43

Chapter 3: Behaviors

Introduction to behaviors

This section describes how you can create LiveMotion 1.0 behaviors in LiveMotion 2.0. It is
meant to help you move on to a new way of looking at what behaviors really are.

In LiveMotion 1.0, behaviors did everything from playing or stopping a composition to
downloading a movie clip. Traditionally, behaviors executed when either a movie clip reached a
certain point on its timeline or when a movie clip entered a certain state. In LiveMotion 2.0,
behaviors have evolved into Player scripting code. To assist you in your transition to writing
scripts, this section explains where you can add Player scripts and the implications of adding the
scripts in these locations. It provides an overview of how to add, open, and remove scripts. Then
for each LiveMotion 1.0 behavior, the section provides a procedure for implementing it in
LiveMotion 2.0. As additional help, you are provided guidance using the Scripting Syntax Helper
to access the LiveMotion 1.0 behaviors and the LiveMotion 2.0 code to which each behavior
maps.

Even if you are new to LiveMotion, it will benefit you to read this section to learn how
LiveMotion 1.0 behaviors are implemented in Player scripting, because you can incorporate
their functionality into any Player scripts that you write. You are not required to know anything
about LiveMotion 1.0 behaviors to create the examples in this chapter, which can instead serve
as simple examples to start you down the road to Player scripting

Working with Player scripts that replace behaviors

This section provides procedures for adding, opening, and deleting scripts.

Note: In LiveMotion 2.0, you also can write scripts to handle events. Event handling was made
possible in LiveMotion 2.0 because of its support for Player scripting. For details on creating event
handlers, see “Movie Clip Events and Event Handlers” on page 79.

The effect of writing scripts to movie clip timelines versus movie clip states

You can write Player scripts to movie clip timelines or to movie clip states, depending on the
effect that you are after. To prepare you for working with Player scripts, you should understand
these concepts:

44 | CHAPTER 3
Behaviors

* Timelines have script keyframes (that is, script icons on timeline frames)
* States have timelines

When you write a script to a movie clip timeline, you write that script to a specific timeline
frame. The frame is called a script keyframe. During execution in of the . | i v file in Preview
mode or on export of the SWF file to a browser, the script keyframe executes at a predictable
point in the lifetime of the move clip, and that is, when the playhead reaches that script keyframe.
A timeline can have multiple script keyframes, and each script keyframe can have one to several
scripts written to it.

All objects have a normal state by default. You also can define states for a movie clip (such as over,
down, out) in the States palette. Each movie clip state is provided with its own independent
timeline. When you write a script to a state that you define, it executes only when the user
activates that state, not at a predefined point in a movie clip’s lifetime. Say, for example, the user
presses the mouse on a movie clip for which you have defined a down state. This would activate
any script you may have written for that state. You can write scripts to any or all states that you
define for a movie clip. You also can write multiple scripts to the timeline of a single defined state.

Accessing Player scripts

You can access Player scripts from:

* Script keyframes (that is, script icons on frames) in a timeline. Clicking the script keyframe
opens the Script Editor and displays the script attached to that frame on the timeline.

o The Scripts button towards the bottom of the States palette. Clicking the scripts button opens
the Script Editor on the state currently selected in the States palette.

In LiveMotion 1.0, the Scripts button was called the Behaviors button. For your general
reference, Figure 3.1 shows the LiveMotion 1.0 Behaviors button in a timeline and in the
Rollovers palette. It also shows a keyframe in a timeline.

Colar 5el| Photeshe] Rollove ~Object L] * |

g 0|3
oo:00:00:00 |41 [1v] |4 —
4 [1-Second Counter lods af [O | erer = i
[= [E1-Second Counter [d Ty —
Transform =
[Object Attributes Sl 0 P

o | | o (R B | @

ADOBE LIVEMOTION 2.0 |45

Scripting Guide

Figure 3.1 LiveMotion 1.0 Timeline window and Rollovers palette

Figure 3.2 shows the corresponding LiveMotion 2.0 Scripts button in a timeline and in the States
palette. It also shows a script keyframe in a timeline.

x
FaUntitled1:2 Color 5o Photoshe] Rollowe*Object L] »

oo:o0:00:00 4|41 e [[me] =]
4 [Composition T |ons 03t @ Ir\ormal j
= Composition fian]
Scripts E ﬂ over =
Labels [E
=& = | D [» Changes

mls|w|lolm|n]

Figure 3.2 LiveMotion 2.0 Timeline window and States palette

(Advanced users) You can also access Player scripts by selecting Scripts>Editor from the main
menu. Alternately, you can use the keyboard shortcut Ctrl + J (Windows) or Command +J
(Mac OS). Then, double click the movie clip whose script you want to access in the Script
Editor’s Navigator. This takes you to that movie clip's scripts, but not necessarily to the script that
you want. You must then navigate to the event, state, or script keyframe containing the script
you want to access. For details on using the Navigator, see “Scripting Tools” on page 91.

Adding Scripts

To add a script to a movie clip state,

Note: The first three steps to add a script to a movie clip state also open a script on a state. Compare
steps 1 to 3 below to the procedure in “To open a script from a movie clip state,” on page 47.

1 Open the States palette to view the movie clip states.
2 In the States palette, select the movie clip state to which you want to add a script.

3 Click on the Scripts button in the palette. See Figure 3.2. This opens the Script Editor and
displays the window in which you can add a script that will be attached to that movie clip state

46 | CHAPTER 3
Behaviors

4 Click the Scripting Syntax Helper button to open the list of LM 1.0 behaviors. Choose the
desired script by its LM 1.0 behavior name, and click OK. The script for the behavior is added to
the Script Editor window, as shown in Figure 3.3. For details on the Scripting Syntax Helper, see
“Scripting Tools” on page 91.

5 Replace any parameters in the script with their required values.

efr e|o|n|=] e o] [w &

- . target.playll;
Selection Functions to ac.. _I N prastis

Sound Functions and pro..
ML Functions and prope...
HMLSocket Functionz on ...
LM 1.0 Behaviors Taken f..
E Change State

H Go to Relative Time Backward 1 fra..
G0 to Relative Time Foward 1 frame
£ Ga to URL

; @0 to label and play

@0 to label and stop

Load Movwie

Run Javascript

Stop &ll Sounds

UnLoad Mavie

‘Wait for download
|

stop E

I

Figure 3.3 Scripting Syntax Helper open to LM 1.0 behaviors with the play behavior selected

To add a script to a movie clip timeline,
1 Navigate to the timeline where you want to add the script keyframe.

2 In the Timeline window, move the current-time marker to the frame to which you want to
add a script. Optionally, click the Labels button (see Figure 3.2), and enter a name for the point
in time where the script will be attached to the timeline.

3 Click the Scripts button on the timeline to create a script keyframe at the current-time marker
and to open the Script Editor.

Note: If a script keyframe already exists on the specified frame, clicking the Scripts button simply
opens the Script Editor.

4 Click the Scripting Syntax Helper button to open the list of LM 1.0 behaviors. Choose the
desired behavior by its LM 1.0 name, and click OK. The script for the behavior is added to the
Script Editor window.

ADOBE LIVEMOTION 2.0 (47
Scripting Guide

5 Replace any parameters with their required values.

Opening scripts

To open a script from a movie clip state,
1 Open the States palette to view movie clip states.
2 In the States palette, select the movie clip state with the script you want to open.

3 Click the Scripts button in the palette. This brings up the Script Editor and displays the script
for that movie clip state in the Script Editor window.

To open a script from the timeline,

1 Locate the script icon for the script you want to view, and double-click.

Deleting scripts

To delete a script from a movie clip state,
1 Open the States palette to view movie clip states.
2 In the States palette, select the movie clip state with the script you want to delete.

3 Click the Scripts button in the palette. This brings up the Script Editor and displays the script
for that movie clip state in the Script Editor window.

4 Select the script implementing the behavior you want to delete, and press Delete.

To delete a script from the timeline,
1 Locate the script icon for the script you want to view, and double-click.

2 Select the script implementing the behavior you want to delete, and press Delete.

48 | CHAPTER 3
Behaviors

How to create the LiveMotion 1.0 behaviors using LiveMotion

2.0 scripts

This section provides details on how you create scripts for LiveMotion 1.0 behaviors. For your
reference, Table 3.1 lists the LiveMotion 1.0 behaviors supported and the LiveMotion 2.0 scripts

to which they map.

Table 3.1

LiveMotion 1.0 Behaviors and their corresponding Player scripts

LM 1.0 Behavior

Player script

Description

Change State

Go to Relative

Time Backward 1

frame

Go to Relative
Time Forward 1
frame

Go to URL

Go to Label
Go to label and
play

Load Movie
Run JavaScript

Stop All Sounds

Unload Movie

nmovi eCl i p. I nSet Current State(state);

movi eC i p. prevFrane();

movi eC i p. next Frame();

get URL(URL, t arget);

movi eCl i p. got oAndSt op(| abel) ;

nmovi eC i p. got oAndPl ay (| abel) ;

| oadMbvi eNun{ URL , nunber) ;

get URL(j avascript:string);

st opAl | Sounds() ;

unl oadMovi eNun{ nunber) ;

Change the state of the
specified movie

Go to the movie clip's rela-
tive time backward 1 frame

Go to the movie clip's rela-
tive time forward 1 frame

Open a URL in the specified
browser window or frame

Go to the specified label
and stop

Go to the specified label
and play

Load the specified URL into
the specified SWF file level

Run the javascript specified

Stop all sounds from play-
ing but do not stop the
movie

Unload the specified movie

ADOBE LIVEMOTION 2.0 |49
Scripting Guide

LM 1.0 Behavior Player script Description
Wait for download i f (_franesl oaded < Loop on a certain label until
| nFr amef Label (1 abel)) something is loaded
{
movi eCl i p. got oAndPIl ay(| abel) ;
}
play nmovi eCl i p. play(); Start playing the specified
movie
stop nmovi eCl i p. stop(); Stop playing the specified
movie

Creating Change State scripts
The Change State script changes the state of the specified movie clip.

To change the state of a movie clip,

1 Navigate to the location where you want to add the state change. See “Adding Scripts” on
page 45.

2 In the Script Editor, click the Scripting Syntax Helper button. Select Change State from the
LM 1.0 behaviors list. The appropriate Player script appears in the Script Editor window:

movi eCl i p. | nSet Current State(state);

3 Replace the arguments described below with the appropriate values. You can use the Compo-
sition Browser in the Script Editor to help fill in the values. For details on using the Script Editor
features, see “Scripting Tools” on page 91.

movi edl i p is the movie clip whose state you want to change.

st at e is a string; the name of the state you want to set.

Creating scripts to manipulate a movie clip timeline

Four scripts can be used to manipulate a timeline. These are:
* Play
« Stop

50| CHAPTER 3
Behaviors

¢ Go To Relative Time
¢ Go To Label
* Go to label and play

The Play and Stop scripts play or stop a specified timeline.You can, for example, add scripts to
the first frame of a composition timeline to stop the timelines of all the movie clips it contains.
Although the movie clip timelines will be stopped, the composition timeline will continue
playing, enabling you to run individual movie clips as needed using the Play script.

In LiveMotion 2.0, the Go To Relative Time scripts only support going forward or backward one
frame; whereas, the LiveMotion 1.0 behavior supported going forward or backward a specified
number of frames. To achieve the same result as Go To Relative Time in LiveMotion 1.0,
however, you can use the Go To Label script.

The Go to Label script moves the animation to a specific label in a timeline and stops the
timeline.

The Go to label and play script sends the playhead of a movie clip’s timeline to the specified
frame or label to play the timeline at that frame.

To add a Play or Stop script,
1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 45.

2 In the Script Editor, click the Scripting Syntax Helper button. Select Stop or Play from the LM
1.0 behaviors list. The appropriate Player script appears in the Script Editor window:

movi eCl i p.stop();

or
nmovi eC i p. play();
3 Replace thenovi ed i p argument described below with the appropriate value. You can use the

Composition Browser in the Script Editor to help fill in this value. For details on using the Script
Editor features, see “Scripting Tools” on page 91.

movi eCl i p is the movie clip you want to start or stop at it's current frame. If the movie clip is
stopping or playing itself, use t hi s for the movie clip, for example,

this.stop();

or

ADOBE LIVEMOTION 2.0 |51
Scripting Guide

this.play();

pl ay() and st op() are movie clip methods that are equivalent in functionality to the respective
LiveMotion 1.0 Play and Stop behaviors.

To add a Go to Relative Time script,
1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 45.

2 Click the Scripting Syntax Helper button. Select Go to Relative Time Backward 1 frame or Go
to Relative Time Forward 1 frame from the LM 1.0 behaviors list. The appropriate Player script
appears in the Script Editor Composition window:

movi eC i p. prevFranme();
or
nmovi eC i p. next Frane() ;

3 Replace thenovi ed i p argument described below with the appropriate value. You can use the
Composition Browser in the Script Editor to help fill in this value. For details on using the Script
Editor features, see “Scripting Tools” on page 91.

movi edl i p is the movie clip you want to move backward or forward 1 frame.

To add a Go to Label script,
1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 45.

2 Click the Scripting Syntax Helper button. Select Go to Label from the LM 1.0 behaviors list.
The Player script appears in the Script Editor Composition window:

nmovi eC i p. got oAndSt op(| abel) ;

Replace the novi el i p and | abel arguments described below with the appropriate values. You
can use the Composition Browser in the Script Editor to help fill in these values. For details on
using the Script Editor features, see “Scripting Tools” on page 91.

movi ed i p is the name of the movie clip that you want to go to | abel and stop.

| abel is a string associated with the frame on the movie clip’s timeline to which the playhead
will be sent and stopped.

Here is an example script with the values filled in:

_root.got oAndSt op("I abel 1");

52| CHAPTER 3
Behaviors

To add a Go to label and play script,
1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 45.

2 Click the ActionScript browser button. Select Go to and play from the LM 1.0 behaviors list.
The Player script appears in the Script Editor Composition window:

nmovi eCl i p. got oAndPI ay(| abel)

3 Replace the novi eCl i p and | abel arguments described below with the appropriate values.
You can use the Composition Browser in the Script Editor to help fill in these values. For details
on using the Script Editor features, see “Scripting Tools” on page 91.

movi ed i p is the name of the movie clip that you want to go to | abel and play.
| abel is a string associated with the frame on the movie clip’s timeline to which the playhead
will be sent to play.

Creating a Wait for download script

The Wait for Download script is a special case of timeline manipulation. It creates a looping
animation that repeats until the specified object has been downloaded. This prevents poor
performance for movie clips that include large objects, or for lengthy and complex movie clips.
This script is used to download SWF files for playing; it is not used for downloading files in the
broader sense of saving files to disk.

To wait for the movie clip to download,

1 Navigate to the location where you want to add the Wait for Download script. See “Adding
Scripts” on page 45.

2 Click the Scripting Syntax Helper button. Select Load Movie from the LM 1.0 behaviors list.
The Player script appears in the Script Editor Composition window:

if (_franesl oaded < | nFrameCf Label (1 abel)

{
nmovi eC i p. got oAndPl ay (| abel) ;

}

| nFrameCf Label () is a global function that sets a label on the timeline indicating the number
of frames that need to be downloaded before the movie clip begins.

ADOBE LIVEMOTION 2.0 |53
Scripting Guide

3 Replace thel abel ,movied ip,and_framesl oaded arguments described below with the
appropriate values. You can use the Composition Browser in the Script Editor to help fill in the
values forl abel and novi eCl i p . For details on using the Script Editor features, see “Scripting
Tools” on page 91.

| abel is a string associated with the frame on the movie clip’s timeline to which the playhead
will be sent to play.

movi eCl i p is the the name of the movie clip that will loop on the label.
_franesl oaded is the number of movie clip frames that have been loaded.

The movie clip plays until the number of frames loaded is equal to or greater than the frame
number upon which the label is located.

Creating scripts to command the Flash Player
Three scripts create commands to the Flash Player. These are:

* Load Movie
* Unload Movie
* Stop All sounds

Load Movie loads and plays a Flash format (SWF) file that can either replace the existing
animation, or play a layer on top of the existing animation. Unload Movie removes an already-
loaded SWF file from the screen. Stop All sounds stops all sounds in the Player, including event
sounds.

To load a movie,

1 Navigate to the location where you want to add the script to load a movie. See “Adding
Scripts” on page 45.

2 Click the Scripting Syntax Helper button. Select Load Movie from the LM 1.0 Behaviors list.
The behavior script appears in the Script Editor Composition window:

| oadMbvi eNun{ URL , nunber) ;
3 Replace the arguments described below with the appropriate values.
URL is the absolute or relative reference to the external SWF file. These are examples:

http://ww. nydomai n. conf | oadedMovi e. swf

54| CHAPTER 3
Behaviors

or

| oadedMovi e. swf

number is a non-negative integer specifying the document level into which the SWF file will be
loaded. Your default composition is considered to be level number 0. If the level already contains
a SWF file, it is replaced by the one being loaded. For details on document level, see “Levels of
SWEF files” on page 77.

To unload a movie,

1 Navigate to the location where you want to add the script to unload a movie. See “Adding
Scripts” on page 45.

2 Click the Scripting Syntax Helper button. Select Unload Movie from the LM 1.0 Behaviors list.
The behavior script appears in the Script Editor Composition window:

unl oadMovi eNum(nunber) ;

3 Replace the argument described below with the appropriate value.

nunber is a non-negative integer specifying the document level of the SWF file to be unloaded.
For details on document levels, see “Levels of SWF files” on page 77.

To stop all sounds,

1 Navigate to the location where you want to add the script to stop all sounds. See “Adding
Scripts” on page 45.

2 Click the Scripting Syntax Helper button. Select Stop All Sounds from the LM 1.0 behaviors
list. The Player script appears in the Script Editor Composition window:

st opAl | Sounds();

Creating scripts to control the web browser

There are two browser command scripts. These are:
* Run JavaScript
* Go to URL

Run JavaScript executes JavaScript code in the user's browser. The Go to URL script opens a
specified URL in the user’s browser and loads it into the browser at the specified target.

ADOBE LIVEMOTION 2.0 |55
Scripting Guide

To run JavaScript,

1 Navigate to the location where you want to add the script to execute JavaScript. See “Adding
Scripts” on page 45.

2 Click the Scripting Syntax Helper button. Select Run JavaScript from the LM 1.0 behaviors
list. The Player script appears in the Script Editor Composition window:

get URL(j avascript:string);

3 Replace thestring argument with the appropriate value , as illustrated by the example
below:

The st ri ng argument begins with:

javascript:

This is followed by the code. Here is a complete example:

get URL("j avascript: window alert('hello world');");

This code displays the string ‘hello world’ in the browser window.

To add a Go to URL script,

1 Navigate to the location where you want to add the Go to URL script. See “Adding Scripts” on
page 45.

2 Click the Scripting Syntax Helper button. Select Go to URL from the LM 1.0 behaviors list.
The Player script appears in the Script Editor Composition window:

get URL(URL, novi ed i p);

3 Replace the novi eCl i p argument described below with the appropriate value. You can use
the Composition Browser in the Script Editor to help fill in these values. For details on using the
Script Editor features, see “Scripting Tools” on page 91.

URL is the URL to which you want to link.
movi ed i p is the desired HTML frame to load or a standard HTML frame type.
Here is an example:

get URL("http://ww. adobe. cont', _parent);

56 | CHAPTER 3
Behaviors

	Behaviors
	Introduction to behaviors
	Working with Player scripts that replace behaviors
	How to create the LiveMotion 1.0 behaviors using LiveMotion 2.0 scripts

