
43
Chapter 3: Behaviors

Introduction to behaviors
This section describes how you can create LiveMotion 1.0 behaviors in LiveMotion 2.0. It is 
meant to help you move on to a new way of looking at what behaviors really are. 

In LiveMotion 1.0, behaviors did everything from playing or stopping a composition to 

downloading a movie clip. Traditionally, behaviors executed when either a movie clip reached a 
certain point on its timeline or when a movie clip entered a certain state. In LiveMotion 2.0, 
behaviors have evolved into Player scripting code. To assist you in your transition to writing 
scripts, this section explains where you can add Player scripts and the implications of adding the 
scripts in these locations. It provides an overview of how to add, open, and remove scripts. Then 
for each LiveMotion 1.0 behavior, the section provides a procedure for implementing it in 

LiveMotion 2.0. As additional help, you are provided guidance using the Scripting Syntax Helper 
to access the LiveMotion 1.0 behaviors and the LiveMotion 2.0 code to which each behavior 
maps.

Even if you are new to LiveMotion, it will benefit you to read this section to learn how 
LiveMotion 1.0 behaviors are implemented in Player scripting, because you can incorporate 
their functionality into any Player scripts that you write. You are not required to know anything 

about LiveMotion 1.0 behaviors to create the examples in this chapter, which can instead serve 
as simple examples to start you down the road to Player scripting

Working with Player scripts that replace behaviors
This section provides procedures for adding, opening, and deleting scripts.

Note: In LiveMotion 2.0, you also can write scripts to handle events. Event handling was made 
possible in LiveMotion 2.0 because of its support for Player scripting. For details on creating event 
handlers, see “Movie Clip Events and Event Handlers” on page 79.

The effect of writing scripts to movie clip timelines versus movie clip states
You can write Player scripts to movie clip timelines or to movie clip states, depending on the 

effect that you are after. To prepare you for working with Player scripts, you should understand 
these concepts:



CHAPTER 344
Behaviors
• Timelines have script keyframes (that is, script icons on timeline frames)

• States have timelines

When you write a script to a movie clip timeline, you write that script to a specific timeline 
frame. The frame is called a script keyframe. During execution in of the .liv file in Preview 

mode or on export of the SWF file to a browser, the script keyframe executes at a predictable 
point in the lifetime of the move clip, and that is, when the playhead reaches that script keyframe. 
A timeline can have multiple script keyframes, and each script keyframe can have one to several 
scripts written to it. 

All objects have a normal state by default. You also can define states for a movie clip (such as over, 
down, out) in the States palette. Each movie clip state is provided with its own independent 

timeline. When you write a script to a state that you define, it executes only when the user 
activates that state, not at a predefined point in a movie clip’s lifetime. Say, for example, the user 
presses the mouse on a movie clip for which you have defined a down state. This would activate 
any script you may have written for that state. You can write scripts to any or all states that you 
define for a movie clip. You also can write multiple scripts to the timeline of a single defined state. 

Accessing Player scripts
You can access Player scripts from:

• Script keyframes (that is, script icons on frames) in a timeline. Clicking the script keyframe 
opens the Script Editor and displays the script attached to that frame on the timeline.

• The Scripts button towards the bottom of the States palette. Clicking the scripts button opens 
the Script Editor on the state currently selected in the States palette. 

In LiveMotion 1.0, the Scripts button was called the Behaviors button. For your general 

reference, Figure 3.1 shows the LiveMotion 1.0 Behaviors button in a timeline and in the 
Rollovers palette. It also shows a keyframe in a timeline. 

 



45ADOBE LIVEMOTION 2.0
Scripting Guide
Figure 3.1 LiveMotion 1.0 Timeline window and Rollovers palette

Figure 3.2 shows the corresponding LiveMotion 2.0 Scripts button in a timeline and in the States 
palette. It also shows a script keyframe in a timeline.

Figure 3.2 LiveMotion 2.0 Timeline window and States palette

(Advanced users) You can also access Player scripts by selecting Scripts>Editor from the main 
menu. Alternately, you can use the keyboard shortcut Ctrl + J (Windows) or Command + J 

(Mac OS). Then, double click the movie clip whose script you want to access in the Script 
Editor’s Navigator. This takes you to that movie clip's scripts, but not necessarily to the script that 
you want.  You must then navigate to the event, state, or script keyframe containing the script 
you want to access. For details on using the Navigator, see “Scripting Tools” on page 91.

Adding Scripts

To add a script to a movie clip state,

Note: The first three steps to add a script to a movie clip state also open a script on a state. Compare 
steps 1 to 3 below to the procedure in “To open a script from a movie clip state,” on page 47.

1 Open the States palette to view the movie clip states.

2 In the States palette, select the movie clip state to which you want to add a script.

3 Click on the Scripts button in the palette. See Figure 3.2. This opens the Script Editor and 

displays the window in which you can add a script that will be attached to that movie clip state



CHAPTER 346
Behaviors
4 Click the Scripting Syntax Helper button to open the list of LM 1.0 behaviors. Choose the 
desired script by its LM 1.0 behavior name, and click OK. The script for the behavior is added to 
the Script Editor window, as shown in Figure 3.3. For details on the Scripting Syntax Helper, see 
“Scripting Tools” on page 91.

5 Replace any parameters in the script with their required values.

Figure 3.3 Scripting Syntax Helper open to LM 1.0 behaviors with the play behavior selected

To add a script to a movie clip timeline,

1 Navigate to the timeline where you want to add the script keyframe.

2 In the Timeline window, move the current-time marker to the frame to which you want to 
add a script. Optionally, click the Labels button (see Figure 3.2), and enter a name for the point 
in time where the script will be attached to the timeline.

3 Click the Scripts button on the timeline to create a script keyframe at the current-time marker 
and to open the Script Editor. 

Note: If a script keyframe already exists on the specified frame, clicking the Scripts button simply 

opens the Script Editor. 

4 Click the Scripting Syntax Helper button to open the list of LM 1.0 behaviors. Choose the 
desired behavior by its LM 1.0 name, and click OK. The script for the behavior is added to the 
Script Editor window. 



47ADOBE LIVEMOTION 2.0
Scripting Guide
5 Replace any parameters with their required values.

Opening scripts

To open a script from a movie clip state,

1 Open the States palette to view movie clip states.

2 In the States palette, select the movie clip state with the script you want to open.

3 Click the Scripts button in the palette. This brings up the Script Editor and displays the script 
for that movie clip state in the Script Editor window.

To open a script from the timeline,

1 Locate the script icon for the script you want to view, and double-click.

Deleting scripts

To delete a script from a movie clip state,

1 Open the States palette to view movie clip states.

2 In the States palette, select the movie clip state with the script you want to delete.

3 Click the Scripts button in the palette. This brings up the Script Editor and displays the script 
for that movie clip state in the Script Editor window.

4 Select the script implementing the behavior you want to delete, and press Delete. 

To delete a script from the timeline,

1 Locate the script icon for the script you want to view, and double-click.

2 Select the script implementing the behavior you want to delete, and press Delete.



CHAPTER 348
Behaviors
How to create the LiveMotion 1.0 behaviors using LiveMotion 
2.0 scripts
This section provides details on how you create scripts for LiveMotion 1.0 behaviors. For your 
reference, Table 3.1 lists the LiveMotion 1.0 behaviors supported and the LiveMotion 2.0 scripts 
to which they map.

Table 3.1 LiveMotion 1.0 Behaviors and their corresponding Player scripts

LM 1.0 Behavior Player script Description

Change State movieClip.lmSetCurrentState(state); Change the state of the 
specified movie

Go to Relative 
Time Backward 1 
frame

movieClip.prevFrame(); Go to the movie clip's rela-
tive time backward 1 frame

Go to Relative 
Time Forward 1 
frame

movieClip.nextFrame(); Go to the movie clip's rela-
tive time forward 1 frame

Go to URL getURL(URL,target); Open a URL in the specified 
browser window or frame

Go to Label movieClip.gotoAndStop(label); Go to the specified label 
and stop

Go to label and 
play

movieClip.gotoAndPlay(label); Go to the specified label 
and play

Load Movie loadMovieNum(URL ,number); Load the specified URL into 
the specified SWF file level 

Run JavaScript getURL(javascript:string); Run the javascript specified

Stop All Sounds stopAllSounds(); Stop all sounds from play-
ing but do not stop the 
movie

Unload Movie unloadMovieNum(number); Unload the specified movie



49ADOBE LIVEMOTION 2.0
Scripting Guide
Creating Change State scripts
The Change State script changes the state of the specified movie clip.

To change the state of a movie clip,

1 Navigate to the location where you want to add the state change. See “Adding Scripts” on 
page 45.

2 In the Script Editor, click the Scripting Syntax Helper button. Select Change State from the 
LM 1.0 behaviors list. The appropriate Player script appears in the Script Editor window:

movieClip.lmSetCurrentState(state);

3 Replace the arguments described below with the appropriate values. You can use the Compo-
sition Browser in the Script Editor to help fill in the values. For details on using the Script Editor 
features, see “Scripting Tools” on page 91.

movieClip is the movie clip whose state you want to change.

state is a string; the name of the state you want to set.

Creating scripts to manipulate a movie clip timeline
Four scripts can be used to manipulate a timeline. These are:

• Play

• Stop

Wait for download if (_framesloaded < 

lmFrameOfLabel(label)) 

{ 

   movieClip.gotoAndPlay(label); 

}

Loop on a certain label until 
something is loaded

play movieClip.play(); Start playing the specified 
movie

stop movieClip.stop(); Stop playing the specified 
movie

LM 1.0 Behavior Player script Description



CHAPTER 350
Behaviors
• Go To Relative Time

• Go To Label

• Go to label and play

The Play and Stop scripts play or stop a specified timeline.You can, for example, add scripts to 
the first frame of a composition timeline to stop the timelines of all the movie clips it contains. 
Although the movie clip timelines will be stopped, the composition timeline will continue 
playing, enabling you to run individual movie clips as needed using the Play script.

In LiveMotion 2.0, the Go To Relative Time scripts only support going forward or backward one 
frame; whereas, the LiveMotion 1.0 behavior supported going forward or backward a specified 
number of frames. To achieve the same result as Go To Relative Time in LiveMotion 1.0, 
however, you can use the Go To Label script.

The Go to Label script moves the animation to a specific label in a timeline and stops the 
timeline. 

The Go to label and play script sends the playhead of a movie clip’s timeline to the specified 
frame or label to play the timeline at that frame. 

To add a Play or Stop script,

1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 45.

2 In the Script Editor, click the Scripting Syntax Helper button. Select Stop or Play from the LM 
1.0 behaviors list. The appropriate Player script appears in the Script Editor window:

movieClip.stop();

or

movieClip.play();

3 Replace the movieClip argument described below with the appropriate value. You can use the 
Composition Browser in the Script Editor to help fill in this value. For details on using the Script 
Editor features, see “Scripting Tools” on page 91.

movieClip is the movie clip you want to start or stop at it's current frame. If the movie clip is 
stopping or playing itself, use this for the movie clip, for example,

this.stop();

or



51ADOBE LIVEMOTION 2.0
Scripting Guide
this.play();

play() and stop() are movie clip methods that are equivalent in functionality to the respective 
LiveMotion 1.0 Play and Stop behaviors.

To add a Go to Relative Time script,

1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 45.

2 Click the Scripting Syntax Helper button. Select Go to Relative Time Backward 1 frame or Go 
to Relative Time Forward 1 frame from the LM 1.0 behaviors list. The appropriate Player script 
appears in the Script Editor Composition window:

movieClip.prevFrame();

or

movieClip.nextFrame();

3 Replace the movieClip argument described below with the appropriate value. You can use the 
Composition Browser in the Script Editor to help fill in this value. For details on using the Script 
Editor features, see “Scripting Tools” on page 91.

movieClip is the movie clip you want to move backward or forward 1 frame.

To add a Go to Label script,

1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 45.

2 Click the Scripting Syntax Helper button. Select Go to Label from the LM 1.0 behaviors list. 
The Player script appears in the Script Editor Composition window:

movieClip.gotoAndStop(label); 

Replace the movieClip and label arguments described below with the appropriate values. You 

can use the Composition Browser in the Script Editor to help fill in these values. For details on 
using the Script Editor features, see “Scripting Tools” on page 91.

movieClip is the name of the movie clip that you want to go to label and stop.

label is a string associated with the frame on the movie clip’s timeline to which the playhead 
will be sent and stopped.

Here is an example script with the values filled in:

_root.gotoAndStop("label1");



CHAPTER 352
Behaviors
To add a Go to label and play script,

1 Navigate to the location where you want to add the script. See “Adding Scripts” on page 45.

2 Click the ActionScript browser button. Select Go to and play from the LM 1.0 behaviors list. 
The Player script appears in the Script Editor Composition window:

movieClip.gotoAndPlay(label)

3 Replace the movieClip and label arguments described below with the appropriate values. 

You can use the Composition Browser in the Script Editor to help fill in these values. For details 
on using the Script Editor features, see “Scripting Tools” on page 91.

movieClip is the name of the movie clip that you want to go to label and play.

label is a string associated with the frame on the movie clip’s timeline to which the playhead 
will be sent to play. 

Creating a Wait for download script
The Wait for Download script is a special case of timeline manipulation. It creates a looping 
animation that repeats until the specified object has been downloaded. This prevents poor 
performance for movie clips that include large objects, or for lengthy and complex movie clips. 

This script is used to download SWF files for playing; it is not used for downloading files in the 
broader sense of saving files to disk.

To wait for the movie clip to download,

1 Navigate to the location where you want to add the Wait for Download script. See “Adding 
Scripts” on page 45.

2 Click the Scripting Syntax Helper button. Select Load Movie from the LM 1.0 behaviors list. 
The Player script appears in the Script Editor Composition window:

if (_framesloaded < lmFrameOfLabel(label)
{ 
   movieClip.gotoAndPlay(label); 
}

lmFrameOfLabel() is a global function that sets a label on the timeline indicating the number 
of frames that need to be downloaded before the movie clip begins.



53ADOBE LIVEMOTION 2.0
Scripting Guide
3 Replace the label , movieClip , and _framesloaded arguments described below with the 
appropriate values. You can use the Composition Browser in the Script Editor to help fill in the 
values forlabel and movieClip . For details on using the Script Editor features, see “Scripting 
Tools” on page 91.

label is a string associated with the frame on the movie clip’s timeline to which the playhead 
will be sent to play.

movieClip is the the name of the movie clip that will loop on the label.

_framesloaded is the number of movie clip frames that have been loaded.

The movie clip plays until the number of frames loaded is equal to or greater than the frame 
number upon which the label is located.

Creating scripts to command the Flash Player
Three scripts create commands to the Flash Player. These are:

• Load Movie 

• Unload Movie

• Stop All sounds

Load Movie loads and plays a Flash format (SWF) file that can either replace the existing 

animation, or play a layer on top of the existing animation. Unload Movie removes an already-
loaded SWF file from the screen. Stop All sounds stops all sounds in the Player, including event 
sounds.

To load a movie,

1 Navigate to the location where you want to add the script to load a movie. See “Adding 
Scripts” on page 45.

2 Click the Scripting Syntax Helper button. Select Load Movie from the LM 1.0 Behaviors list. 
The behavior script appears in the Script Editor Composition window:

loadMovieNum(URL ,number);

3 Replace the arguments described below with the appropriate values. 

URL is the absolute or relative reference to the external SWF file. These are examples:

http://www.mydomain.com/loadedMovie.swf



CHAPTER 354
Behaviors
or

loadedMovie.swf

number is a non-negative integer specifying the document level into which the SWF file will be 
loaded. Your default composition is considered to be level number 0. If the level already contains 
a SWF file, it is replaced by the one being loaded. For details on document level, see “Levels of 

SWF files” on page 77.

To unload a movie,

1 Navigate to the location where you want to add the script to unload a movie. See “Adding 
Scripts” on page 45.

2 Click the Scripting Syntax Helper button. Select Unload Movie from the LM 1.0 Behaviors list. 
The behavior script appears in the Script Editor Composition window:

unloadMovieNum(number);

3 Replace the argument described below with the appropriate value. 

number is a non-negative integer specifying the document level of the SWF file to be unloaded. 
For details on document levels, see “Levels of SWF files” on page 77.

To stop all sounds,

1 Navigate to the location where you want to add the script to stop all sounds. See “Adding 
Scripts” on page 45.

2 Click the Scripting Syntax Helper button. Select Stop All Sounds from the LM 1.0 behaviors 
list. The Player script appears in the Script Editor Composition window:

stopAllSounds();

Creating scripts to control the web browser
There are two browser command scripts. These are:

• Run JavaScript

• Go to URL 

Run JavaScript executes JavaScript code in the user's browser. The Go to URL script opens a 
specified URL in the user’s browser and loads it into the browser at the specified target.



55ADOBE LIVEMOTION 2.0
Scripting Guide
To run JavaScript,

1 Navigate to the location where you want to add the script to execute JavaScript. See “Adding 
Scripts” on page 45.

2 Click the Scripting Syntax Helper button. Select Run JavaScript from the LM 1.0 behaviors 
list. The Player script appears in the Script Editor Composition window:

getURL(javascript:string);

3 Replace the string argument with the appropriate value , as illustrated by the example 
below:

The string argument begins with: 

javascript: 

This is followed by the code. Here is a complete example: 

getURL("javascript: window.alert('hello world');"); 

This code displays the string ‘hello world’ in the browser window. 

To add a Go to URL script,

1 Navigate to the location where you want to add the Go to URL script. See “Adding Scripts” on 
page 45.

2 Click the Scripting Syntax Helper button. Select Go to URL from the LM 1.0 behaviors list. 
The Player script appears in the Script Editor Composition window:

getURL(URL,movieClip);

3 Replace the movieClip argument described below with the appropriate value. You can use 
the Composition Browser in the Script Editor to help fill in these values. For details on using the 
Script Editor features, see “Scripting Tools” on page 91.

URL is the URL to which you want to link.

movieClip is the desired HTML frame to load or a standard HTML frame type. 

Here is an example:

getURL("http://www.adobe.com", _parent);



CHAPTER 356
Behaviors


	Behaviors
	Introduction to behaviors
	Working with Player scripts that replace behaviors
	How to create the LiveMotion 1.0 behaviors using LiveMotion 2.0 scripts


