Label (and play) 50

Go to Label (and stop) 50

Go to next script 25, 117, 123

Go to previous script 25, 117, 123

Go To Relative Time 50

H

Handler scripts 25, 117, 123

hands-on examples

automatically generated button

handlers 103

changing movie clip states 47

creating a bounds check 35

creating a button event handler
100

creating a preloader 54

creating a simple event handler
33

creating a state script 36

creating a toggle button 101

creating an onKeyDown event

handler 96

initializing a movie clip property
34, 35

mouse trailer 72

programmatic bounce 92

using script keyframes 27

using system-based event

handlers 91

writing a keyframe script to a

movie clip timeline 30

hands-on examples, list of 13

hierarchy, movie clips 64

I

independent timelines 40

initializing properites 34

J

JavaScript

ECMA-standard 17

LiveMotion implementation of
18

JavaScript references 14

339ADOBE PRODUCT X.0
User Guide
JavaScript Syntax Helpers 119

K

Keyframe scripts 25, 117, 124

keyframe scripts

on a movie clip timeline 30

L

labels 17, 52, 74

creating 27

defined 26

guidelines for creating label

names 26

jump to 30

label names 29

names 30

specifying as argument values 30

string values 30

using 26

M

Make Movie Clip Group

command 62

modes, Debugger 127

Movie Clip command 62

movie clip events 89

Movie clip navigator 24, 116, 118

movie clips

_root 64

accessing shareable 85

and movie clip groups 63

attachMovie() method 77, 84

built-in methods 61, 71

built-in properties 61, 69

creating manually 62

creating methods 76

creating programmatically 77

creating properties 76

defined 16, 61

duplicateMovieClip() method
78

events and handlers 32

hierarchy 31, 64, 73

hierarchy and the programmatic

stack 82

placement of programmatically

created 83

properties 69, 72

sharing 83

swapDepths() method 81

N

names, label 26

new operator 61

O

objects

Arguments 147

Array 149

Boolean 162

Color 164

Date 169

Key 206

Math 222

Mouse 234

MovieClip 235

Number 264

Object 269

Selection 276

Sound 280

String 290

XML 306

XMLnode 327

XMLSocketObject 327

objects, scriptable 28

P

parent-child relationship 64

placing scripts 23

Play 49

Preview mode 30

programmatic stacks 78

properties

creating movie clip 76

initializing 34

setting 16

R

relative reference 67

INDEX340
S

Script Editor

buttons 116

setting breakpoints 134

window 116

script keyframes 23, 44

accessing scripts 40

and timelines 40

creating 27

defined 27

on the composition timeline 27

Script window 26, 116

Scripting helper window 26, 116

Scripting syntax helper 24, 44,
117, 119

scripts

accessing 43

adding to states 36

adding to timelines 44

Change State 47

creating Flash Player commands
56

deleting 45

Go to Label (and play) 52

Go to Label (and stop) 51

Go to RelativeTime 51

Go to URL 58

locations of 17, 23

on event handlers 33

on states 36

opening 45

placing 23

Play 50

Run JavaScript 58

state 36

stop 50

Stop All Sounds 57

Wait For Download 52

Scripts button 40

Scripts Editor

opening 30

setting breakpoints

in Script Editor 134

in the Debugger 135

setting properties 16

siblings 80

single-stepping 131

sound objects, accessing shareable
85

state change events 89

State scripts 25, 117, 124

state scripts 36

states

and timelines 40

predefined 104

writing scripts to 40

States palette 40, 45

states, adding 16

static stacks 78

Stop 49

SWF files 57, 79, 86, 88

loading 56

stacking order of 87

unloading 57

Syntax highlighting 25, 118, 126

T

text fields

creating and using 105

scroll and maxscroll properties
302

this 31, 65, 67, 75

time-independent 16

toggle buttons, creating 101

X

XML

using for communications 111,
112

XML sockets 112

processing incoming data 114

Z

z-order 64, 82

	Introduction
	Overview of this guide
	What you should know
	Organization of this guide
	Hands-on examples in this guide
	Where to go for more information

	Overview
	Script authoring
	LiveMotion objects
	Writing scripts to objects
	Extending functionality
	Script locations
	JavaScript in LiveMotion

	Writing Scripts
	Introduction to script writing
	Script Editor overview
	Using labels
	Using script keyframes
	Using event handlers
	Using state scripts

	Behaviors
	Introduction to behaviors
	Working with scripts that replace behaviors
	Creating LiveMotion 1.0 behaviors using LiveMotion 2.0 scripts

	Movie Clips
	Introduction to movie clips
	How to create a movie clip using LiveMotion
	Movie clip hierarchy
	Movie clip addressing
	Movie clip properties and methods
	Creating movie clips programmatically
	Making shareable movie clips (and shareable sounds)
	Levels of the Flash Player

	Movie Clip Events and Event Handlers
	Introduction to events
	System-based events and event handlers
	Key events and event handlers
	Mouse events and event handlers
	Button events and event handlers
	State change events and handlers
	Automatically generated button event handlers

	Dynamic Data
	Forms and text fields
	loadVariables(), loadMovie(), and getURL()
	How to create a form and send its data to a server
	XML communications
	XML socket communications

	Script Editor
	Introduction to the Script Editor
	Exploring the Script Editor
	Script Editor buttons

	Debugger
	Introduction to the Debugger
	Exploring the Debugger
	Using the Console window

	Reference
	Introduction
	Keywords and Statement Syntax
	Operators
	Reference for Objects, Methods, Properties, and Globals
	Arguments Object
	Arguments.callee Property
	Arguments.length Property
	Array Object
	Array.concat() Method
	Array.join() Method
	Array.length Property
	Array.pop() Method
	Array.push() Method
	Array.reverse() Method
	Array.shift() Method
	Array.slice() Method
	Array.sort() Method
	Array.splice() Method
	Array.toString() Method
	Array.unshift() Method
	Boolean() Global Function
	Boolean Object
	Boolean.toString() Method
	Boolean.valueOf() Method
	Color Object
	Color.getRGB() Method
	Color.getTransform() Method
	Color.setRGB() Method
	Color.setTransform Method
	Date() Global Function
	Date Object
	Date.getDate() Method
	Date.getDay() Method
	Date.getFullYear() Method
	Date.getHours() Method
	Date.getMilliseconds() Method
	Date.getMinutes() Method
	Date.getMonth() Method
	Date.getSeconds() Method
	Date.getTime() Method
	Date.getTimezoneOffset() Method
	Date.getUTCDate() Method
	Date.getUTCDay() Method
	Date.getUTCFullYear() Method
	Date.getUTCHours() Method
	Date.getUTCMilliseconds() Method
	Date.getUTCMinutes() Method
	Date.getUTCMonth() Method
	Date.getUTCSeconds() Method
	Date.getYear() Method
	Date.setDate() Method
	Date.setFullYear() Method
	Date.setHours() Method
	Date.setMilliseconds() Method
	Date.setMinutes() Method
	Date.setMonth() Method
	Date.setSeconds() Method
	Date.setTime() Method
	Date.setUTCDate() Method
	Date.setUTCFullYear() Method
	Date.setUTCHours() Method
	Date.setUTCMilliseconds() Method
	Date.setUTCMinutes() Method
	Date.setUTCMonth() Method
	Date.setUTCSeconds() Method
	Date.setYear() Method
	Date.toString() Method
	Date.UTC() Method
	Date.valueOf() Method
	duplicateMovieClip() Global Function
	escape() Global Function
	eval() Global Function
	_focusrect Global Property
	fscommand() Global Function
	getTimer Global Function
	getURL Global Function
	getVersion() Global Function
	gotoAndPlay() Global Function
	gotoAndStop() Global Function
	Infinity Global Property
	-Infinity Global Property
	isFinite Global Function
	IsNan() Global Function
	Key Object
	Key.BACKSPACE Constant
	Key.CAPSLOCK Constant
	Key.CONTROL Constant
	Key.DELETEKEY Constant
	Key.DOWN Constant
	Key.END Constant
	Key.ENTER Constant
	Key.ESCAPE Constant
	Key.getAscii() Method
	Key.getCode() Method
	Key.HOME Constant
	Key.INSERT Constant
	Key.isDown() Method
	Key.isToggled() Method
	Key.LEFT Constant
	Key.PGDN Constant
	Key.PGUP Constant
	Key.RIGHT Constant
	Key.SHIFT Constant
	Key.SPACE Constant
	Key.TAB Constant
	Key.UP Constant
	_leveln Global Property
	lmFrameOfLabel() Global Function
	loadMovie() Global Function
	loadMovieNum() Global Function
	loadVariables() Global Function
	loadVariablesNum() Global Function
	Math Object
	Math.abs() Method
	Math.acos() Method
	Math.asin() Method
	Math.atan() Method
	Math.atan2() Method
	Math.ceil() Method
	Math.cos() Method
	Math.E Constant
	Math.exp() Method
	Math.floor() Method
	Math.LN2 Constant
	Math.LN10 Constant
	Math.log() Method
	Math.LOG2E Constant
	Math.LOG10E Constant
	Math.max() Method
	Math.min() Method
	Math.PI Constant
	Math.pow() Method
	Math.random() Method
	Math.round() Method
	Math.sin() Method
	Math.sqrt() Method
	Math.SQRT1_2 Constant
	Math.SQRT2 Constant
	Math.tan() Method
	Mouse Object
	Mouse.hide() Method
	Mouse.show() Method
	MovieClip Object
	MovieClip._alpha Property
	MovieClip.attachMovie() Method
	MovieClip._currentframe Property
	MovieClip._droptarget Property
	MovieClip.duplicateMovieClip() Method
	MovieClip._framesloaded Property
	MovieClip.getBounds() Method
	MovieClip.getBytesLoaded() Method
	MovieClip.getBytesTotal() Method
	MovieClip.getURL() Method
	MovieClip.globalToLocal() Method
	MovieClip.gotoAndPlay() Method
	MovieClip.gotoAndStop() Method
	MovieClip._height Property
	MovieClip.hitTest() Method
	MovieClip.lmSetCurrentState() Method
	MovieClip.loadMovie() Method
	MovieClip.loadVariables() Method
	MovieClip.localToGlobal() Method
	MovieClip._name Property
	MovieClip.nextFrame() Method
	MovieClip._parent Property
	MovieClip.play() Method
	MovieClip.prevFrame() Method
	MovieClip.removeMovieClip() Method
	MovieClip._rotation Property
	MovieClip.startDrag() Method
	MovieClip.stop() Method
	MovieClip.stopDrag() Method
	MovieClip.swapDepths() Method
	MovieClip._target Property
	MovieClip._totalframes Property
	MovieClip.unloadMovie() Method
	MovieClip._url Property
	MovieClip.valueOf() Method
	MovieClip._visible Property
	MovieClip._width Property
	MovieClip._x Property
	MovieClip._xmouse Property
	MovieClip._xscale Property
	MovieClip._y Property
	MovieClip._ymouse Property
	MovieClip._yscale Property
	NaN Global Property
	newline Constant
	nextFrame() Global Function
	Number() Global Function
	Number Object
	Number.MAX_VALUE Property
	Number.MIN_VALUE Property
	Number.NaN Property
	Number.NEGATIVE_INFINITY Property
	Number.POSITIVE_INFINITY Property
	Number.toString() Method
	Number.valueOf() Method
	Object Class
	Object.constructor Property
	Object.__proto__ Property
	Object.toString() Method
	Object.valueOf() Method
	parseFloat() Global Function
	parseInt() Global Function
	play() Global Function
	prevFrame() Global Function
	_quality Global Property
	removeMovieClip() Global Function
	_root Global Property
	Selection Object
	Selection.getBeginIndex() Method
	Selection.getCaretIndex() Method
	Selection.getEndIndex() Method
	Selection.getFocus() Method
	Selection.setFocus() Method
	Selection.setSelection() Method
	Sound Object
	Sound.attachSound() Method
	Sound.getPan() Method
	Sound.getTransform() Method
	Sound.getVolume() Method
	Sound.setPan() Method
	Sound.setTransform() Method
	Sound.setVolume() Method
	Sound.start() Method
	Sound.stop() Method
	_soundbuftime Global Property
	startDrag() Global Function
	stop() Global Function
	stopAllSounds() Global Function
	stopDrag() Global Function
	String() Global Function
	String Object
	String.charAt() Method
	String.charCodeAt() Method
	String.concat() Method
	String.fromCharCode() Method
	String.indexOf() Method
	String.lastIndexOf() Method
	String.length Property
	String.slice() Method
	String.split() Method
	String.substr() Method
	String.substring() Method
	String.toLowerCase() Method
	String.toUpperCase() Method
	targetPath() Global Function
	Text Field Properties
	trace() Global Function
	unescape() Global Function
	unloadMovie() Global Function
	unloadMovieNum() Global Function
	updateAfterEvent() Global Function
	XML Object
	XML.appendChild() Method
	XML.attributes Property
	XML.childNodes Property
	XML.cloneNode() Method
	XML.contentType Property
	XML.createElement() Method
	XML.createTextNode() Method
	XML.docTypeDecl Property
	XML.firstChild Property
	XML.hasChildNodes() Method
	XML.ignoreWhite Property
	XML.insertBefore() Method
	XML.lastChild Property
	XML.load() Method
	XML.loaded Property
	XML.nextSibling Property
	XML.nodeName Property
	XML.nodeType Property
	XML.nodeValue Property
	XML.onData() Event Handler
	XML.onLoad() Event Handler
	XML.parentNode Property
	XML.parseXML() Method
	XML.previousSibling Property
	XML.removeNode() Method
	XML.send() Method
	XML.sendAndLoad() Method
	XML.status Property
	XML.toString() Method
	XML.xmlDecl Property
	XMLnode Object
	XMLSocket Object
	XMLSocket.close() Method
	XMLSocket.connect() Method
	XMLSocket.onClose() Event Handler
	XMLSocket.onConnect() Event Handler
	XMLSocket.onData() Event Handler
	XMLSocket.onXML() Event Handler
	XMLSocket.send() Method

	Glossary Terms
	Index

