How to do Everything With LiveMotion
Chapter 16
03/06/02

(cn)Chapter 16

(ct)Advanced Animation Techniques

Now that you’ve mastered creating objects with LiveMotion’s great drawing tools, understand how to make movie clips and movie clip groups, and have gotten some good practice in using timelines and keyframes for making basic animations, let’s take it a few steps further. In this chapter, you’ll see how much fun it is to combine all those techniques to produce complex animations and sophisticated motion effects. You’ll learn to enclose animations inside other animations, pause and restart animations automatically, build long movies with short timelines, animate masks, make animations run backwards, build invisible buttons into your animations, construct a modular animated menu system, make objects move along paths, and change the length of time it takes for animations to play.

All the exercises in this chapter a geared towards export to the Flash (.swf) format. The techniques we’ll show you are designed not only to make your workflow faster and easier, but also to optimize your movies for downloading from the Web, and for efficient performance in the Flash player. Along the way, we’ll point out some pitfalls to be avoided, you’ll use many of LiveMotion’s time-saving features, and you’ll become comfortable with the essentials of ActionScripting.

(1)Walking the Dog

Even the simplest animated cartoon is built from several elements that move independently from, but in concert with, one another. For example, a cartoon of a dog walking across the screen involves four legs that may move in a similar motion, but not all at the same time—they are four distinct animations. The dog might wag his tail as he walks, which is a separate animation from any of the legs, so that makes five simple animations. Now, here’s the challenge: those five animations are all part of one dog, and we want the entire dog to move across the screen without leaving any bits and pieces behind. Trying to do that by setting position keyframes for each animated object gets complicated in a big hurry. The solution is simply to enclose those five animations inside the animation that moves the position of the whole dog. That’s done by making the individual animations movie clip groups, and then nesting their independent timelines inside the dog’s timeline to make a complex animation. It’s a simple but very powerful technique we’ll use throughout this chapter.

Let’s start by creating a new composition, 500 pixels wide by 150 pixels high, and setting its frame rate to 24. Save the file, as we’ll be using it to demonstrate quite a few techniques.

(2)Let’s Make Some Dog Parts

As even the briefest glimpse of Figure 16-1 will reveal, this is going to be a very artistic dog. Feel free to create your own dog parts however you like, of course, but do group the various shapes together sensibly, and give each group a sensible name so you’ll be able to keep track of what’s what later. If you plan on exporting as a Flash movie when you’re done, it’s usually best to stick to vector objects whenever possible, so steer clear of the Layers palette (objects with more than one layer export to Flash as bitmaps). In this example, the shape outlines are just duplicated shapes, filled with black, stacked behind their originals, and bumped up a few pixels in size using the Transform palette. The shadow is a black rectangle with a radial opacity gradient. Voilá! All-vector dog parts.

Figure 1: Dog parts and their stacking order

You’ll be animating rotation of the legs and tail, so it’s important to move the anchor point of each leg and the tail to the place about which you want rotation to occur. To do that, hold down Ctrl (Windows) or Cmd (Macintosh) as you use the Select tool to drag the hollow square from the middle of the first completed leg group to just below the top of the leg. Duplicate the first leg group three times to make the other legs with the anchor point already positioned. For the tail, you can use the Transform Tool Live Tab to automatically move its anchor point exactly to its base.

When you have all the parts finished, set their stacking order as shown in the Timeline window in Figure 16-1, and drag the parts into place to form the whole dog. Select all the parts and group them one more time. The entire dog is now one object you’ll be able to move across the screen as a single element.

Illustration 1
(2)Animating the Parts

Before doing any animating of dog parts, you’ll need to set up a timeline to hold the necessary keyframes for the leg and tail animations. The composition timeline isn’t good for that in this case, because that’s where the movement of the dog as a whole will take place. Here’s how:

1. Select the dog and click the Make selected objects movie clips button at the bottom of the timeline window. You already grouped all the parts into the whole dog, so it’s now a movie clip group. If you had clicked the Group and make movie clip button instead, you’d have ended up with the dog group enclosed in a new movie clip group, which isn’t what you want. Be sure you understand the difference.

2. Double-click the dog movie clip group in the timeline window to dive down into its independent timeline.

3. Stretch the timeline out to 16 frames (three-quarters of a second). The duration bars of all objects in the dog group should follow along.

Illustration 2
Now you’re finally ready to get some keyframing done and make some action happen, right? But wait! Not so fast. There’s a very important thing you need to know about animating grouped objects in Flash movies, and those legs are grouped objects.

Groups in LiveMotion are a convenient way of keeping objects together so you can move them around, change their stacking order, and animate them as if they were single elements—but they are not single elements to the Flash player, which doesn’t recognize groups at all. LiveMotion gets around this by distributing any animation you apply to a whole group to each element in the group upon export to Flash. If you have five objects in a group and set five keyframes, for instance, LiveMotion must export 25 keyframes in order for the player to render the animation as you intended. That extra data can add quite a bit to the filesize of your movie, and definitely puts a lot of unnecessary load on the viewer’s computer processor, often resulting in slow, jerky play.

Fortunately, there’s a very simple solution: make any and all groups you intend to animate movie clips, even when there’s no need for another independent timeline. A movie clip is a single object to the Flash player, no matter how many objects are contained in it. Computer processors the world over will thank you for remembering this.

It’s just fine to leave groups that won’t be animated as plain groups. So, for out next step:

4. Select each leg group and make it a movie clip. In our example, the tail is a single object, so there’s no need to make it a movie clip for now, but if your dog has a splendid, multiple-object tail, please do so.

5. In the timeline window, select the right front leg and click its twirly to access its Transform properties.

6. Make sure the Current Time Marker is in the first frame of the timeline, and rotate the right front leg movie clip about 15 degrees. It’s easiest to do this in the Transform palette.

7. Click the Rotation stopwatch to set a keyframe.

8. Move the Current Time Marker to one frame beyond the end of the timeline; frame 17, in our example. Click the checkbox to set a second, identical Rotation keyframe there. The reason for setting it one frame beyond the end of the timeline is that you’ll be looping the animation, and you don’t want the rotation at first and last frames to be identical; that would look like a one-frame pause when the animation is played. The same principle applies to any sort of keyframe whenever you loop a timeline, not just rotation.

9. Move the Current Time Marker to the middle of the timeline and rotate the leg –15 degrees or so.

10. Repeat steps 5 through 9 for the other three legs, but reverse the rotation for the right rear leg and left front leg so they rotate in opposite directions.

11. Animate the rotation of the tail in a similar way. We also reduced the vertical scale of the tail a bit at the start and end keyframes to add a little perspective to the cartoon. The tail will appear to wag away from the viewer at the first frame and towards the viewer in the middle of the timeline.

12. LiveMotion’s default mode for keyframes is Auto Bezier, which is usually undesirable when animating scale. Therefore, select the three scale keyframes (you can “lasso” multiple keyframes by drawing a marquee around them with the Select tool, or you can Shift-Click them) and select Linear from the Timeline menu.

13. Step back up to the composition timeline, select the dog movie clip and loop it with the Loop button at the bottom of the timeline. Save the file and preview. The legs and tail should move continually.

Here’s how our dog and keyframes came out so far:

Illustration 3
(2)Moving the Whole Dog

Now you’ve got your dog walking and wagging, but he doesn’t seem to be going anywhere. A common technique for giving the appearance of motion is to have background objects move in the opposite direction as if the viewer were traveling along with the dog, but for the purposes of this exercise, we want the dog itself to move. Because the dog is a movie clip group and can be treated as a single element, that’s perfectly simple to do.

1. Stretch the composition timeline out to four seconds or so. The dog movie clip duration bar should follow along. If it doesn’t stretch it out to match.

2. Position the Current Time Marker at the first frame of the composition timeline and drag the dog so it’s just off the left edge of the canvas.

3. Set a Position keyframe for the dog movie clip.

4. Move the Current Time Marker to the last frame of the composition timeline.

5. Drag the dog so it’s just off the right edge of the canvas. If you want to ensure that the dog moves horizontally only, hold down Shift as you drag.

6. Save the file and preview.

Congratulations! Knowing how to nest timelines is a big step. It’s at the heart of creating complex animations. You can have however many levels of nesting are necessary for any particular animation you wish to accomplish. While this technique might seem a little bit complicated at first glance, it’s actually much simpler than trying to do everything in a single timeline, and also greatly improves playback performance.

(1)Pausing and Restarting Animations Automatically

Now that you’ve created such a lovely and artistic cartoon dog, it seems a shame not to give the viewer a longer look at him. As you develop the story line for your cartoon, you might decide to have your dog stop mid-screen to examine a fire hydrant, and then move on after a few seconds. You could do that by adding those seconds and two more position keyframes to the composition timeline, but for long movies, there’s a better way. No one enjoys working with timelines that are several minutes long, for one thing.

The answer is to build a delay machine that stops, and then restarts, the timeline after a set interval has elapsed. There are all sorts of useful timeline-based machines; their uses are limited only by your ingenuity. They are all built around the same concept: the empty movie clip (also known as a process clip or a controller clip). So, you might well wonder, what on earth is an empty movie clip, and how do I make one?

An empty movie clip is just what its name implies: an independent timeline that does not contain an object. Its purpose is to house script keyframes used to control other timelines. You’ve already been introduced to LiveMotion’s Script Editor, so don’t worry if you don’t know advanced ActionScript yet—we’ll stick to just a few very simple commands for now.

(2)Building and Using a Delay Machine

Here’s the overall plan. When our dog gets to the place where we want him to pause, we’ll stop the composition timeline and simultaneously fire off the delay machine, which will have a three-second independent timeline. When the delay machine reaches the end if its timeline, it restarts the composition timeline. Onwards!

1. Begin by positioning the Current Time Marker at the midpoint of the composition timeline, or wherever you want your dog to pause.

2. Unfortunately, we can’t just create a movie clip out of nothing, not even an empty movie clip. We first need an object to turn into a movie clip, but because we’ll end up discarding the object, any object will do. So, choose the Rectangle tool and click once anywhere in the main composition, on- or off-canvas (any other drawing tool would do equally well).

3. With the new object selected, click the Group and make movie clip button at the bottom of the timeline window. You now have a Group of 1 objects named in the timeline.

4. Dive down into Group of 1 objects’ independent timeline, select the Rectangle object (or whatever object you used as a basis for the clip), and delete it. You now have a Group of 0 objects. TaaDaa! You’ve made an empty movie clip.

5. Rename the clip “delay_mach.” Spaces are not scripted clips, so be sure to include the underscore character.

6. Pull delay_mach’s timeline out to three seconds.

7. Position the Current Time Marker over the last frame of delay_mach’s timeline, and click the Script icon to place a script keyframe at that point. The Script Editor will automatically pop up.

8. In the script pane, key in _root.play(); exactly, including the semicolon. The composition timeline may always be addressed as “_root” from any movie clip. This is the command that will restart the animation, obviously.

9. Close the Script Editor.

10. Now let’s stop the composition timeline. Navigate back up a level to the main composition, place the Current Time Marker at the stopping point (which is also the first point where delay_mach exists), and add a script keyframe. Key in _root.stop(); and close the Script Editor once again.

11. Save the file and preview.

Success! Well, sort of success. The dog stops and starts moving just as expected, but he looks pretty goofy with his legs still rotating away. Unless your story line includes having your dog lose traction on an ice patch, you’ll want to fix that. Happily, this just takes a few more ActionScript commands.

Open the Script Editor, navigate to the script keyframe in the composition timeline, and on the next line under the existing _root.stop();, key in dog.stop();. Next, navigate to the script keyframe in the delay_mach timeline, and on the line under _root.play();, key in _root.dog.play();. Close the Script Editor and preview.

Much better! But wouldn’t it be best of all if the dog kept wagging his tail, even when stopped? That’s easy too. Dive down into the dog movie clip’s timeline and select the tail object. Click the Group and make movie clip button at the bottom of the timeline. Rename the resulting Group of 1 objects “tail_anim,” then dive down one level further into that timeline. You’ll see that the rotation and scale keyframes are still there. Adjust the length of the timeline so both it and the tail object’s duration bar end at frame 16, as they originally did (one frame short of the last set of keyframes, then loop the timeline.

Loop the tail_anim movie clip group—now that it has its own timeline, the overall dog loop no longer applies to it. It’s now ready to wag on forever unless you take some action to stop it. Save the file and preview again.

Now you’ve got a truly complex animation happening. The dog movie clip is animated in the composition timeline, the four leg movie clips run nested inside the dog movie clip, and you have the tail animation nested in a movie clip group one level below that. You’ve made a script keyframe that stops both the composition and the dog movie clip, and you’ve created an empty movie clip that starts everything up again after a set delay. Not too shabby!

(2)Reusing the Delay Machine

We deliberately played a tiny little trick on you to illustrate a point. There’s absolutely nothing wrong with the dog cartoon as it now stands, but we haven’t made the delay machine properly flexible. You can easily change the point where the dog stops by dragging the script keyframe earlier or later in the composition timeline, and then positioning delay_mach to match—but what if you want to stop the dog twice? You’re stuck.

The solution is to put all the scripting that starts and stops the various timelines right into the delay machine itself, using script keyframes in the composition timeline only to play the delay machine whenever it’s needed. It’s very good practice to make your scripts and empty movie clips reusable whenever possible. So, let’s modify the cartoon to make life easier on ourselves.

1. Delete the script keyframe from the composition timeline (this removes its script from the Script Editor as well).

2. The delay machine should be available throughout the entire composition, so drag its timeline so it begins at the composition’s first frame and ends at the last frame. Note that you haven’t changed the length of delay_mach’s independent timeline; rather, you’ve just made that movie clip group exist for the entire duration of the cartoon.

3. Dive down into delay_mach’s timeline and create a script keyframe in that timeline’s first frame. Key in this.stop();. This will prevent delay_mach from launching off on its own and introducing a three-second delay as our cartoon is just starting.

4. Add a label to delay_mach’s first frame. Name it frame1.

5. Add a script keyframe in the second frame of delay_mach’s timeline. Key in _root.stop();, and on the next line _root.dog.stop();.

6. In the Script Editor, navigate to the script keyframe in delay_mach’s last frame. You’ve already entered two commands there to restart the composition and the dog movie clip group. On the third line, key in this.gotoAndStop(“frame1”);. This will reset the delay machine for a second (or third, or fourth) use.

Now you can pause the dog’s travel across screen by simply adding script keyframes to the composition timeline, using the delay_mach.play(); method as many times as your story line requires.

Try it out. It’s pretty cool, isn’t it? Save the file for future reference—we’re done with our dog cartoon exercise.

You may have noticed that there’s one small glitch in the delay machine. We can’t put the script keyframe that stops the animations in the first frame of the delay machine, because we need that frame to stop the delay machine itself. If we added the animation-stopping commands there, the movie would never play. Therefore, there’s a one-frame lag between the command to play delay_mach and stopping the animations. This will not be noticeable to your movie’s viewers, even at slow frame rates, but if you must have extreme precision in timing, simply move the script keyframes in the composition timeline one frame earlier.

Just on the off chance that you think building a delay machine just to stop a cartoon dog in its tracks is more work than it’s worth, you might have a point. It is a bit like hunting houseflies with a howitzer. Delay machines are extremely powerful devices, as you’ll discover in our next section.

(1)Delay Machines in Slide Shows and Presentations

LiveMotion is a fine tool for producing animated slide shows and presentations if used wisely. It’s so easy to use for those purposes that less-experienced designers tend to keep stretching out the composition timeline in order to fit in all of a show’s content. The result is that the composition rapidly becomes unwieldy to work with. Performance within LiveMotion becomes slower and slower as more frames are added to the composition, and the size of the exported Flash file balloons alarmingly.

Let’s see how our humble delay machine can save the show.

(2)Example 1: A Simple Slide Show

Imagine a simple slide show that consists of five images. Each image flies in from the left edge of the canvas to the center of the screen, pauses there, and then flies out to the right. Each fly-in and each fly-out takes one second, each image stays center-screen for five seconds, and each fly-in begins hard on the heels of the preceding fly-out. Add this up, and you already have a 35-second timeline for only five slides. At 30 frames-per-second, that’s 1050 frames to export, each frame adding to the size of the file.

Now imagine it using a five-second delay machine. The first slide flies in, and at the point where it reaches center screen, a script keyframe plays the delay machine. The composition timeline stops and the slide stays right where it is—there’s no need for five seconds-worth of frames in the composition timeline. After five seconds, the delay machine restarts the timeline, which plays until the second slide reaches the center. A second script keyframe plays the delay machine, and so on.

Each slide now only takes up two seconds of timeline instead of seven, so the timeline has gone from 35 seconds down to 10. At 30 frames-per-second, that’s 300 frames, plus 150 frames in the delay machine, for a total of 450 instead of 1050. The more slides you have, the more dramatic the savings become.

(2)Let’s Try it Out

For simplicity’s sake, we’ll just use colored squares instead of real images. Begin by opening a new composition, 500 pixels wide by 150 pixels high, and setting the frame rate to 30 frames per second.

1. Draw one rectangle, 200 pixels wide by 150 pixels high, and center it vertically on canvas (you can do this by setting the rectangle’s “x” property to 0 in the Transform palette).

2. Duplicate the rectangle four times, filling each with a different color. Do not change the position of any of them yet.

3. Select all five rectangles and drag them just off the left edge of the canvas. Hold down Shift while you drag to maintain vertical position.

4. Pull the composition timeline out to two seconds. The duration bars of the rectangles will also stretch out to match.

5. Select the rectangles in the timeline, and click the Implicit/Explicit button at the bottom of the Timeline window. The shape of the end handles of the duration bars will change from rounded to slanted, indicating that you’ve made them explicit.

6. Stretch the composition timeline the rest of the way out to ten seconds. Because they are now explicit, the duration of the rectangles will not change. Each one need only exist for two seconds, as you’ll see.

7. With all five rectangles selected and the Current Time Marker in the first frame of the composition, expand any one rectangle’s Transform attributes and set a position keyframe. This will also set a keyframe for all the rectangles. Leave all the rectangles selected.

8. Move the Current Time Marker to the two-second point, and drag all the rectangles so they’re just off the right edge of the canvas. LiveMotion will automatically set a second position keyframes for all the rectangles. Now you can deselect them.

9. Leave the first rectangle right where it is. Grab the second rectangle’s duration bar anywhere in the pink area between the end handles, and drag it so it exists from two seconds to four seconds in the timeline. Its position keyframes will come along for the ride.

10. Repeat for the remaining three rectangles, so that each begins right where the previous one ends. See Figure 16-2.

11. Preview the animation you just created.

All that remains is to add the delay machine, which will pause each “slide” center-screen, but first, let’s pause for a moment ourselves and review what just happened. By using the Implicit/Explicit feature the way you did, you didn’t have to drag each object’s duration bar to the desired length individually. You set a single keyframe, and LiveMotion automatically applied it to the other selected objects, as it did to the second keyframe, which it even created for you. Finally, when you dragged the objects in the timeline by the pink area of their duration bars, the keyframes for each object also moved automatically. What great time-saving features! Be sure to remember these, and add them to your skill set.

Now let’s build the delay machine, exactly as we did for our dog cartoon:

12. Add a disposable object to the composition.

13. Make the object a movie clip group.

14. Delete the disposable object.

15. Rename the clip “delay_mach.”

16. Stretch its timeline out to five seconds, plus one frame (remember, it will only stop the timeline from the delay machine’s second frame, so we add one to get a delay of exactly five seconds).

17. Create a label named “frame1” in frame one.

18. Add a script keyframe to stop the delay machine in frame one.

19. Add a script keyframe to stop the composition in frame two.

20. Add a script keyframe in the last frame to play the composition, and to send the delay machine back to frame one.

Finally, let’s implement the delay machine by adding script keyframes in the composition timeline to play the delay machine at the one, three, five, seven, and nine second points. The slide show is finished. If you want it to play over and over, just loop the composition timeline.

Figure 2: The slide show’s completed timeline

(2)Example 2: A Business Presentation

A typical business presentation consists of a series of slides, each slide having some animated content. One line of text appears, there’s a pause while the audience reads and understands what’s being said, then another line of text flies in or fades in, and so on until the first slide is replaced with the second and the process repeats.

In the LiveMotion version of such a presentation, each slide is actually a movie clip group, with the text (or whatever other) animation playing in the group’s independent timeline. In this case, using a delay machine to keep timelines short really pays off—a single delay machine can not only control one timeline, but as many as are needed.

Figure 3: A typical business presentation. The triangle at bottom right is a button by which the presenter can advance to the next slide.

We’ll let you dream up your own presentation, and just show you how to arrange your timelines and apply the delay machine to them. As the internal animation of each slide happens in the timeline of its own movie clip group, each need only take up a single frame of the composition timeline. In our example, we opted to let the presenter click a button to advance to each successive slide, so we stopped our timeline right at the first frame.

Illustration 4
As each slide inhabits each next successive frame of the composition timeline, we script the button’s down state using the _root.nextFrame(); method. As you might expect, this moves the targeted timeline forward one frame and stops it there. The movie clip group in that frame plays automatically.

Inside the movie clip group, the first line of text completes its animated entrance, and we stop the movie clip’s timeline and launch the delay machine with a single keyframe. In the last frame of the delay machine’s timeline, a script keyframe restarts the movieclip group and resets the delay machine. The second line of text animates in, and so on. The final animation in the movie clip group completes right at the last frame of the clip’s timeline, which then sits there obediently until the presenter clicks the button.

Illustration 5
If we wanted the show to run automatically instead of using a button, that’s very simple to achieve. We just run the delay machine a final time at the point where the final animation in each clip concludes, add one frame to the clip after that, and use a script keyframe in that last frame to send the composition timeline one frame forward.

You may be wondering how we can target all the slides with a single delay machine. There’s no problem with simply listing all the slides in the delay machine’s final keyframe, because the slides don’t overlap in the composition timeline. If a movie clip doesn’t exist at the current time, no script can touch it—the methods that play any slides but the current one are ignored.

 (1)The Mask of Motion

You already know that top object masks are a convenient way to give your artwork, animations, or placed images, a new visual shape. Animating masks opens up potentials far beyond that basic function. Unfortunately, for export to Flash, masks cannot be addressed directly by scripting and therefore cannot be animated programmatically without use of some clever workarounds, but they can be animated without difficulty using timelines and keyframes.

In this project, we’ll animate the scale of a top object mask to reveal the image underlying it, build in an invisible, animated button, and experiment with running animations backwards. Along the way, you’ll learn exactly how a top object mask is defined in the Flash format, and what will and won’t work as you might expect.

What we want is for the mask to expand and reveal the underlying image whenever the mouse cursor passes into the visible area of the image, and then shrink back down when the mouse passes out of the visible image. Imagine the menu system you could build from several different images and mask shapes. Let’s do it!

Figure 4: The mask as it looks in the first and last frames.

(2)Creating the Mask

In our example, we used the butterfly object from LiveMotion’s Library as the mask, and Flowers.psd from Photoshop’s Samples folder as the underlying image. Feel free to substitute any image or mask object you like. Begin by opening a new composition, 400 pixels square, and setting the frame rate to 24. We selected black as the background color.

1. Place Flowers.psd into the composition.

2. We’ll have no need to select the flowers image, and it will be a nuisance to click in the canvas without selecting is, so lock it in the timeline window.

3. In the Library palette, select the butterfly shape and place it into the center of your composition by clicking the Place Object button at the bottom of the palette.

4. Open the timeline window (if it isn’t already open), select both objects, and click the Group and make movie clip button to create a Group of 2 objects. Rename this “mask_group.”

5. With mask_group selected, choose Top Object is Mask from the Object menu. The flowers should now be visible only through the butterfly shape.

6. Save the file, and preview in the browser of your choice.

Whoa! What happened here? It looked fine in LiveMotion, but in the browser there’s no mask at all. That’s because LiveMotion has no way of knowing what format you ultimately intend to export to, so it let you use an object as a mask that Flash doesn’t recognize. If you click over to the Export Report, you’ll see an error message right at the top: “Image used as a mask layer.”

So, as you might infer, images cannot be used as masking objects in Flash. The only type of object that will work is a simple vector shape. That means a shape consisting of a simple path, filled instead of outlined, and filled with a single color, no less. Masks in Flash cannot contain gradients of any sort. Also (not that it’s our problem in this case), mask objects can be contained in movie clip groups, and they can act as masks over movie clips, but they cannot themselves be movie clips (which is why they cannot be scripted).

But what’s wrong with our butterfly? Isn’t it a perfectly valid vector object? No, not quite. It’s a placed .pdf file that consists of a valid vector object, but is in fact still a .pdf file, which places into LiveMotion as an image. The same is true of shapes in .eps and .ai formats that you might have created in Adobe Illustrator. It’s sort of a trap.

Fortunately, the way out of the trap is perfectly simple.

7. Dive down into mask_group and select the butterfly image.

8. From the Object menu, invoke Convert Into and then choose Path.

9. Save the file, and Preview In Browser once again. Perfect! You can convert .eps and .ai files the same way, but note that they must still meet all the other criteria required by Flash to be successful masks.

(2)Animating the Mask

The Transform properties of mask objects can be animated with keyframes just like any other object in LiveMotion. Those are just exactly the properties directly under the Transform twirly in the timeline window. Stick to those, and all will work just as you’d expect.

1. Stretch mask_group’s independent timeline out to the one second mark, making sure that the duration bars of both objects in the group follow along.

2. Select the butterfly object, open up its Transform properties, and set a Scale keyframe at the first frame of the timeline.

3. Move the Current Time Marker to the last frame.

4. In the canvas, grab a corner of butterfly’s bounding box and drag to scale it so it fills most of the canvas. Hold down Shift while you drag so it scales proportionally.

5. Move the Current Time Marker back and forth to see the effect.

6. This animation is to be triggered by a button, so you don’t want it to launch off by itself. Set a script keyframe in frame one, and enter the command this.stop();.

(2)The Invisible, Animated Button

The trick here, of course, is that we need the “hot” area of the button to be the same shape as the butterfly, and to scale up and down with it. It would not be a good experience for your site’s visitors to have to hold the mouse right in the center of the image to keep the visible area expanded. That might sound complicated, but in fact, most of the work has already been done.

1. Select the butterfly object and duplicate it, making sure the Current Time Marker is at frame one. Only the top object in a group can be the mask, so the duplicate butterfly is now the mask and the original isn’t. The original butterfly is now opaque, and there’s nothing at all good-looking about the canvas. The great thing is that both butterflies now animate identically.

2. Rename the top butterfly “mask” and the original butterfly “button.” Aha!

3. Select the button and use the Opacity palette to turn its opacity down to zero. Good looks have been restored to the canvas.

4. In the States palette, give the button an Over state.

5. With the Over state still selected, click the Script button at the bottom of the States palette to bring up the Script Editor.

6. Key in _parent.play(); and close the Script Editor. Because LiveMotion automatically made the button a movie clip when you added a state, mask_group is now the parent timeline of the button clip.

7. Preview to test the button.

(2)What Scales Up Must Scale Down: The Reverse Machine

Earlier in this chapter, you made friends with the delay machine, an empty movie clip you used to pause and restart animations at will. Now you’ll build a reverse machine, which—you guessed it!—is used to play animations backwards. While the details of the delay and reverse machines are quite different, building one starts out with the same steps, as do all empty movie clips.

1. With mask_group’s timeline open in the timeline window, click in the canvas with any drawing tool to create a temporary object. Make sure that object is part of the mask group; we want to nest the reverse machine right in that group so it will be portable if you later decide to duplicate the movie clip as part of a menu system.

2. Make the object a movie clip group. Rename this one “rev_mach.”

3. Move rev_mach down the stacking order so it isn’t the top object and doesn’t spoil the mask.

4. Dive down into rev_mach’s timeline, and delete the base object.

From here on out, the reverse machine is quite different from the delay machine. Inconveniently, ActionScript has no “play backwards” method, but what it does have is several ways of sending a movie clip one (or more) frames forwards or backwards. We’ll need to send mask_group’s timeline backwards one frame repeatedly to get it all the way back to the start, and we want to do that at the same rate at which it ran forwards.

We can’t do that using a script keyframe, because the code written in a script keyframe only executes once every time the playhead passes over that frame. We must therefore put our repeating “go back one frame” code somewhere else, and that place is in an onEnterFrame event handler. Any code written to that particular event handler executes repeatedly, and at the composition’s frame rate, for as long as any part of its movie clip exists in the timeline. That’s exactly what we want.

5. Leave rev_mach’s timeline as a single frame, with the start and end handles right together. Bring up the Script Editor by pressing Ctrl-J (Windows) or Cmd-J (Macintosh).

6. Click the Handler Scripts button (the one with the clock icon), and select onEnterFrame from the event dropdown menu.

7. Key in _root.mask_group.prevFrame();. We want to use the absolute reference to the mask group timeline, because in this example, we’ll be nesting the reverse machine one level deeper than it now is.

8. Close the Script Editor.

(2)Controlling the Reverse Machine

Now your reverse machine will send mask_groups timeline backwards just fine. In fact, it will keep sending it backwards back into the previous millennium, unless we do something to stop it. Now we have a dilemma, because we cannot stop an onEnterFrame event handler from running while its movie clip exists in any timeline’s current time. And therein lies the solution. Let’s enclose the reverse machine in yet another movie clip group, which will have a two-frame timeline. The reverse machine will only exist in the second frame, so when that timeline is in its first frame, poor old rev_mach is out of action.

1. Select rev_mach and make it a movie clip group.

2. Rename the new group “rev_ctrl.”

3. Dive down into rev_ctrl and pull its timeline out to two frames.

4. Drag the rev_mach clip’s start handle so it exists only in the second frame of rev_ctrl.

5. Add a label to rev_ctrl’s first frame, and name it “rev_off.”

6. Add a script keyframe to rev_ctrl’s first frame, enter the command this.stop();, and close the Script Editor.

Illustration 6
If you got comfortable with the delay machine earlier in this chapter, this basic scripting should make sense to you about now. In any case, enclosing any empty movie clip machine in a controlling “container” is a robust technique for turning whatever the machine does on and off. We could equally well have enclosed the delay machine in this way instead of having its self-stopping command in its first script keyframe; however, we’d still be faced with that one-frame lag between command and action. That’s just the nature of using empty movie clips to control other movie clips.

You’ll have surmised by now that moving the mouse away from the invisible button will trigger the reverse machine (through rev_ctrl), so let’s make that happen.

7. Climb up a level in the timeline window, back into the masked group.

8. Select the button, and add a new state using the States palette. The new state will default to Down, but we don’t need that for the moment. Use the drop down menu to change it to Out instead.

9. Add a script keyframe to the Out state, and enter the command _parent.rev_ctrl.play();, then close the Script Editor.

We’re almost finished, but there’s still just a little bit of cleanup to do. First, let’s review how what we’ve built works so far. The mouse passes over the button, which causes the animation to play forwards and expand the scale of the mask. The mouse passes out of the button, which causes rev_ctrl to play. As soon as rev_ctrl enters its second frame, rev_mach starts stepping the animation timeline backwards and reduce the scale of the mask. So, what’s left to do? Shut the reverse machine back off when the animation’s timeline reaches frame one, certainly, so let’s do that.

10. Go back to the script keyframe in frame one of mask_group’s timeline, and add a second command: rev_ctrl.gotoAndStop(“rev_off”);.

There’s still one final, final step. What happens if the mouse just chances to go back over the button while the animation is still reversing? You’d have a conflict, that’s what—the script in the button’s Over state would tell the animation to play while the reverse machine would continue making it reverse. So, let’s make the Over state stop the reverse machine too, just in case.

11. Select the button’s Over state and click the Script icon in the States palette to bring up the Script Editor with the correct script showing.

12. Add a second line with the command _parent.rev_ctrl.gotoAndStop();, and close the Script Editor.

You’re done. Save the file and preview it in a browser. Good stuff!

As with the delay machine, the reverse machine might seem like a lot of work to accomplish something that seems like it should be fairly simple. Take heart; it’s only a lot of work while you’re learning it. After just a little bit of practice, you’ll be slinging machines like the Army Corps of Engineers, and finding ways of building your own machines to do any number of different things. And remember, you can always store generic versions of empty movie clips as animation styles, and place them from the Styles palette whenever you need one.

(1)The Animated Menu

Call them what you will—drop-down menus, fly-out menus, animated menus—you can get a lot of navigation into a small space using LiveMotion. Clear, user-friendly navigation is essential to the success of most websites, and animated menus are a fine way of accomplishing that while keeping clutter to a minimum. Your visitors’ experience will also be enhanced by the interactivity afforded by such menus.

It’s possible to build an animated menu system using nothing more than remote rollovers, but if you have more than a few buttons, there’s a big problem: each button needs to target all the other menu items to “put them away” so that only one button’s submenu displays at any one time. Not only is that complicated, but it’s also not flexible—if you need to add a button, you need to rework the targeting of all the other buttons. What are needed are self-contained button/menu modules that work entirely independently of one another.

We have the basis for such an independent module in our previous exercise, in which we scaled a mask up or down using an invisible button. It’s easy enough to scale an animated menu in similar fashion by having the animation play forwards when the mouse cursor is over the menu (even as it changes size), and using a reverse machine to play the animation backwards as the cursor leaves the menu. Two problems remain that make this less than ideal:

· Because the reverse machine is triggered by the button’s transition from Over to Out states, the user can “beat the frame rate” by moving the mouse too quickly, leaving the menu stuck until another Over-Out event occurs.

· Conversely, rolling over a link in the menu (a button on top of the menu, which is itself a button) constitutes a transition from Over to Out for the menu itself, playing the reverse machine when we don’t want it to. Additional code is needed in the Over and Down states of all the links to keep the reverse machine stopped.

It’s also desirable for the mouse cursor not to change from arrow to hand unless it’s over an actual link, just to keep everything as obvious as possible for your visitors. All of these problems would be solved if the menu itself could react to mouse position without the animated part of the menu needing to be a button—if the mouse is over the menu, it expands; if not, it retracts; no ifs, ands, or buttons about it.

ActionScript to the rescue! With just a little bit more code than we’ve used so far, it’s simple to make an independent menu module that simply cannot get stuck. Even better, it’s fully portable. You can just duplicate the first module as many times as needed without rewriting any of the scripting that controls the animation.

(2)Animating the Menu

We’ll use the MovieClip.getBounds() method to determine the limits of the menu’s changing area, and then test whether or not the mouse cursor is within that area. If it is, the menu continues to extend fully. If it isn’t, the menu retracts. Our first task is to create the animated movie clip group, the reverse machine and its controller, and get these to respond to the mouse coordinates correctly. Begin by creating a new composition, 600 x 400, and setting the frame rate to 30.

1. Draw a rectangle, 100 x 20 pixels wide and high, and name it “dropdown.”

2. Duplicate the rectangle. Rename the top rectangle “menu_button,” and the original rectangle “dropdown.”

3. Make dropdown a movie clip so it can contain scripting.

4. Use the Transform Tool Live Tab to set dropdown’s anchor point exactly to the top left handle, so that it will scale downwards while the top edge stays put. There’s a very important reason for placing the anchor point at the top left, instead of anywhere else along the top, as we’ll explain soon.

5. Enclose the dropdown in a movie clip group, and name the group “menu1.”

6. Dive down into menu1’s timeline and stretch it out to 11 frames.

7. Add a script keyframe containing the this.stop() method to stop the timeline in its first frame.

8. Change the length of dropdown’s duration bar to 10 frames long, so that it occupies all but the first frame of menu1’s timeline.

9. Set a scale keyframe for dropdown at the second frame of the timeline, where dropdown first begins..

10. Move the Current Time Marker to the end of the timeline, and change dropdown’s Y dimension to 140 in the Transform palette.

11. Move the Current Time Marker back to the first frame.

Next we’ll add the reverse machine and its controller to the menu1 movie clip group.

12. Select the dropdown object in the timeline to make sure the base object for the reverse machine becomes part of the movie clip group, and click with the rectangle tool to create that object.

13. Make the new rectangle a movie clip group, dive down into its timeline, delete the rectangle, and rename the resulting Group of 0 objects “rev_mach,” leaving its timeline at single-frame length.

14. With rev_mach selected, open the Script Editor, choose the onEnterFrame event handler, and enter _parent._parent.prevFrame();. Once we enclose rev_mach in a controller movie clip, menu1’s timeline will be two levels up the programmatic stack, so _parent._parent will be the correct relative reference. We want to use relative references so our menu module will be truly portable later on, wherever it ends up in a composition.

15. Make rev_mach a new movie clip group, and rename that Group of 1 objects “rev_control.”

16. Dive into rev_control’s timeline and stretch it to two frames length.

17. Position rev_mach so it only occupies the second frame of rev_control’s timeline.

18. In rev_control’s first frame, add a label with the name “off.”

19. Climb back up to the menu1 timeline, reopen the first script keyframe, and add rev_control.gotoAndStop(“off”); on the next line under the existing code. There is no need to stop rev_control in its own timeline.

If you did the animated mask exercise in the previous section of this chapter, you should be on familiar ground at this point. In case you didn’t, let’s recap what’s going on here before we move on to the scripts that will make it all happen. Any code in an onEnterFrame event handler executes once per frame. For our rev_mach, that code will send menu1’s timeline backwards at the composition’s frame rate for as long as rev_mach is present in the timeline containing it; rev_control, in this case. When rev_control is in frame one where rev_mach doesn’t yet exist, that code does not get executed, and menu1 will be controlled by the other scripts we’re about to write. When rev_control is in frame two, rev_mach’s code takes effect.

(2)The MovieClip.getBounds() Method

MovieClip.getBounds() is the method that finds the coordinates of the corners of a movie clip’s bounding box, within a targetCoordinateSpace, which is the only optional argument that can be entered in the method’s parentheses. If we don’t enter a reference to a different movie clip (or _root) in the parentheses, that targetCoordinateSpace defaults to the current movie clip itself; the one containing the script. That’s exactly what we need for a portable menu module, so we won’t enter any argument in this application.

Understanding how targetCoordinateSpace works is vital to our project, so let’s examine exactly how it works. You already know that the X and Y coordinates of objects in a composition are always referenced to the top left corner of the canvas, so at that corner, the _root._x and _root._y properties are both equal to 0. At the bottom right corner of our 600 x 400 composition, _root._x equals 600 and _root._y equals 400. Those four values define the composition’s targetCoordinateSpace overall.

Similarly, a movie clip has its own internal targetCoordinateSpace. Unlike the composition as a whole, though, internal coordinates are referenced to the movie clip’s anchor point, not to its top left corner. In the case of a 100 x 20 pixel movie clip (like our dropdown) with its anchor point centered, the MovieClip._x and MovieClip._y properties of the top left corner are –50 and –10 respectively, regardless of where the clip is in the composition. In this exercise, we moved dropdown’s anchor point to the top left corner so that all of dropdown’s internal coordinates would have positive values.

When invoked without the optional targetCoordinateSpace argument, the MovieClip.getBounds() method returns the internal coordinates of the clip’s bounding box’s edges, those coordinates being xMin, xMax, yMin, and yMax. We can access those properties and use them in scripting by loading those values into a variable, and then distilling out each of the four values into its own variable for handy future use, thus:

var menuBounds = this.getBounds();

var left = menuBounds._xMin;

var right = menuBounds._xMax

var top = menuBounds._yMin;

var bottom = menuBounds._yMax;

If we write this snippet of script somewhere in our dropdown movie clip, and because we moved the reference to the top left corner, the value of these variables will initially be left=0, right=100, top=0, and bottom=20. At the end of the animation, when dropdown is fully dropped down, bottom=140. In our example, we’re not animating any of the other edges, but we could do so freely without changing any code—that’s the power of MovieClip.getBounds().

(2)Testing for Mouse Coordinates

The whole point of determining the coordinates of our dropdown’s four edges is so we can test whether or not the mouse cursor happens to be within their bounds. We do that using the _xmouse and _ymouse properties, and we need to be very careful to ensure the Flash player knows we mean those properties within our movie clip, not just in the composition as a whole. We can prevent any confusion by referring to them explicitly as this._xmouse and this._ymouse when writing the code somewhere in the relevant movie clip.

So, now that we’ve made sure that we’re dealing only with the internal coordinates of the dropdown movie clip, we can do a conditional test. The && operator means that all the test conditions must be true, not just any of them, in order for the overall test to prove true. Here’s the test, including the methods that tell the animation and the reverse machine (through rev_control) to play and stop:

if ((this._xmouse >= left) && (this._xmouse <= right)


&& this._ymouse >= top) && (this._ymouse <= bottom)) {


_parent.rev_control.gotoAndStop(“off”);


_parent.play();

} else {


_parent.stop();


_parent.rev_control.play();

}

Just on the off chance that ActionScript isn’t your first language, here’s a translation: if the mouse is to the right of dropdown’s left edge, and left of the right edge, and below the top edge, and above the bottom edge (all four tests must be true), then send rev_control to its first frame (disabling the reverse machine), and play the animation (extending the dropdown). Else, if any or all of those tests are false, stop the dropdown from extending, and play rev_control, thereby engaging the reverse machine to retract the dropdown. It’s all very sensible.

(2)Implementing the Script

If you’ve followed along diligently (and we know you have), you know that you’ll be writing the scripts somewhere in the dropdown movie clip. But (you might wonder) couldn’t we just write the scripts into the menu1 movie clip group instead? Dropdown wouldn’t need to be a movie clip at all, and we’d save having to put in all that _parent. business, wouldn’t we?

You’d be entirely right—in this case, menu1’s bounds are exactly the same as dropdown’s bounds. But there would be a down side to this more obvious approach. Updating the coordinates of both edges and mouse needs to be done continuously as the animation runs, and as the mouse moves in or out of menu1’s changing bounding box. That puts a load on your visitor’s computer’s processor (or CPU), and it’s good practice not to use up CPU cycles when they’re not needed. We could write the script in menu1’s onEnterFrame event handler, and it would keep on checking for bounds and mouse the whole time the menu is part of the composition, once per frame. That’s no problem for one menu module alone, but what if there are ten of them? And what if assorted other CPU-intensive animations are running at the same time? There’s no point in having a humble menu module slowing down the main show until your visitor asks something of it.

It’s for this very reason that the script goes into the dropdown movie clip, which doesn’t exist in frame one of the menu. If dropdown doesn’t exist at the current time, any scripting in it doesn’t execute and makes no demands on the CPU, just as the reverse machine doesn’t run when rev_control is in its first frame.

We can even cut down on CPU cycles when the script is present in time. Instead of putting the script in the onEnterFrame event handler, we’ll put it in onMouseMove instead. If you think about it for a moment, there’s no reason to run this particular script at all unless your visitor is moving the mouse, so we won’t.

Once that makes sense to you, go ahead and type both of the preceding script snippets into dropdown’s onMouseMove event handler. Be sure to enter them exactly as they are in our examples—ActionScript is a stickler for accuracy (getBounds() and getbounds() are completely different words, and only the first means anything in ActionScript). You can put the long “if” statement all on one line if you prefer (we had to fit it on the page, whereas the Script Editor scrolls along very nicely), just don’t end the first line with a semicolon if you do split it up, and be sure to get the double parentheses on each end right.

(2)One Last Step (or is it the First?)

Now you’ve built a complex construct with animation, empty movie clips, and some pretty fancy scripting; you learned about some esoteric things like targetCoordinateSpace and CPU cycles, and the menu module still won’t do anything at all. We’ve left the first step of the animation for last: getting menu1’s timeline into its second frame. Perhaps you remember naming an object menu_button way back in step 2? Bingo.

This part is almost too easy:

1. Select menu_button , and add an Over state in the States palette.

2. With the Over state selected, click the Scripts icon at the bottom of the palette to open the Script Editor.

3. Type in _parent.play();.

Now you should have a menu module that animates perfectly in both LiveMotion’s preview mode and in the Flash player—give it a test run in both.

From here on out, finishing the menu module is just a matter of adding some title text on top of menu_button, adding the links (you can start them in menu1’s last frame only, or stagger them to appear as the animation unfolds), and whatever decoration you like. You can duplicate the module as many times as will fit in the composition without any overlapping, and change links and text as needed to build a complex menu system for whatever serves the needs of your site.

(1)Motion on a Path

The previous exercises in this chapter all involved a great number of steps. Let’s finish with one that has only a few steps, but nonetheless produces a complicated animation; one in which an object moves along a Bezier path and rotates so that it’s always moving “nose first.” Such an animation would be quite tedious to design manually. Instead of setting dozens of position and rotation keyframes, each requiring moving the Current Time Marker, moving the object on canvas, and rotating the object, let’s use one of the great Automation Scripts that ship with LiveMotion. Many others are available at AdobeXchange and on other LiveMotion resource sites on the Web.

Begin by creating a new composition, 400 x 400 pixels, and setting the frame rate to 40. That’s about one quarter of the job right there.

(2)Creating the Animation Automatically

Select the Pen tool, and check the Outline radio button in the Properties palette. The width of the outline really doesn’t matter; it’s just to let you see the path as you draw it. Now draw a nice, smooth, S-shaped path on the canvas.

Use the Polygon tool to draw a small, elongated triangle. Rotate it so the sharp end is facing the correct way to start on the path. It will go along the path in the same direction in which you drew it, from your first click to your last. It doesn’t matter where on the canvas you position the triangle.

Select both path and triangle, and group them. Optionally, if you want the animation to happen in a timeline other than the main composition timeline, use the Group and make movie clip button instead.

With the group (or movie clip group) selected, click on the Animate On Path script under Scripts in the Automation menu. Wow! Instant animation! Expand the group in the timeline window and look at all the keyframes the script set for the triangle object. How long would that have taken to do by hand?

Now delete the path object and preview. It’s almost like magic.

Illustration 7
(2)Changing the Length of the Animation

The Animate On Path script extended the timeline only just long enough to fit in all the necessary keyframes. This results in the quickest animation possible for that particular path, and the higher you set the composition frame rate, the less time the animation takes. This may very well not be what you want. Fortunately, it’s extremely easy to slow down the triangle’s flight.

Hold down Alt (Windows) or Option (Macintosh) and click on the end handle of the timeline containing the keyframes (not the triangle’s duration bar) and release the mouse button. Continue holding down the modifier key while you click again on the end handle. You should see the cursor change from a regular double-headed arrow to one with a circle underneath. Now drag the timeline’s end handle to the right as far as you like. The keyframes will spread out to accommodate the timeline’s new length.

Preview again, and note that the animation is still as smooth as before; it just runs less quickly.

(2)More Fun With Motion Paths

There is an endless number of different things you can do with the Animate On Path Automation Script. Just about any path that doesn’t cross over itself will do. If you like, try some experiments:

· Animate multiple objects on a path. You can have many objects, but only one path, in a group.

· Animate an object along a geometric shape. Draw any shape you like with the Rectangle, Polygon, or Ellipse tools, and simple convert the shape to a path by changing the object type in the Properties palette.

· Make an object follow the shape of a letter for a fancy logo effect. Simply convert the letter to a path using the Object menu. Try a light-colored object with an opacity gradient applied chasing along the edges of a big letter against a dark background.

· Animate a top object mask along a path. Make the mask animation first, and then ungroup it and delete the path. Place other objects under the mask object, group again, and select Top Object Is Mask from the Object menu.

(1)In Conclusion

LiveMotion is a very versatile animation tool. In this chapter, we’ve barely scratched the surface of what’s possible—the limits are whatever your imagination and ingenuity will permit. You have learned the essential techniques, based on some general guidelines for efficient performance in the Flash player.

· Keep timelines as short as possible, using the least number of frames in your movies. This results in smaller exports, and it’s much nicer to deal with while creating your movies.

· Nest animations inside one another, and use basic scripting to have them start and stop each other as needed.

· Use empty movie clips to control animations, and make them reusable whenever possible. It’s much better to use delay machines and reverse machines than to use long timelines and more keyframes.

· Introduce objects to the composition’s timeline only when they are needed, and end them when you’re done with them.

· When animating multiple objects as a group, always use a movie clip group instead of a plain group.

· Use duplicates of objects whenever you can to take advantage of LiveMotion’s Auto-Symbolizing feature, and to make things easy on yourself.

· It is better to break complicated systems down into self-contained modules than to build one overly complicated unit.

· Use Live Tabs, Automation Scripts, and LiveMotion’s timeline features to speed your workflow.

· Plan first; design second.

And most of all, as you move on to yet more advanced topics in this book, don’t forget to have fun!

231…?
16-33

